topology.instances.ennrealMathlib.Topology.Instances.ENNReal

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

chore(topology/instances/ennreal): missing smul lemmas (#18980)
Diff
@@ -612,6 +612,16 @@ by simp only [Sup_eq_supr, mul_supr]
 lemma supr_mul {ι : Sort*} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supr f * a = ⨆i, f i * a :=
 by rw [mul_comm, mul_supr]; congr; funext; rw [mul_comm]
 
+lemma smul_supr {ι : Sort*} {R} [has_smul R ℝ≥0∞] [is_scalar_tower R ℝ≥0∞ ℝ≥0∞]
+  (f : ι → ℝ≥0∞) (c : R) :
+  c • (⨆ i, f i) = ⨆ i, c • f i :=
+by simp only [←smul_one_mul c (f _), ←smul_one_mul c (supr _), ennreal.mul_supr]
+
+lemma smul_Sup {R} [has_smul R ℝ≥0∞] [is_scalar_tower R ℝ≥0∞ ℝ≥0∞]
+  (s : set ℝ≥0∞) (c : R) :
+  c • Sup s = ⨆ i ∈ s, c • i :=
+by simp_rw [←smul_one_mul c (Sup _), ennreal.mul_Sup, smul_one_mul]
+
 lemma supr_div {ι : Sort*} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supr f / a = ⨆i, f i / a :=
 supr_mul
 
@@ -857,6 +867,10 @@ has_sum.tsum_eq this
 protected lemma tsum_mul_right : (∑'i, f i * a) = (∑'i, f i) * a :=
 by simp [mul_comm, ennreal.tsum_mul_left]
 
+protected lemma tsum_const_smul {R} [has_smul R ℝ≥0∞] [is_scalar_tower R ℝ≥0∞ ℝ≥0∞] (a : R) :
+  ∑' i, a • f i = a • ∑' i, f i :=
+by simpa only [smul_one_mul] using @ennreal.tsum_mul_left _ (a • 1) _
+
 @[simp] lemma tsum_supr_eq {α : Type*} (a : α) {f : α → ℝ≥0∞} :
   ∑'b:α, (⨆ (h : a = b), f b) = f a :=
 le_antisymm

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -238,9 +238,9 @@ theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
   tendsto_nhds_top_iff_nnreal.trans
-    ⟨fun h n => by simpa only [ENNReal.coe_nat] using h n, fun h x =>
+    ⟨fun h n => by simpa only [ENNReal.coe_natCast] using h n, fun h x =>
       let ⟨n, hn⟩ := exists_nat_gt x
-      (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_nat, coe_lt_coe]⟩
+      (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_natCast, coe_lt_coe]⟩
 #align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
 -/
 
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Topology.Instances.Nnreal
-import Topology.Algebra.Order.MonotoneContinuity
+import Topology.Instances.NNReal
+import Topology.Order.MonotoneContinuity
 import Topology.Algebra.InfiniteSum.Real
 import Topology.Algebra.Order.LiminfLimsup
-import Topology.MetricSpace.Lipschitz
+import Topology.EMetricSpace.Lipschitz
 
 #align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
 
@@ -208,7 +208,7 @@ def ltTopHomeomorphNNReal : {a | a < ∞} ≃ₜ ℝ≥0 := by
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 #print ENNReal.nhds_top /-
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
@@ -273,7 +273,7 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (a «expr ≠ » 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 #print ENNReal.nhds_zero /-
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
Diff
@@ -338,7 +338,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     have xxb : x - (x - b) = b := sub_sub_cancel xt bx.le
     refine' iInf_le_of_le (x - b) (iInf_le_of_le xb_pos _)
     simp only [mem_principal, le_principal_iff]
-    intro y; rintro ⟨h₁, h₂⟩; rw [xxb] at h₁ ;
+    intro y; rintro ⟨h₁, h₂⟩; rw [xxb] at h₁;
     calc
       a < b := ab
       _ ≤ y := h₁
@@ -347,7 +347,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     have xbx : x + (b - x) = b := add_tsub_cancel_of_le xb.le
     refine' iInf_le_of_le (b - x) (iInf_le_of_le bx_pos _)
     simp only [mem_principal, le_principal_iff]
-    intro y; rintro ⟨h₁, h₂⟩; rw [xbx] at h₂ ;
+    intro y; rintro ⟨h₁, h₂⟩; rw [xbx] at h₂;
     calc
       y ≤ b := h₂
       _ < a := ba
@@ -404,7 +404,7 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
   by
   cases a <;> cases b
-  · simp only [eq_self_iff_true, not_true, Ne.def, none_eq_top, or_self_iff] at h ; contradiction
+  · simp only [eq_self_iff_true, not_true, Ne.def, none_eq_top, or_self_iff] at h; contradiction
   · simp only [some_eq_coe, WithTop.top_sub_coe, none_eq_top]
     apply tendsto_nhds_top_iff_nnreal.2 fun n => _
     rw [nhds_prod_eq, eventually_prod_iff]
@@ -459,9 +459,9 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     refine' this.mono fun c hc => _
     exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2)
   cases a
-  · simp [none_eq_top] at hb ; simp [none_eq_top, ht b hb, top_mul, hb]
+  · simp [none_eq_top] at hb; simp [none_eq_top, ht b hb, top_mul, hb]
   cases b
-  · simp [none_eq_top] at ha 
+  · simp [none_eq_top] at ha
     simp [*, nhds_swap (a : ℝ≥0∞) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (· ∘ ·),
       mul_comm]
   simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (· ∘ ·)]
@@ -588,7 +588,7 @@ theorem continuousOn_sub :
   by
   rw [ContinuousOn]
   rintro ⟨x, y⟩ hp
-  simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp 
+  simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_distrib.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 -/
@@ -643,7 +643,7 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   by
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
     (ENNReal.continuousAt_mul_const (Or.inr one_ne_zero)).mono_left inf_le_left
-  rw [one_mul] at this 
+  rw [one_mul] at this
   haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, zero_lt_one⟩
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
@@ -657,7 +657,7 @@ theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = 
   · rcases h H.1 H.2 with ⟨i, hi⟩
     rw [H.2, MulZeroClass.mul_zero, ← bot_eq_zero, iInf_eq_bot]
     exact fun b hb => ⟨i, by rwa [hi, MulZeroClass.mul_zero, ← bot_eq_zero]⟩
-  · rw [not_and_or] at H 
+  · rw [not_and_or] at H
     cases isEmpty_or_nonempty ι
     · rw [iInf_of_empty, iInf_of_empty, mul_top, if_neg]
       exact mt h0 (not_nonempty_iff.2 ‹_›)
@@ -969,7 +969,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
   by
   by_contra h
-  simp_rw [not_exists, not_frequently, not_lt] at h 
+  simp_rw [not_exists, not_frequently, not_lt] at h
   refine'
     hx
       (ENNReal.eq_top_of_forall_nnreal_le fun r =>
@@ -989,7 +989,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
   by
   by_contra h
-  simp_rw [not_exists, not_frequently, not_lt] at h 
+  simp_rw [not_exists, not_frequently, not_lt] at h
   refine'
     hx
       (ENNReal.eq_top_of_forall_nnreal_le fun r =>
@@ -1009,7 +1009,7 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
     ∃ a b : ℚ, a < b ∧ (∃ᶠ i in l, x i < a) ∧ ∃ᶠ i in l, ↑b < x i :=
   by
-  rw [is_bounded_under_le_abs, not_and_or] at hbdd 
+  rw [is_bounded_under_le_abs, not_and_or] at hbdd
   obtain hbdd | hbdd := hbdd
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top hf
     obtain ⟨q, hq⟩ := exists_rat_gt R
@@ -1017,14 +1017,14 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     · refine' fun hcon => hR _
       filter_upwards [hcon] with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
-        not_exists, Classical.not_forall, not_le, exists_prop] at hbdd 
+        not_exists, Classical.not_forall, not_le, exists_prop] at hbdd
       refine' fun hcon => hbdd ↑(q + 1) _
       filter_upwards [hcon] with x hx using not_lt.1 hx
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top' hf
     obtain ⟨q, hq⟩ := exists_rat_lt R
     refine' ⟨q - 1, q, (sub_lt_self_iff _).2 zero_lt_one, _, _⟩
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
-        not_exists, Classical.not_forall, not_le, exists_prop] at hbdd 
+        not_exists, Classical.not_forall, not_le, exists_prop] at hbdd
       refine' fun hcon => hbdd ↑(q - 1) _
       filter_upwards [hcon] with x hx using not_lt.1 hx
     · refine' fun hcon => hR _
@@ -1212,7 +1212,7 @@ protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → ∑' a, f a = 
 protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞) (j : α) :
     a j < ∞ := by
   have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
-  simp only [not_exists] at key 
+  simp only [not_exists] at key
   exact lt_top_iff_ne_top.mpr (key tsum_ne_top j)
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 -/
@@ -1379,7 +1379,7 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : ∑'
   have h₃ : ∑' i, (f i - g i) = ∑' i, (f i - g i + g i) - ∑' i, g i := by
     rw [ENNReal.tsum_add, ENNReal.add_sub_cancel_right h₁]
   have h₄ : (fun i => f i - g i + g i) = f := by ext n; rw [tsub_add_cancel_of_le (h₂ n)]
-  rw [h₄] at h₃ ; apply h₃
+  rw [h₄] at h₃; apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
 -/
 
@@ -1444,11 +1444,11 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (h
   have h₁ :
     ∑' b : { n // n ∈ Finset.range 1 }, f b + ∑' b : { n // n ∉ Finset.range 1 }, f b = ∑' b, f b :=
     tsum_add_tsum_compl ENNReal.summable ENNReal.summable
-  rw [Finset.tsum_subtype, Finset.sum_range_one, hf, ENNReal.add_eq_top] at h₁ 
+  rw [Finset.tsum_subtype, Finset.sum_range_one, hf, ENNReal.add_eq_top] at h₁
   rw [← h₁.resolve_left hf0]
   apply tsum_congr
   rintro ⟨i, hi⟩
-  simp only [Multiset.mem_range, not_lt] at hi 
+  simp only [Multiset.mem_range, not_lt] at hi
   simp only [tsub_add_cancel_of_le hi, coe_notMemRangeEquiv, Function.comp_apply, Subtype.coe_mk]
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 -/
@@ -1467,13 +1467,13 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
   have key :=
     (nnreal.summable_coe.mpr (summable_to_nnreal_of_tsum_ne_top tsum_ne_top)).tendsto_cofinite_zero
       (Iio_mem_nhds (to_real_pos ε_ne_zero ε_infty))
-  simp only [Filter.mem_map, Filter.mem_cofinite, preimage] at key 
+  simp only [Filter.mem_map, Filter.mem_cofinite, preimage] at key
   have obs : {i : ι | ↑(a i).toNNReal ∈ Iio ε.to_real}ᶜ = {i : ι | ε ≤ a i} :=
     by
     ext i
     simpa only [mem_Iio, mem_compl_iff, mem_set_of_eq, not_lt] using
       to_real_le_to_real ε_infty (ENNReal.ne_top_of_tsum_ne_top tsum_ne_top _)
-  rwa [obs] at key 
+  rwa [obs] at key
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
 -/
 
@@ -1489,7 +1489,7 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
       rw [eq_empty_iff_forall_not_mem]
       intro i hi
       have oops := (le_trans hi (le_tsum' (@ENNReal.summable _ a) i)).trans tsum_le_c
-      rw [h] at oops 
+      rw [h] at oops
       exact c_ne_top (le_antisymm le_top oops)
     simp only [obs, finite_empty, finite.to_finset_empty, Finset.card_empty, algebraMap.coe_zero,
       zero_le', exists_true_left]
@@ -1503,7 +1503,7 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
   have partial_sum :=
     @sum_le_tsum _ _ _ _ _ a hf.to_finset (fun _ _ => zero_le') (@ENNReal.summable _ a)
   have lower_bound := Finset.sum_le_sum at_least
-  simp only [Finset.sum_const, nsmul_eq_mul] at lower_bound 
+  simp only [Finset.sum_const, nsmul_eq_mul] at lower_bound
   have key := (ENNReal.le_div_iff_mul_le (Or.inl ε_ne_zero) (Or.inl h)).mpr lower_bound
   exact le_trans key (ENNReal.div_le_div_right (partial_sum.trans tsum_le_c) _)
 #align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_le
@@ -1569,7 +1569,7 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : ∑' b, f b = (∑' b, (f b
   by_cases h : Summable f
   · rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe]
   · have A := tsum_eq_zero_of_not_summable h
-    simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h 
+    simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h
     simp only [h, ENNReal.top_toNNReal, A]
 #align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsum
 -/
@@ -1816,7 +1816,7 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f :=
   by
   lift f to α → ℝ≥0 using hn
-  rw [NNReal.summable_coe] at hf 
+  rw [NNReal.summable_coe] at hf
   simpa only [(· ∘ ·), ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
 -/
@@ -1978,7 +1978,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
         (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) :=
   ⟨by
     intro hs
-    rw [EMetric.cauchySeq_iff] at hs 
+    rw [EMetric.cauchySeq_iff] at hs
     /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking
       the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/
     let b N := Sup ((fun p : β × β => edist (s p.1) (s p.2)) '' {p | p.1 ≥ N ∧ p.2 ≥ N})
@@ -2026,21 +2026,21 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f :=
   by
   rcases eq_or_ne C 0 with (rfl | C0)
-  · simp only [MulZeroClass.zero_mul, add_zero] at h 
+  · simp only [MulZeroClass.zero_mul, add_zero] at h
     exact continuous_of_const fun x y => le_antisymm (h _ _) (h _ _)
   · refine' continuous_iff_continuousAt.2 fun x => _
     by_cases hx : f x = ∞
     · have : f =ᶠ[𝓝 x] fun _ => ∞ :=
         by
         filter_upwards [EMetric.ball_mem_nhds x ENNReal.coe_lt_top]
-        refine' fun y (hy : edist y x < ⊤) => _; rw [edist_comm] at hy 
+        refine' fun y (hy : edist y x < ⊤) => _; rw [edist_comm] at hy
         simpa [hx, ENNReal.mul_ne_top hC hy.ne] using h x y
       exact this.continuous_at
     · refine' (ENNReal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
       filter_upwards [EMetric.closedBall_mem_nhds x (ENNReal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
       have hεC : C * (ε / C) = ε := ENNReal.mul_div_cancel' C0 hC
       refine' fun y (hy : edist y x ≤ ε / C) => ⟨tsub_le_iff_right.2 _, _⟩
-      · rw [edist_comm] at hy 
+      · rw [edist_comm] at hy
         calc
           f x ≤ f y + C * edist x y := h x y
           _ ≤ f y + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f y))
@@ -2087,7 +2087,7 @@ theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f :=
   by
   lift d to ℕ → NNReal using fun i => ENNReal.ne_top_of_tsum_ne_top hd i
-  rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd 
+  rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd
   exact cauchySeq_of_edist_le_of_summable d hf hd
 #align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_top
 -/
@@ -2105,7 +2105,7 @@ theorem EMetric.diam_closure (s : Set α) : diam (closure s) = diam s :=
   refine' le_antisymm (diam_le fun x hx y hy => _) (diam_mono subset_closure)
   have : edist x y ∈ closure (Iic (diam s)) :=
     map_mem_closure₂ continuous_edist hx hy fun x hx y hy => edist_le_diam_of_mem hx hy
-  rwa [closure_Iic] at this 
+  rwa [closure_Iic] at this
 #align emetric.diam_closure EMetric.diam_closure
 -/
 
@@ -2160,7 +2160,7 @@ theorem ediam_eq {s : Set ℝ} (h : IsBounded s) :
 theorem diam_eq {s : Set ℝ} (h : IsBounded s) : Metric.diam s = sSup s - sInf s :=
   by
   rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
-  rw [Real.isBounded_iff_bddBelow_bddAbove] at h 
+  rw [Real.isBounded_iff_bddBelow_bddAbove] at h
   exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 -/
Diff
@@ -71,7 +71,7 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
         refine' le_generateFrom fun s ha => _
         rcases ha with ⟨a, rfl | rfl⟩
         exact ⟨Ioi a, isOpen_Ioi, by simp [Ioi]⟩
-        exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_eq_coe.1⟩
+        exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_inj.1⟩
 #align ennreal.embedding_coe ENNReal.embedding_coe
 -/
 
Diff
@@ -1405,13 +1405,27 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 
 #print ENNReal.tsum_biUnion_le /-
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
-    ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x := by classical
+    ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x := by
+  classical
+  induction' s using Finset.induction_on with i s hi ihs h
+  · simp
+  have : (⋃ j ∈ insert i s, t j) = t i ∪ ⋃ j ∈ s, t j := by simp
+  rw [tsum_congr_set_coe f this]
+  calc
+    ∑' x : t i ∪ ⋃ j ∈ s, t j, f x ≤ ∑' x : t i, f x + ∑' x : ⋃ j ∈ s, t j, f x :=
+      tsum_union_le _ _ _
+    _ ≤ ∑' x : t i, f x + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
+    _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 -/
 
 #print ENNReal.tsum_iUnion_le /-
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
-    ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by classical
+    ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
+  classical
+  have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
+  rw [tsum_congr_set_coe f this]
+  exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 -/
 
Diff
@@ -1405,27 +1405,13 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 
 #print ENNReal.tsum_biUnion_le /-
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
-    ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x := by
-  classical
-  induction' s using Finset.induction_on with i s hi ihs h
-  · simp
-  have : (⋃ j ∈ insert i s, t j) = t i ∪ ⋃ j ∈ s, t j := by simp
-  rw [tsum_congr_set_coe f this]
-  calc
-    ∑' x : t i ∪ ⋃ j ∈ s, t j, f x ≤ ∑' x : t i, f x + ∑' x : ⋃ j ∈ s, t j, f x :=
-      tsum_union_le _ _ _
-    _ ≤ ∑' x : t i, f x + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
-    _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
+    ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x := by classical
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 -/
 
 #print ENNReal.tsum_iUnion_le /-
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
-    ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
-  classical
-  have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
-  rw [tsum_congr_set_coe f this]
-  exact tsum_bUnion_le _ _ _
+    ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by classical
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 -/
 
Diff
@@ -999,7 +999,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
               is_bounded_default)
           _)
   simp only [eventually_map, ENNReal.coe_le_coe]
-  filter_upwards [h (-r)] with i hi using (le_neg.1 hi).trans (neg_le_abs_self _)
+  filter_upwards [h (-r)] with i hi using (le_neg.1 hi).trans (neg_le_abs _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 -/
 
Diff
@@ -1396,7 +1396,7 @@ theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     ∑' x : s ∪ t, f x ≤ ∑' x : s, f x + ∑' x : t, f x :=
   calc
-    ∑' x : s ∪ t, f x = ∑' x : s ∪ t \ s, f x := by apply tsum_congr_subtype; rw [union_diff_self]
+    ∑' x : s ∪ t, f x = ∑' x : s ∪ t \ s, f x := by apply tsum_congr_set_coe; rw [union_diff_self]
     _ = ∑' x : s, f x + ∑' x : t \ s, f x :=
       (tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable)
     _ ≤ ∑' x : s, f x + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
@@ -1410,7 +1410,7 @@ theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
   induction' s using Finset.induction_on with i s hi ihs h
   · simp
   have : (⋃ j ∈ insert i s, t j) = t i ∪ ⋃ j ∈ s, t j := by simp
-  rw [tsum_congr_subtype f this]
+  rw [tsum_congr_set_coe f this]
   calc
     ∑' x : t i ∪ ⋃ j ∈ s, t j, f x ≤ ∑' x : t i, f x + ∑' x : ⋃ j ∈ s, t j, f x :=
       tsum_union_le _ _ _
@@ -1424,7 +1424,7 @@ theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : 
     ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
   classical
   have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
-  rw [tsum_congr_subtype f this]
+  rw [tsum_congr_set_coe f this]
   exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 -/
Diff
@@ -1821,23 +1821,23 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
 -/
 
-#print summable_of_nonneg_of_le /-
+#print Summable.of_nonneg_of_le /-
 /-- Comparison test of convergence of series of non-negative real numbers. -/
-theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
+theorem Summable.of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
     (hf : Summable f) : Summable g :=
   by
   lift f to β → ℝ≥0 using fun b => (hg b).trans (hgf b)
   lift g to β → ℝ≥0 using hg
   rw [NNReal.summable_coe] at hf ⊢
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
-#align summable_of_nonneg_of_le summable_of_nonneg_of_le
+#align summable_of_nonneg_of_le Summable.of_nonneg_of_le
 -/
 
 #print Summable.toNNReal /-
 theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n => (f n).toNNReal :=
   by
   apply NNReal.summable_coe.1
-  refine' summable_of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => _) hf.abs
+  refine' Summable.of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => _) hf.abs
   simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
 #align summable.to_nnreal Summable.toNNReal
 -/
@@ -1915,7 +1915,7 @@ series and at least one term of `f` is strictly smaller than the corresponding t
 then the series of `f` is strictly smaller than the series of `g`. -/
 theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ, 0 ≤ f b)
     (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
-  tsum_lt_tsum h hi (summable_of_nonneg_of_le h0 h hg) hg
+  tsum_lt_tsum h hi (Summable.of_nonneg_of_le h0 h hg) hg
 #align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonneg
 -/
 
Diff
@@ -1017,14 +1017,14 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     · refine' fun hcon => hR _
       filter_upwards [hcon] with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
-        not_exists, not_forall, not_le, exists_prop] at hbdd 
+        not_exists, Classical.not_forall, not_le, exists_prop] at hbdd 
       refine' fun hcon => hbdd ↑(q + 1) _
       filter_upwards [hcon] with x hx using not_lt.1 hx
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top' hf
     obtain ⟨q, hq⟩ := exists_rat_lt R
     refine' ⟨q - 1, q, (sub_lt_self_iff _).2 zero_lt_one, _, _⟩
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
-        not_exists, not_forall, not_le, exists_prop] at hbdd 
+        not_exists, Classical.not_forall, not_le, exists_prop] at hbdd 
       refine' fun hcon => hbdd ↑(q - 1) _
       filter_upwards [hcon] with x hx using not_lt.1 hx
     · refine' fun hcon => hR _
@@ -1252,7 +1252,7 @@ protected theorem ne_top_of_tsum_ne_top (h : ∑' a, f a ≠ ∞) (a : α) : f a
 protected theorem tsum_mul_left : ∑' i, a * f i = a * ∑' i, f i :=
   if h : ∀ i, f i = 0 then by simp [h]
   else
-    let ⟨i, (hi : f i ≠ 0)⟩ := not_forall.mp h
+    let ⟨i, (hi : f i ≠ 0)⟩ := Classical.not_forall.mp h
     have sum_ne_0 : ∑' i, f i ≠ 0 :=
       ne_of_gt <|
         calc
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Topology.Instances.Nnreal
-import Mathbin.Topology.Algebra.Order.MonotoneContinuity
-import Mathbin.Topology.Algebra.InfiniteSum.Real
-import Mathbin.Topology.Algebra.Order.LiminfLimsup
-import Mathbin.Topology.MetricSpace.Lipschitz
+import Topology.Instances.Nnreal
+import Topology.Algebra.Order.MonotoneContinuity
+import Topology.Algebra.InfiniteSum.Real
+import Topology.Algebra.Order.LiminfLimsup
+import Topology.MetricSpace.Lipschitz
 
 #align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
 
@@ -208,7 +208,7 @@ def ltTopHomeomorphNNReal : {a | a < ∞} ≃ₜ ℝ≥0 := by
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 #print ENNReal.nhds_top /-
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
@@ -273,7 +273,7 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 #print ENNReal.nhds_zero /-
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
Diff
@@ -2138,15 +2138,16 @@ namespace Real
 #print Real.ediam_eq /-
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
-theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) :=
+theorem ediam_eq {s : Set ℝ} (h : IsBounded s) :
+    EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne); · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
-  · have := Real.subset_Icc_sInf_sSup_of_bounded h
+  · have := Real.subset_Icc_sInf_sSup_of_isBounded h
     exact Real.dist_le_of_mem_Icc (this hx) (this hy)
   · apply ENNReal.ofReal_le_of_le_toReal
     rw [← Metric.diam, ← Metric.diam_closure]
-    have h' := Real.bounded_iff_bddBelow_bddAbove.1 h
+    have h' := Real.isBounded_iff_bddBelow_bddAbove.1 h
     calc
       Sup s - Inf s ≤ dist (Sup s) (Inf s) := le_abs_self _
       _ ≤ diam (closure s) :=
@@ -2156,10 +2157,10 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
 
 #print Real.diam_eq /-
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
-theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s :=
+theorem diam_eq {s : Set ℝ} (h : IsBounded s) : Metric.diam s = sSup s - sInf s :=
   by
   rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
-  rw [Real.bounded_iff_bddBelow_bddAbove] at h 
+  rw [Real.isBounded_iff_bddBelow_bddAbove] at h 
   exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 -/
Diff
@@ -51,7 +51,7 @@ instance : T2Space ℝ≥0∞ := by infer_instance
 
 -- short-circuit type class inference
 instance : NormalSpace ℝ≥0∞ :=
-  normalOfCompactT2
+  T4Space.of_compactSpace_t2Space
 
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.Embedding.SecondCountableTopology
Diff
@@ -2129,7 +2129,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
 #print isClosed_setOf_lipschitzWith /-
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
     IsClosed {f : α → β | LipschitzWith K f} := by
-  simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
+  simp only [← lipschitzOn_univ, isClosed_setOf_lipschitzOnWith]
 #align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWith
 -/
 
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit ec4b2eeb50364487f80421c0b4c41328a611f30d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Instances.Nnreal
 import Mathbin.Topology.Algebra.Order.MonotoneContinuity
@@ -14,6 +9,8 @@ import Mathbin.Topology.Algebra.InfiniteSum.Real
 import Mathbin.Topology.Algebra.Order.LiminfLimsup
 import Mathbin.Topology.MetricSpace.Lipschitz
 
+#align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
+
 /-!
 # Extended non-negative reals
 
@@ -211,7 +208,7 @@ def ltTopHomeomorphNNReal : {a | a < ∞} ≃ₜ ℝ≥0 := by
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 #print ENNReal.nhds_top /-
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
@@ -276,7 +273,7 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 #print ENNReal.nhds_zero /-
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
Diff
@@ -59,6 +59,7 @@ instance : NormalSpace ℝ≥0∞ :=
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.Embedding.SecondCountableTopology
 
+#print ENNReal.embedding_coe /-
 theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨⟨by
       refine' le_antisymm _ _
@@ -75,72 +76,102 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
         exact ⟨Ioi a, isOpen_Ioi, by simp [Ioi]⟩
         exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_eq_coe.1⟩
 #align ennreal.embedding_coe ENNReal.embedding_coe
+-/
 
+#print ENNReal.isOpen_ne_top /-
 theorem isOpen_ne_top : IsOpen {a : ℝ≥0∞ | a ≠ ⊤} :=
   isOpen_ne
 #align ennreal.is_open_ne_top ENNReal.isOpen_ne_top
+-/
 
+#print ENNReal.isOpen_Ico_zero /-
 theorem isOpen_Ico_zero : IsOpen (Ico 0 b) := by rw [ENNReal.Ico_eq_Iio]; exact isOpen_Iio
 #align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zero
+-/
 
+#print ENNReal.openEmbedding_coe /-
 theorem openEmbedding_coe : OpenEmbedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨embedding_coe, by convert is_open_ne_top; ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
 #align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
+-/
 
+#print ENNReal.coe_range_mem_nhds /-
 theorem coe_range_mem_nhds : range (coe : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) :=
   IsOpen.mem_nhds openEmbedding_coe.open_range <| mem_range_self _
 #align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhds
+-/
 
+#print ENNReal.tendsto_coe /-
 @[norm_cast]
 theorem tendsto_coe {f : Filter α} {m : α → ℝ≥0} {a : ℝ≥0} :
     Tendsto (fun a => (m a : ℝ≥0∞)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) :=
   embedding_coe.tendsto_nhds_iff.symm
 #align ennreal.tendsto_coe ENNReal.tendsto_coe
+-/
 
+#print ENNReal.continuous_coe /-
 theorem continuous_coe : Continuous (coe : ℝ≥0 → ℝ≥0∞) :=
   embedding_coe.Continuous
 #align ennreal.continuous_coe ENNReal.continuous_coe
+-/
 
+#print ENNReal.continuous_coe_iff /-
 theorem continuous_coe_iff {α} [TopologicalSpace α] {f : α → ℝ≥0} :
     (Continuous fun a => (f a : ℝ≥0∞)) ↔ Continuous f :=
   embedding_coe.continuous_iff.symm
 #align ennreal.continuous_coe_iff ENNReal.continuous_coe_iff
+-/
 
+#print ENNReal.nhds_coe /-
 theorem nhds_coe {r : ℝ≥0} : 𝓝 (r : ℝ≥0∞) = (𝓝 r).map coe :=
   (openEmbedding_coe.map_nhds_eq r).symm
 #align ennreal.nhds_coe ENNReal.nhds_coe
+-/
 
+#print ENNReal.tendsto_nhds_coe_iff /-
 theorem tendsto_nhds_coe_iff {α : Type _} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ coe : ℝ≥0 → α) (𝓝 x) l :=
   show _ ≤ _ ↔ _ ≤ _ by rw [nhds_coe, Filter.map_map]
 #align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iff
+-/
 
+#print ENNReal.continuousAt_coe_iff /-
 theorem continuousAt_coe_iff {α : Type _} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     ContinuousAt f ↑x ↔ ContinuousAt (f ∘ coe : ℝ≥0 → α) x :=
   tendsto_nhds_coe_iff
 #align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iff
+-/
 
+#print ENNReal.nhds_coe_coe /-
 theorem nhds_coe_coe {r p : ℝ≥0} :
     𝓝 ((r : ℝ≥0∞), (p : ℝ≥0∞)) = (𝓝 (r, p)).map fun p : ℝ≥0 × ℝ≥0 => (p.1, p.2) :=
   ((openEmbedding_coe.Prod openEmbedding_coe).map_nhds_eq (r, p)).symm
 #align ennreal.nhds_coe_coe ENNReal.nhds_coe_coe
+-/
 
+#print ENNReal.continuous_ofReal /-
 theorem continuous_ofReal : Continuous ENNReal.ofReal :=
   (continuous_coe_iff.2 continuous_id).comp continuous_real_toNNReal
 #align ennreal.continuous_of_real ENNReal.continuous_ofReal
+-/
 
+#print ENNReal.tendsto_ofReal /-
 theorem tendsto_ofReal {f : Filter α} {m : α → ℝ} {a : ℝ} (h : Tendsto m f (𝓝 a)) :
     Tendsto (fun a => ENNReal.ofReal (m a)) f (𝓝 (ENNReal.ofReal a)) :=
   Tendsto.comp (Continuous.tendsto continuous_ofReal _) h
 #align ennreal.tendsto_of_real ENNReal.tendsto_ofReal
+-/
 
+#print ENNReal.tendsto_toNNReal /-
 theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 a.toNNReal) :=
   by
   lift a to ℝ≥0 using ha
   rw [nhds_coe, tendsto_map'_iff]
   exact tendsto_id
 #align ennreal.tendsto_to_nnreal ENNReal.tendsto_toNNReal
+-/
 
+#print ENNReal.eventuallyEq_of_toReal_eventuallyEq /-
 theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥0∞}
     (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞)
     (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g :=
@@ -148,15 +179,21 @@ theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥
   filter_upwards [hfi, hgi, hfg] with _ hfx hgx _
   rwa [← ENNReal.toReal_eq_toReal hfx hgx]
 #align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEq
+-/
 
+#print ENNReal.continuousOn_toNNReal /-
 theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal {a | a ≠ ∞} := fun a ha =>
   ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
 #align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNReal
+-/
 
+#print ENNReal.tendsto_toReal /-
 theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) :=
   NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
 #align ennreal.tendsto_to_real ENNReal.tendsto_toReal
+-/
 
+#print ENNReal.neTopHomeomorphNNReal /-
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def neTopHomeomorphNNReal : {a | a ≠ ∞} ≃ₜ ℝ≥0 :=
   {
@@ -164,31 +201,43 @@ def neTopHomeomorphNNReal : {a | a ≠ ∞} ≃ₜ ℝ≥0 :=
     continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toNNReal
     continuous_invFun := continuous_coe.subtype_mk _ }
 #align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNNReal
+-/
 
+#print ENNReal.ltTopHomeomorphNNReal /-
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def ltTopHomeomorphNNReal : {a | a < ∞} ≃ₜ ℝ≥0 := by
   refine' (Homeomorph.setCongr <| Set.ext fun x => _).trans ne_top_homeomorph_nnreal <;>
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
+#print ENNReal.nhds_top /-
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
 #align ennreal.nhds_top ENNReal.nhds_top
+-/
 
+#print ENNReal.nhds_top' /-
 theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
   nhds_top.trans <| iInf_ne_top _
 #align ennreal.nhds_top' ENNReal.nhds_top'
+-/
 
+#print ENNReal.nhds_top_basis /-
 theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :=
   nhds_top_basis
 #align ennreal.nhds_top_basis ENNReal.nhds_top_basis
+-/
 
+#print ENNReal.tendsto_nhds_top_iff_nnreal /-
 theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
   simp only [nhds_top', tendsto_infi, tendsto_principal, mem_Ioi]
 #align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnreal
+-/
 
+#print ENNReal.tendsto_nhds_top_iff_nat /-
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
   tendsto_nhds_top_iff_nnreal.trans
@@ -196,51 +245,71 @@ theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
       let ⟨n, hn⟩ := exists_nat_gt x
       (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_nat, coe_lt_coe]⟩
 #align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
+-/
 
+#print ENNReal.tendsto_nhds_top /-
 theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) :
     Tendsto m f (𝓝 ⊤) :=
   tendsto_nhds_top_iff_nat.2 h
 #align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_top
+-/
 
+#print ENNReal.tendsto_nat_nhds_top /-
 theorem tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) :=
   tendsto_nhds_top fun n =>
     mem_atTop_sets.2 ⟨n + 1, fun m hm => mem_setOf.2 <| Nat.cast_lt.2 <| Nat.lt_of_succ_le hm⟩
 #align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_top
+-/
 
+#print ENNReal.tendsto_coe_nhds_top /-
 @[simp, norm_cast]
 theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by
   rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff] <;> [simp; infer_instance;
     infer_instance]
 #align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_top
+-/
 
+#print ENNReal.tendsto_ofReal_atTop /-
 theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » 0) -/
+#print ENNReal.nhds_zero /-
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
 #align ennreal.nhds_zero ENNReal.nhds_zero
+-/
 
+#print ENNReal.nhds_zero_basis /-
 theorem nhds_zero_basis : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) fun a => Iio a :=
   nhds_bot_basis
 #align ennreal.nhds_zero_basis ENNReal.nhds_zero_basis
+-/
 
+#print ENNReal.nhds_zero_basis_Iic /-
 theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) Iic :=
   nhds_bot_basis_Iic
 #align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iic
+-/
 
+#print ENNReal.nhdsWithin_Ioi_coe_neBot /-
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_self_neBot' ⟨⊤, ENNReal.coe_lt_top⟩
 #align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBot
+-/
 
+#print ENNReal.nhdsWithin_Ioi_zero_neBot /-
 @[instance]
 theorem nhdsWithin_Ioi_zero_neBot : (𝓝[>] (0 : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_coe_neBot
 #align ennreal.nhds_within_Ioi_zero_ne_bot ENNReal.nhdsWithin_Ioi_zero_neBot
+-/
 
+#print ENNReal.Icc_mem_nhds /-
 -- using Icc because
 -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0
 -- • (x - y ≤ ε ↔ x ≤ ε + y) is true, while (x - y < ε ↔ x < ε + y) is not
@@ -254,7 +323,9 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
   · use Ioo (x - ε) (x + ε); use Ioo_subset_Icc_self
     exact ⟨isOpen_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0⟩
 #align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
+-/
 
+#print ENNReal.nhds_of_ne_top /-
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   by
   refine' le_antisymm _ _
@@ -284,25 +355,32 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
       y ≤ b := h₂
       _ < a := ba
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
+-/
 
+#print ENNReal.tendsto_nhds /-
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
 protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ⊤) :
     Tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε) := by
   simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc]
 #align ennreal.tendsto_nhds ENNReal.tendsto_nhds
+-/
 
+#print ENNReal.tendsto_nhds_zero /-
 protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
     Tendsto u f (𝓝 0) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ≤ ε :=
   by
   rw [ENNReal.tendsto_nhds zero_ne_top]
   simp only [true_and_iff, zero_tsub, zero_le, zero_add, Set.mem_Icc]
 #align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zero
+-/
 
+#print ENNReal.tendsto_atTop /-
 protected theorem tendsto_atTop [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} {a : ℝ≥0∞}
     (ha : a ≠ ⊤) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) := by
   simp only [ENNReal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, Filter.Eventually]
 #align ennreal.tendsto_at_top ENNReal.tendsto_atTop
+-/
 
 instance : ContinuousAdd ℝ≥0∞ :=
   by
@@ -314,6 +392,7 @@ instance : ContinuousAdd ℝ≥0∞ :=
   simp only [ContinuousAt, some_eq_coe, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (· ∘ ·),
     tendsto_coe, tendsto_add]
 
+#print ENNReal.tendsto_atTop_zero /-
 protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} :
     Filter.atTop.Tendsto f (𝓝 0) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ≤ ε :=
   by
@@ -321,7 +400,9 @@ protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f
   · simp_rw [Set.mem_Icc, zero_add, zero_tsub, zero_le _, true_and_iff]
   · exact hβ
 #align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zero
+-/
 
+#print ENNReal.tendsto_sub /-
 theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
   by
@@ -356,14 +437,18 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
       tendsto_coe]
     exact Continuous.tendsto (by continuity) _
 #align ennreal.tendsto_sub ENNReal.tendsto_sub
+-/
 
+#print ENNReal.Tendsto.sub /-
 protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (hmb : Tendsto mb f (𝓝 b)) (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun a => ma a - mb a) f (𝓝 (a - b)) :=
   show Tendsto ((fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) ∘ fun a => (ma a, mb a)) f (𝓝 (a - b)) from
     Tendsto.comp (ENNReal.tendsto_sub h) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.sub ENNReal.Tendsto.sub
+-/
 
+#print ENNReal.tendsto_mul /-
 protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) :=
   by
@@ -385,38 +470,50 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
   simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (· ∘ ·)]
   simp only [coe_mul.symm, tendsto_coe, tendsto_mul]
 #align ennreal.tendsto_mul ENNReal.tendsto_mul
+-/
 
+#print ENNReal.Tendsto.mul /-
 protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun a => ma a * mb a) f (𝓝 (a * b)) :=
   show Tendsto ((fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) ∘ fun a => (ma a, mb a)) f (𝓝 (a * b)) from
     Tendsto.comp (ENNReal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.mul ENNReal.Tendsto.mul
+-/
 
+#print ContinuousOn.ennreal_mul /-
 theorem ContinuousOn.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} {s : Set α}
     (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h₁ : ∀ x ∈ s, f x ≠ 0 ∨ g x ≠ ∞)
     (h₂ : ∀ x ∈ s, g x ≠ 0 ∨ f x ≠ ∞) : ContinuousOn (fun x => f x * g x) s := fun x hx =>
   ENNReal.Tendsto.mul (hf x hx) (h₁ x hx) (hg x hx) (h₂ x hx)
 #align continuous_on.ennreal_mul ContinuousOn.ennreal_mul
+-/
 
+#print Continuous.ennreal_mul /-
 theorem Continuous.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (hf : Continuous f)
     (hg : Continuous g) (h₁ : ∀ x, f x ≠ 0 ∨ g x ≠ ∞) (h₂ : ∀ x, g x ≠ 0 ∨ f x ≠ ∞) :
     Continuous fun x => f x * g x :=
   continuous_iff_continuousAt.2 fun x =>
     ENNReal.Tendsto.mul hf.ContinuousAt (h₁ x) hg.ContinuousAt (h₂ x)
 #align continuous.ennreal_mul Continuous.ennreal_mul
+-/
 
+#print ENNReal.Tendsto.const_mul /-
 protected theorem Tendsto.const_mul {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun b => a * m b) f (𝓝 (a * b)) :=
   by_cases (fun this : a = 0 => by simp [this, tendsto_const_nhds]) fun ha : a ≠ 0 =>
     ENNReal.Tendsto.mul tendsto_const_nhds (Or.inl ha) hm hb
 #align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mul
+-/
 
+#print ENNReal.Tendsto.mul_const /-
 protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : Tendsto (fun x => m x * b) f (𝓝 (a * b)) := by
   simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha
 #align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_const
+-/
 
+#print ENNReal.tendsto_finset_prod_of_ne_top /-
 theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
     (s : Finset ι) (h : ∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) (h' : ∀ i ∈ s, a i ≠ ∞) :
     Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) :=
@@ -432,25 +529,35 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0
         h' _ (Finset.mem_insert_of_mem hi)
   · exact Or.inr (h' _ (Finset.mem_insert_self _ _))
 #align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_top
+-/
 
+#print ENNReal.continuousAt_const_mul /-
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt ((· * ·) a) b :=
   Tendsto.const_mul tendsto_id h.symm
 #align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mul
+-/
 
+#print ENNReal.continuousAt_mul_const /-
 protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt (fun x => x * a) b :=
   Tendsto.mul_const tendsto_id h.symm
 #align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_const
+-/
 
+#print ENNReal.continuous_const_mul /-
 protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_const_mul (Or.inl ha)
 #align ennreal.continuous_const_mul ENNReal.continuous_const_mul
+-/
 
+#print ENNReal.continuous_mul_const /-
 protected theorem continuous_mul_const {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous fun x => x * a :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_mul_const (Or.inl ha)
 #align ennreal.continuous_mul_const ENNReal.continuous_mul_const
+-/
 
+#print ENNReal.continuous_div_const /-
 protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
     Continuous fun x : ℝ≥0∞ => x / c :=
   by
@@ -458,7 +565,9 @@ protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
   intro x
   exact ENNReal.continuousAt_mul_const (Or.intro_left _ (inv_ne_top.mpr c_ne_zero))
 #align ennreal.continuous_div_const ENNReal.continuous_div_const
+-/
 
+#print ENNReal.continuous_pow /-
 @[continuity]
 theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
   by
@@ -474,7 +583,9 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
       not_false_iff, false_and_iff]
   · simp only [H, true_or_iff, Ne.def, not_false_iff]
 #align ennreal.continuous_pow ENNReal.continuous_pow
+-/
 
+#print ENNReal.continuousOn_sub /-
 theorem continuousOn_sub :
     ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) {p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩} :=
   by
@@ -483,7 +594,9 @@ theorem continuousOn_sub :
   simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp 
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_distrib.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
+-/
 
+#print ENNReal.continuous_sub_left /-
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous fun x => a - x :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
@@ -491,11 +604,15 @@ theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous
   intro x
   simp only [a_ne_top, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
 #align ennreal.continuous_sub_left ENNReal.continuous_sub_left
+-/
 
+#print ENNReal.continuous_nnreal_sub /-
 theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
   continuous_sub_left coe_ne_top
 #align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_sub
+-/
 
+#print ENNReal.continuousOn_sub_left /-
 theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {x : ℝ≥0∞ | x ≠ ∞} :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
@@ -503,7 +620,9 @@ theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {
   rintro _ h (_ | _)
   exact h none_eq_top
 #align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_left
+-/
 
+#print ENNReal.continuous_sub_right /-
 theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ => x - a :=
   by
   by_cases a_infty : a = ∞
@@ -513,12 +632,16 @@ theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ =>
     intro x
     simp only [a_infty, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]
 #align ennreal.continuous_sub_right ENNReal.continuous_sub_right
+-/
 
+#print ENNReal.Tendsto.pow /-
 protected theorem Tendsto.pow {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} {n : ℕ}
     (hm : Tendsto m f (𝓝 a)) : Tendsto (fun x => m x ^ n) f (𝓝 (a ^ n)) :=
   ((continuous_pow n).Tendsto a).comp hm
 #align ennreal.tendsto.pow ENNReal.Tendsto.pow
+-/
 
+#print ENNReal.le_of_forall_lt_one_mul_le /-
 theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤ y) : x ≤ y :=
   by
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
@@ -527,7 +650,9 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, zero_lt_one⟩
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
+-/
 
+#print ENNReal.iInf_mul_left' /-
 theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   by
@@ -543,119 +668,165 @@ theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = 
       exact
         (ennreal.mul_left_mono.map_infi_of_continuous_at' (ENNReal.continuousAt_const_mul H)).symm
 #align ennreal.infi_mul_left' ENNReal.iInf_mul_left'
+-/
 
+#print ENNReal.iInf_mul_left /-
 theorem iInf_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   iInf_mul_left' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_left ENNReal.iInf_mul_left
+-/
 
+#print ENNReal.iInf_mul_right' /-
 theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using infi_mul_left' h h0
 #align ennreal.infi_mul_right' ENNReal.iInf_mul_right'
+-/
 
+#print ENNReal.iInf_mul_right /-
 theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
   iInf_mul_right' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_right ENNReal.iInf_mul_right
+-/
 
+#print ENNReal.inv_map_iInf /-
 theorem inv_map_iInf {ι : Sort _} {x : ι → ℝ≥0∞} : (iInf x)⁻¹ = ⨆ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_iInf x
 #align ennreal.inv_map_infi ENNReal.inv_map_iInf
+-/
 
+#print ENNReal.inv_map_iSup /-
 theorem inv_map_iSup {ι : Sort _} {x : ι → ℝ≥0∞} : (iSup x)⁻¹ = ⨅ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_iSup x
 #align ennreal.inv_map_supr ENNReal.inv_map_iSup
+-/
 
+#print ENNReal.inv_limsup /-
 theorem inv_limsup {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (limsup x l)⁻¹ = liminf (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
 #align ennreal.inv_limsup ENNReal.inv_limsup
+-/
 
+#print ENNReal.inv_liminf /-
 theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (liminf x l)⁻¹ = limsup (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
 #align ennreal.inv_liminf ENNReal.inv_liminf
+-/
 
 instance : ContinuousInv ℝ≥0∞ :=
   ⟨OrderIso.invENNReal.Continuous⟩
 
+#print ENNReal.tendsto_inv_iff /-
 @[simp]
 protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} :
     Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ↔ Tendsto m f (𝓝 a) :=
   ⟨fun h => by simpa only [inv_inv] using tendsto.inv h, Tendsto.inv⟩
 #align ennreal.tendsto_inv_iff ENNReal.tendsto_inv_iff
+-/
 
+#print ENNReal.Tendsto.div /-
 protected theorem Tendsto.div {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) := by
   apply tendsto.mul hma _ (ENNReal.tendsto_inv_iff.2 hmb) _ <;> simp [ha, hb]
 #align ennreal.tendsto.div ENNReal.Tendsto.div
+-/
 
+#print ENNReal.Tendsto.const_div /-
 protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) := by
   apply tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm); simp [hb]
 #align ennreal.tendsto.const_div ENNReal.Tendsto.const_div
+-/
 
+#print ENNReal.Tendsto.div_const /-
 protected theorem Tendsto.div_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : Tendsto (fun x => m x / b) f (𝓝 (a / b)) := by
   apply tendsto.mul_const hm; simp [ha]
 #align ennreal.tendsto.div_const ENNReal.Tendsto.div_const
+-/
 
+#print ENNReal.tendsto_inv_nat_nhds_zero /-
 protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ≥0∞)⁻¹) atTop (𝓝 0) :=
   ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
 #align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
+-/
 
+#print ENNReal.iSup_add /-
 theorem iSup_add {ι : Sort _} {s : ι → ℝ≥0∞} [h : Nonempty ι] : iSup s + a = ⨆ b, s b + a :=
   Monotone.map_iSup_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
 #align ennreal.supr_add ENNReal.iSup_add
+-/
 
+#print ENNReal.biSup_add' /-
 theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a := by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h; simp only [iSup_subtype', supr_add]
 #align ennreal.bsupr_add' ENNReal.biSup_add'
+-/
 
+#print ENNReal.add_biSup' /-
 theorem add_biSup' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (hi : p i), f i) = ⨆ (i) (hi : p i), a + f i := by
   simp only [add_comm a, bsupr_add' h]
 #align ennreal.add_bsupr' ENNReal.add_biSup'
+-/
 
+#print ENNReal.biSup_add /-
 theorem biSup_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (⨆ i ∈ s, f i) + a = ⨆ i ∈ s, f i + a :=
   biSup_add' hs
 #align ennreal.bsupr_add ENNReal.biSup_add
+-/
 
+#print ENNReal.add_biSup /-
 theorem add_biSup {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (a + ⨆ i ∈ s, f i) = ⨆ i ∈ s, a + f i :=
   add_biSup' hs
 #align ennreal.add_bsupr ENNReal.add_biSup
+-/
 
+#print ENNReal.sSup_add /-
 theorem sSup_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : sSup s + a = ⨆ b ∈ s, b + a := by
   rw [sSup_eq_iSup, bsupr_add hs]
 #align ennreal.Sup_add ENNReal.sSup_add
+-/
 
+#print ENNReal.add_iSup /-
 theorem add_iSup {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup s = ⨆ b, a + s b := by
   rw [add_comm, supr_add] <;> simp [add_comm]
 #align ennreal.add_supr ENNReal.add_iSup
+-/
 
+#print ENNReal.iSup_add_iSup_le /-
 theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
     {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : iSup f + iSup g ≤ a := by
   simpa only [add_supr, supr_add] using iSup₂_le h
 #align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_le
+-/
 
+#print ENNReal.biSup_add_biSup_le' /-
 theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ (i) (hi : p i) (j) (hj : q j), f i + g j ≤ a) :
     ((⨆ (i) (hi : p i), f i) + ⨆ (j) (hj : q j), g j) ≤ a := by
   simp_rw [bsupr_add' hp, add_bsupr' hq]; exact iSup₂_le fun i hi => iSup₂_le (h i hi)
 #align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'
+-/
 
+#print ENNReal.biSup_add_biSup_le /-
 theorem biSup_add_biSup_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i ∈ s, ∀ j ∈ t, f i + g j ≤ a) :
     ((⨆ i ∈ s, f i) + ⨆ j ∈ t, g j) ≤ a :=
   biSup_add_biSup_le' hs ht h
 #align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_le
+-/
 
+#print ENNReal.iSup_add_iSup /-
 theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
     iSup f + iSup g = ⨆ a, f a + g a :=
   by
@@ -666,12 +837,16 @@ theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃
     rcases h i j with ⟨k, hk⟩
     exact le_iSup_of_le k hk
 #align ennreal.supr_add_supr ENNReal.iSup_add_iSup
+-/
 
+#print ENNReal.iSup_add_iSup_of_monotone /-
 theorem iSup_add_iSup_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
     (hg : Monotone g) : iSup f + iSup g = ⨆ a, f a + g a :=
   iSup_add_iSup fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
 #align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotone
+-/
 
+#print ENNReal.finset_sum_iSup_nat /-
 theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
     (hf : ∀ a, Monotone (f a)) : ∑ a in s, iSup (f a) = ⨆ n, ∑ a in s, f a n :=
   by
@@ -683,7 +858,9 @@ theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : 
     intro i j h
     exact Finset.sum_le_sum fun a ha => hf a h
 #align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_nat
+-/
 
+#print ENNReal.mul_iSup /-
 theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i :=
   by
   by_cases hf : ∀ i, f i = 0
@@ -693,29 +870,41 @@ theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iS
     refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
     exact mt supr_eq_zero.1 hf
 #align ennreal.mul_supr ENNReal.mul_iSup
+-/
 
+#print ENNReal.mul_sSup /-
 theorem mul_sSup {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * sSup s = ⨆ i ∈ s, a * i := by
   simp only [sSup_eq_iSup, mul_supr]
 #align ennreal.mul_Sup ENNReal.mul_sSup
+-/
 
+#print ENNReal.iSup_mul /-
 theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f * a = ⨆ i, f i * a := by
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.iSup_mul
+-/
 
+#print ENNReal.smul_iSup /-
 theorem smul_iSup {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
     (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
   simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup _), ENNReal.mul_iSup]
 #align ennreal.smul_supr ENNReal.smul_iSup
+-/
 
+#print ENNReal.smul_sSup /-
 theorem smul_sSup {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
     c • sSup s = ⨆ i ∈ s, c • i := by
   simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_sSup, smul_one_mul]
 #align ennreal.smul_Sup ENNReal.smul_sSup
+-/
 
+#print ENNReal.iSup_div /-
 theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
   iSup_mul
 #align ennreal.supr_div ENNReal.iSup_div
+-/
 
+#print ENNReal.tendsto_coe_sub /-
 protected theorem tendsto_coe_sub :
     ∀ {b : ℝ≥0∞}, Tendsto (fun b : ℝ≥0∞ => ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
   by
@@ -729,7 +918,9 @@ protected theorem tendsto_coe_sub :
           simp (config := { contextual := true }) [le_of_lt]))
       tendsto_const_nhds
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
+-/
 
+#print ENNReal.sub_iSup /-
 theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
   by
@@ -740,7 +931,9 @@ theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < 
         (range_nonempty _) (ENNReal.tendsto_coe_sub.comp (tendsto_id'.2 inf_le_left))
   rw [Eq, ← this] <;> simp [sInf_image, iInf_range, -mem_range] <;> exact le_rfl
 #align ennreal.sub_supr ENNReal.sub_iSup
+-/
 
+#print ENNReal.exists_countable_dense_no_zero_top /-
 theorem exists_countable_dense_no_zero_top :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
   by
@@ -749,7 +942,9 @@ theorem exists_countable_dense_no_zero_top :
     exists_countable_dense_no_bot_top ℝ≥0∞
   exact ⟨s, s_count, s_dense, fun h => hs.1 0 (by simp) h, fun h => hs.2 ∞ (by simp) h⟩
 #align ennreal.exists_countable_dense_no_zero_top ENNReal.exists_countable_dense_no_zero_top
+-/
 
+#print ENNReal.exists_lt_add_of_lt_add /-
 theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠ 0) (hz : z ≠ 0) :
     ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' :=
   by
@@ -765,12 +960,14 @@ theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠
     ⟨⟨y', z'⟩, hx, hy', hz'⟩
   exact ⟨y', z', hy', hz', hx⟩
 #align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_add
+-/
 
 end TopologicalSpace
 
 section Liminf
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print ENNReal.exists_frequently_lt_of_liminf_ne_top /-
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
   by
@@ -787,8 +984,10 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
   simp only [eventually_map, ENNReal.coe_le_coe]
   filter_upwards [h r] with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print ENNReal.exists_frequently_lt_of_liminf_ne_top' /-
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
   by
@@ -805,7 +1004,9 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
   simp only [eventually_map, ENNReal.coe_le_coe]
   filter_upwards [h (-r)] with i hi using (le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
+-/
 
+#print ENNReal.exists_upcrossings_of_not_bounded_under /-
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
@@ -832,6 +1033,7 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     · refine' fun hcon => hR _
       filter_upwards [hcon] with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le)
 #align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_under
+-/
 
 end Liminf
 
@@ -839,6 +1041,7 @@ section tsum
 
 variable {f g : α → ℝ≥0∞}
 
+#print ENNReal.hasSum_coe /-
 @[norm_cast]
 protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
     HasSum (fun a => (f a : ℝ≥0∞)) ↑r ↔ HasSum f r :=
@@ -849,24 +1052,34 @@ protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
     funext fun s => ENNReal.coe_finset_sum.symm
   unfold HasSum <;> rw [this, tendsto_coe]
 #align ennreal.has_sum_coe ENNReal.hasSum_coe
+-/
 
+#print ENNReal.tsum_coe_eq /-
 protected theorem tsum_coe_eq {f : α → ℝ≥0} (h : HasSum f r) : ∑' a, (f a : ℝ≥0∞) = r :=
   (ENNReal.hasSum_coe.2 h).tsum_eq
 #align ennreal.tsum_coe_eq ENNReal.tsum_coe_eq
+-/
 
+#print ENNReal.coe_tsum /-
 protected theorem coe_tsum {f : α → ℝ≥0} : Summable f → ↑(tsum f) = ∑' a, (f a : ℝ≥0∞)
   | ⟨r, hr⟩ => by rw [hr.tsum_eq, ENNReal.tsum_coe_eq hr]
 #align ennreal.coe_tsum ENNReal.coe_tsum
+-/
 
+#print ENNReal.hasSum /-
 protected theorem hasSum : HasSum f (⨆ s : Finset α, ∑ a in s, f a) :=
   tendsto_atTop_iSup fun s t => Finset.sum_le_sum_of_subset
 #align ennreal.has_sum ENNReal.hasSum
+-/
 
+#print ENNReal.summable /-
 @[simp]
 protected theorem summable : Summable f :=
   ⟨_, ENNReal.hasSum⟩
 #align ennreal.summable ENNReal.summable
+-/
 
+#print ENNReal.tsum_coe_ne_top_iff_summable /-
 theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : ∑' b, (f b : ℝ≥0∞) ≠ ∞ ↔ Summable f :=
   by
   refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
@@ -875,11 +1088,15 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : ∑' b, (f b : ℝ
   rw [ha]
   exact ennreal.summable.has_sum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
+-/
 
+#print ENNReal.tsum_eq_iSup_sum /-
 protected theorem tsum_eq_iSup_sum : ∑' a, f a = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
 #align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
+-/
 
+#print ENNReal.tsum_eq_iSup_sum' /-
 protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     ∑' a, f a = ⨆ i, ∑ a in s i, f a :=
   by
@@ -888,45 +1105,63 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
   change (⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i)) = ⨆ s : Finset α, ∑ a in s, f a
   exact (Finset.sum_mono_set f).iSup_comp_eq hs
 #align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print ENNReal.tsum_sigma /-
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
     ∑' p : Σ a, β a, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print ENNReal.tsum_sigma' /-
 protected theorem tsum_sigma' {β : α → Type _} (f : (Σ a, β a) → ℝ≥0∞) :
     ∑' p : Σ a, β a, f p = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print ENNReal.tsum_prod /-
 protected theorem tsum_prod {f : α → β → ℝ≥0∞} : ∑' p : α × β, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod ENNReal.tsum_prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print ENNReal.tsum_prod' /-
 protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : ∑' p : α × β, f p = ∑' (a) (b), f (a, b) :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod' ENNReal.tsum_prod'
+-/
 
+#print ENNReal.tsum_comm /-
 protected theorem tsum_comm {f : α → β → ℝ≥0∞} : ∑' a, ∑' b, f a b = ∑' b, ∑' a, f a b :=
   tsum_comm' ENNReal.summable (fun _ => ENNReal.summable) fun _ => ENNReal.summable
 #align ennreal.tsum_comm ENNReal.tsum_comm
+-/
 
+#print ENNReal.tsum_add /-
 protected theorem tsum_add : ∑' a, (f a + g a) = ∑' a, f a + ∑' a, g a :=
   tsum_add ENNReal.summable ENNReal.summable
 #align ennreal.tsum_add ENNReal.tsum_add
+-/
 
+#print ENNReal.tsum_le_tsum /-
 protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : ∑' a, f a ≤ ∑' a, g a :=
   tsum_le_tsum h ENNReal.summable ENNReal.summable
 #align ennreal.tsum_le_tsum ENNReal.tsum_le_tsum
+-/
 
+#print ENNReal.sum_le_tsum /-
 protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : ∑ x in s, f x ≤ ∑' x, f x :=
   sum_le_tsum s (fun x hx => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
+-/
 
+#print ENNReal.tsum_eq_iSup_nat' /-
 protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
     ∑' i : ℕ, f i = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
   ENNReal.tsum_eq_iSup_sum' _ fun t =>
@@ -934,12 +1169,16 @@ protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (
     let ⟨k, _, hk⟩ := exists_le_of_tendsto_atTop hN 0 n
     ⟨k, Finset.Subset.trans hn (Finset.range_mono hk)⟩
 #align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'
+-/
 
+#print ENNReal.tsum_eq_iSup_nat /-
 protected theorem tsum_eq_iSup_nat {f : ℕ → ℝ≥0∞} :
     ∑' i : ℕ, f i = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
   ENNReal.tsum_eq_iSup_sum' _ Finset.exists_nat_subset_range
 #align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_nat
+-/
 
+#print ENNReal.tsum_eq_liminf_sum_nat /-
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     ∑' i, f i = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   by
@@ -951,33 +1190,45 @@ protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
   · refine' le_trans (iInf_le _ n) _
     simp [le_refl n, le_refl ((Finset.range n).Sum f)]
 #align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_nat
+-/
 
+#print ENNReal.le_tsum /-
 protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
   le_tsum' ENNReal.summable a
 #align ennreal.le_tsum ENNReal.le_tsum
+-/
 
+#print ENNReal.tsum_eq_zero /-
 @[simp]
 protected theorem tsum_eq_zero : ∑' i, f i = 0 ↔ ∀ i, f i = 0 :=
   ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ ENNReal.le_tsum i, fun h => by simp [h]⟩
 #align ennreal.tsum_eq_zero ENNReal.tsum_eq_zero
+-/
 
+#print ENNReal.tsum_eq_top_of_eq_top /-
 protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → ∑' a, f a = ∞
   | ⟨a, ha⟩ => top_unique <| ha ▸ ENNReal.le_tsum a
 #align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_top
+-/
 
+#print ENNReal.lt_top_of_tsum_ne_top /-
 protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞) (j : α) :
     a j < ∞ := by
   have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
   simp only [not_exists] at key 
   exact lt_top_iff_ne_top.mpr (key tsum_ne_top j)
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
+-/
 
+#print ENNReal.tsum_top /-
 @[simp]
 protected theorem tsum_top [Nonempty α] : ∑' a : α, ∞ = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
+-/
 
+#print ENNReal.tsum_const_eq_top_of_ne_zero /-
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
     ∑' a : α, c = ∞ :=
   by
@@ -992,11 +1243,15 @@ theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞
     simpa [hs] using @ENNReal.sum_le_tsum α (fun i => c) s
   simpa [hc] using le_of_tendsto' A B
 #align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zero
+-/
 
+#print ENNReal.ne_top_of_tsum_ne_top /-
 protected theorem ne_top_of_tsum_ne_top (h : ∑' a, f a ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
   h <| ENNReal.tsum_eq_top_of_eq_top ⟨a, ha⟩
 #align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_top
+-/
 
+#print ENNReal.tsum_mul_left /-
 protected theorem tsum_mul_left : ∑' i, a * f i = a * ∑' i, f i :=
   if h : ∀ i, f i = 0 then by simp [h]
   else
@@ -1013,16 +1268,22 @@ protected theorem tsum_mul_left : ∑' i, a * f i = a * ∑' i, f i :=
         exact ENNReal.Tendsto.const_mul ennreal.summable.has_sum (Or.inl sum_ne_0)
     HasSum.tsum_eq this
 #align ennreal.tsum_mul_left ENNReal.tsum_mul_left
+-/
 
+#print ENNReal.tsum_mul_right /-
 protected theorem tsum_mul_right : ∑' i, f i * a = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
+-/
 
+#print ENNReal.tsum_const_smul /-
 protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
     ∑' i, a • f i = a • ∑' i, f i := by
   simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
+-/
 
+#print ENNReal.tsum_iSup_eq /-
 @[simp]
 theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ h : a = b, f b) = f a :=
   le_antisymm
@@ -1040,7 +1301,9 @@ theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b :
       f a ≤ ⨆ h : a = a, f a := le_iSup (fun h : a = a => f a) rfl
       _ ≤ ∑' b : α, ⨆ h : a = b, f b := ENNReal.le_tsum _)
 #align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
+-/
 
+#print ENNReal.hasSum_iff_tendsto_nat /-
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) :=
   by
@@ -1049,22 +1312,30 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
   · exact ennreal.summable.has_sum
   · exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst)
 #align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_nat
+-/
 
+#print ENNReal.tendsto_nat_tsum /-
 theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
     Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' n, f n)) := by
   rw [← has_sum_iff_tendsto_nat]; exact ennreal.summable.has_sum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
+-/
 
+#print ENNReal.toNNReal_apply_of_tsum_ne_top /-
 theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) (x : α) :
     (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
   coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
 #align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
+-/
 
+#print ENNReal.summable_toNNReal_of_tsum_ne_top /-
 theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) :
     Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf
 #align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
+-/
 
+#print ENNReal.tendsto_cofinite_zero_of_tsum_ne_top /-
 theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto f cofinite (𝓝 0) :=
   by
@@ -1074,12 +1345,16 @@ theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf :
   rw [h_f_coe, ← @coe_zero, tendsto_coe]
   exact NNReal.tendsto_cofinite_zero_of_summable (summable_to_nnreal_of_tsum_ne_top hf)
 #align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_top
+-/
 
+#print ENNReal.tendsto_atTop_zero_of_tsum_ne_top /-
 theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto f atTop (𝓝 0) := by rw [← Nat.cofinite_eq_atTop];
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
 #align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_top
+-/
 
+#print ENNReal.tendsto_tsum_compl_atTop_zero /-
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
 theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
@@ -1091,12 +1366,16 @@ theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf
   rw [ENNReal.coe_tsum]
   exact NNReal.summable_comp_injective (tsum_coe_ne_top_iff_summable.1 hf) Subtype.coe_injective
 #align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zero
+-/
 
+#print ENNReal.tsum_apply /-
 protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x : α} :
     (∑' i, f i) x = ∑' i, f i x :=
   tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
 #align ennreal.tsum_apply ENNReal.tsum_apply
+-/
 
+#print ENNReal.tsum_sub /-
 theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : ∑' i, g i ≠ ∞) (h₂ : g ≤ f) :
     ∑' i, (f i - g i) = ∑' i, f i - ∑' i, g i :=
   by
@@ -1105,14 +1384,18 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : ∑'
   have h₄ : (fun i => f i - g i + g i) = f := by ext n; rw [tsub_add_cancel_of_le (h₂ n)]
   rw [h₄] at h₃ ; apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
+-/
 
+#print ENNReal.tsum_mono_subtype /-
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
     ∑' x : s, f x ≤ ∑' x : t, f x := by
   simp only [tsum_subtype]
   apply ENNReal.tsum_le_tsum
   exact indicator_le_indicator_of_subset h fun _ => zero_le _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
+-/
 
+#print ENNReal.tsum_union_le /-
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     ∑' x : s ∪ t, f x ≤ ∑' x : s, f x + ∑' x : t, f x :=
   calc
@@ -1121,7 +1404,9 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
       (tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable)
     _ ≤ ∑' x : s, f x + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
+-/
 
+#print ENNReal.tsum_biUnion_le /-
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x := by
   classical
@@ -1135,7 +1420,9 @@ theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
     _ ≤ ∑' x : t i, f x + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
     _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
+-/
 
+#print ENNReal.tsum_iUnion_le /-
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
   classical
@@ -1143,11 +1430,15 @@ theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : 
   rw [tsum_congr_subtype f this]
   exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
+-/
 
+#print ENNReal.tsum_eq_add_tsum_ite /-
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) : ∑' x, f x = f b + ∑' x, ite (x = b) 0 (f x) :=
   tsum_eq_add_tsum_ite' b ENNReal.summable
 #align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_ite
+-/
 
+#print ENNReal.tsum_add_one_eq_top /-
 theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (hf0 : f 0 ≠ ∞) :
     ∑' n, f (n + 1) = ∞ :=
   by
@@ -1163,7 +1454,9 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (h
   simp only [Multiset.mem_range, not_lt] at hi 
   simp only [tsub_add_cancel_of_le hi, coe_notMemRangeEquiv, Function.comp_apply, Subtype.coe_mk]
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
+-/
 
+#print ENNReal.finite_const_le_of_tsum_ne_top /-
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
 theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞)
@@ -1185,7 +1478,9 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
       to_real_le_to_real ε_infty (ENNReal.ne_top_of_tsum_ne_top tsum_ne_top _)
   rwa [obs] at key 
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
+-/
 
+#print ENNReal.finset_card_const_le_le_of_tsum_le /-
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
     (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
@@ -1215,9 +1510,11 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
   have key := (ENNReal.le_div_iff_mul_le (Or.inl ε_ne_zero) (Or.inl h)).mpr lower_bound
   exact le_trans key (ENNReal.div_le_div_right (partial_sum.trans tsum_le_c) _)
 #align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_le
+-/
 
 end tsum
 
+#print ENNReal.tendsto_toReal_iff /-
 theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : ∀ i, f i ≠ ∞) {x : ℝ≥0∞}
     (hx : x ≠ ∞) : fi.Tendsto (fun n => (f n).toReal) (𝓝 x.toReal) ↔ fi.Tendsto f (𝓝 x) :=
   by
@@ -1227,21 +1524,27 @@ theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : 
   rw [h_eq, ← ENNReal.ofReal_toReal hx]
   exact ENNReal.tendsto_ofReal h
 #align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iff
+-/
 
+#print ENNReal.tsum_coe_ne_top_iff_summable_coe /-
 theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
     ∑' a, (f a : ℝ≥0∞) ≠ ∞ ↔ Summable fun a => (f a : ℝ) :=
   by
   rw [NNReal.summable_coe]
   exact tsum_coe_ne_top_iff_summable
 #align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coe
+-/
 
+#print ENNReal.tsum_coe_eq_top_iff_not_summable_coe /-
 theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
     ∑' a, (f a : ℝ≥0∞) = ∞ ↔ ¬Summable fun a => (f a : ℝ) :=
   by
   rw [← @Classical.not_not (∑' a, ↑(f a) = ⊤)]
   exact not_congr tsum_coe_ne_top_iff_summable_coe
 #align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coe
+-/
 
+#print ENNReal.hasSum_toReal /-
 theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) :
     HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) :=
   by
@@ -1249,10 +1552,13 @@ theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) :
   simp only [coe_to_real, ← NNReal.coe_tsum, NNReal.hasSum_coe]
   exact (tsum_coe_ne_top_iff_summable.1 hsum).HasSum
 #align ennreal.has_sum_to_real ENNReal.hasSum_toReal
+-/
 
+#print ENNReal.summable_toReal /-
 theorem summable_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) : Summable fun x => (f x).toReal :=
   (hasSum_toReal hsum).Summable
 #align ennreal.summable_to_real ENNReal.summable_toReal
+-/
 
 end ENNReal
 
@@ -1260,6 +1566,7 @@ namespace NNReal
 
 open scoped NNReal
 
+#print NNReal.tsum_eq_toNNReal_tsum /-
 theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : ∑' b, f b = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
   by
   by_cases h : Summable f
@@ -1268,7 +1575,9 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : ∑' b, f b = (∑' b, (f b
     simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h 
     simp only [h, ENNReal.top_toNNReal, A]
 #align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsum
+-/
 
+#print NNReal.exists_le_hasSum_of_le /-
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b, g b ≤ f b) (hfr : HasSum f r) :
     ∃ p ≤ r, HasSum g p :=
@@ -1279,14 +1588,18 @@ theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b
   let ⟨p, Eq, hpr⟩ := ENNReal.le_coe_iff.1 this
   ⟨p, hpr, ENNReal.hasSum_coe.1 <| Eq ▸ ENNReal.summable.HasSum⟩
 #align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_le
+-/
 
+#print NNReal.summable_of_le /-
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summable f → Summable g
   | ⟨r, hfr⟩ =>
     let ⟨p, _, hp⟩ := exists_le_hasSum_of_le hgf hfr
     hp.Summable
 #align nnreal.summable_of_le NNReal.summable_of_le
+-/
 
+#print NNReal.hasSum_iff_tendsto_nat /-
 /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
@@ -1296,7 +1609,9 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
   simp only [ennreal.coe_finset_sum.symm]
   exact ENNReal.tendsto_coe
 #align nnreal.has_sum_iff_tendsto_nat NNReal.hasSum_iff_tendsto_nat
+-/
 
+#print NNReal.not_summable_iff_tendsto_nat_atTop /-
 theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
   by
@@ -1307,30 +1622,40 @@ theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
   · rintro hnat ⟨r, hr⟩
     exact not_tendsto_nhds_of_tendsto_atTop hnat _ (has_sum_iff_tendsto_nat.1 hr)
 #align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTop
+-/
 
+#print NNReal.summable_iff_not_tendsto_nat_atTop /-
 theorem summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_at_top]
 #align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTop
+-/
 
+#print NNReal.summable_of_sum_range_le /-
 theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) :
     Summable f := by
   apply summable_iff_not_tendsto_nat_at_top.2 fun H => _
   rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩
   exact lt_irrefl _ (hn.trans_le (h n))
 #align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_le
+-/
 
+#print NNReal.tsum_le_of_sum_range_le /-
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) :
     ∑' n, f n ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
 #align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_le
+-/
 
+#print NNReal.tsum_comp_le_tsum_of_inj /-
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
     (hi : Function.Injective i) : ∑' x, f (i x) ≤ ∑' x, f x :=
   tsum_le_tsum_of_inj i hi (fun c hc => zero_le _) (fun b => le_rfl) (summable_comp_injective hf hi)
     hf
 #align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_inj
+-/
 
+#print NNReal.summable_sigma /-
 theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σ x, β x) → ℝ≥0} :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ :=
   by
@@ -1341,7 +1666,9 @@ theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σ x, β x) → ℝ≥0}
     simpa only [← ENNReal.tsum_coe_ne_top_iff_summable, ENNReal.tsum_sigma', ENNReal.coe_tsum,
       h₁] using h₂
 #align nnreal.summable_sigma NNReal.summable_sigma
+-/
 
+#print NNReal.indicator_summable /-
 theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) : Summable (s.indicator f) :=
   by
   refine' NNReal.summable_of_le (fun a => le_trans (le_of_eq (s.indicator_apply f a)) _) hf
@@ -1349,7 +1676,9 @@ theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) :
   exact le_refl (f a)
   exact zero_le_coe
 #align nnreal.indicator_summable NNReal.indicator_summable
+-/
 
+#print NNReal.tsum_indicator_ne_zero /-
 theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set α} (h : ∃ a ∈ s, f a ≠ 0) :
     ∑' x, (s.indicator f) x ≠ 0 := fun h' =>
   let ⟨a, ha, hap⟩ := h
@@ -1357,9 +1686,11 @@ theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set 
     (trans (Set.indicator_apply_eq_self.mpr (absurd ha)).symm
       (((tsum_eq_zero_iff (indicator_summable hf s)).1 h') a))
 #align nnreal.tsum_indicator_ne_zero NNReal.tsum_indicator_ne_zero
+-/
 
 open Finset
 
+#print NNReal.tendsto_sum_nat_add /-
 /-- For `f : ℕ → ℝ≥0`, then `∑' k, f (k + i)` tends to zero. This does not require a summability
 assumption on `f`, as otherwise all sums are zero. -/
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
@@ -1368,7 +1699,9 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f
   convert tendsto_sum_nat_add fun i => (f i : ℝ)
   norm_cast
 #align nnreal.tendsto_sum_nat_add NNReal.tendsto_sum_nat_add
+-/
 
+#print NNReal.hasSum_lt /-
 theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
@@ -1376,29 +1709,39 @@ theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a :
   have : (sf : ℝ) < sg := hasSum_lt A (NNReal.coe_lt_coe.2 hi) (has_sum_coe.2 hf) (has_sum_coe.2 hg)
   exact NNReal.coe_lt_coe.1 this
 #align nnreal.has_sum_lt NNReal.hasSum_lt
+-/
 
+#print NNReal.hasSum_strict_mono /-
 @[mono]
 theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum f sf) (hg : HasSum g sg)
     (h : f < g) : sf < sg :=
   let ⟨hle, i, hi⟩ := Pi.lt_def.mp h
   hasSum_lt hle hi hf hg
 #align nnreal.has_sum_strict_mono NNReal.hasSum_strict_mono
+-/
 
+#print NNReal.tsum_lt_tsum /-
 theorem tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
   hasSum_lt h hi (summable_of_le h hg).HasSum hg.HasSum
 #align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsum
+-/
 
+#print NNReal.tsum_strict_mono /-
 @[mono]
 theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : ∑' n, f n < ∑' n, g n :=
   let ⟨hle, i, hi⟩ := Pi.lt_def.mp h
   tsum_lt_tsum hle hi hg
 #align nnreal.tsum_strict_mono NNReal.tsum_strict_mono
+-/
 
+#print NNReal.tsum_pos /-
 theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i) : 0 < ∑' b, g b := by
   rw [← tsum_zero]; exact tsum_lt_tsum (fun a => zero_le _) hi hg
 #align nnreal.tsum_pos NNReal.tsum_pos
+-/
 
+#print NNReal.tsum_eq_add_tsum_ite /-
 theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
     ∑' x, f x = f i + ∑' x, ite (x = i) 0 (f x) :=
   by
@@ -1406,22 +1749,28 @@ theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
   rw [Function.update_apply]
   split_ifs <;> simp only [zero_le', le_rfl]
 #align nnreal.tsum_eq_add_tsum_ite NNReal.tsum_eq_add_tsum_ite
+-/
 
 end NNReal
 
 namespace ENNReal
 
+#print ENNReal.tsum_toNNReal_eq /-
 theorem tsum_toNNReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toNNReal = ∑' a, (f a).toNNReal :=
   (congr_arg ENNReal.toNNReal (tsum_congr fun x => (coe_toNNReal (hf x)).symm)).trans
     NNReal.tsum_eq_toNNReal_tsum.symm
 #align ennreal.tsum_to_nnreal_eq ENNReal.tsum_toNNReal_eq
+-/
 
+#print ENNReal.tsum_toReal_eq /-
 theorem tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toReal = ∑' a, (f a).toReal := by
   simp only [ENNReal.toReal, tsum_to_nnreal_eq hf, NNReal.coe_tsum]
 #align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eq
+-/
 
+#print ENNReal.tendsto_sum_nat_add /-
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : ∑' i, f i ≠ ∞) :
     Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
   by
@@ -1430,12 +1779,16 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : ∑' i, f i ≠ ∞)
   simp only [← ENNReal.coe_tsum, NNReal.summable_nat_add _ hf, ← ENNReal.coe_zero]
   exact_mod_cast NNReal.tendsto_sum_nat_add f
 #align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
+-/
 
+#print ENNReal.tsum_le_of_sum_range_le /-
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
     (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   tsum_le_of_sum_range_le ENNReal.summable h
 #align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
+-/
 
+#print ENNReal.hasSum_lt /-
 theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hsf : sf ≠ ⊤) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
@@ -1450,14 +1803,18 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
     simp only [coe_le_coe, coe_lt_coe] at h hi ⊢
     exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
+-/
 
+#print ENNReal.tsum_lt_tsum /-
 theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
     (hi : f i < g i) : ∑' x, f x < ∑' x, g x :=
   hasSum_lt h hi hfi ENNReal.summable.HasSum ENNReal.summable.HasSum
 #align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsum
+-/
 
 end ENNReal
 
+#print tsum_comp_le_tsum_of_inj /-
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a)
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f :=
   by
@@ -1465,7 +1822,9 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f
   rw [NNReal.summable_coe] at hf 
   simpa only [(· ∘ ·), ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
+-/
 
+#print summable_of_nonneg_of_le /-
 /-- Comparison test of convergence of series of non-negative real numbers. -/
 theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
     (hf : Summable f) : Summable g :=
@@ -1475,14 +1834,18 @@ theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf
   rw [NNReal.summable_coe] at hf ⊢
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
 #align summable_of_nonneg_of_le summable_of_nonneg_of_le
+-/
 
+#print Summable.toNNReal /-
 theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n => (f n).toNNReal :=
   by
   apply NNReal.summable_coe.1
   refine' summable_of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => _) hf.abs
   simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
 #align summable.to_nnreal Summable.toNNReal
+-/
 
+#print hasSum_iff_tendsto_nat_of_nonneg /-
 /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f i) (r : ℝ) :
@@ -1492,35 +1855,47 @@ theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f
   simp only [HasSum, ← NNReal.coe_sum, NNReal.tendsto_coe']
   exact exists_congr fun hr => NNReal.hasSum_iff_tendsto_nat
 #align has_sum_iff_tendsto_nat_of_nonneg hasSum_iff_tendsto_nat_of_nonneg
+-/
 
+#print ENNReal.ofReal_tsum_of_nonneg /-
 theorem ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) :
     ENNReal.ofReal (∑' n, f n) = ∑' n, ENNReal.ofReal (f n) := by
   simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
 #align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonneg
+-/
 
+#print not_summable_iff_tendsto_nat_atTop_of_nonneg /-
 theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
   by
   lift f to ℕ → ℝ≥0 using hf
   exact_mod_cast NNReal.not_summable_iff_tendsto_nat_atTop
 #align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonneg
+-/
 
+#print summable_iff_not_tendsto_nat_atTop_of_nonneg /-
 theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf]
 #align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonneg
+-/
 
+#print summable_sigma_of_nonneg /-
 theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
   lift f to (Σ x, β x) → ℝ≥0 using hf; exact_mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
+-/
 
+#print summable_of_sum_le /-
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, ∑ x in u, f x ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
     tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
+-/
 
+#print summable_of_sum_range_le /-
 theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
     (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : Summable f :=
   by
@@ -1528,12 +1903,16 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤
   rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩
   exact lt_irrefl _ (hn.trans_le (h n))
 #align summable_of_sum_range_le summable_of_sum_range_le
+-/
 
+#print Real.tsum_le_of_sum_range_le /-
 theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
     (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
 #align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_le
+-/
 
+#print tsum_lt_tsum_of_nonneg /-
 /-- If a sequence `f` with non-negative terms is dominated by a sequence `g` with summable
 series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
 then the series of `f` is strictly smaller than the series of `g`. -/
@@ -1541,6 +1920,7 @@ theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ,
     (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
   tsum_lt_tsum h hi (summable_of_nonneg_of_le h0 h hg) hg
 #align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonneg
+-/
 
 section
 
@@ -1548,6 +1928,7 @@ variable [EMetricSpace β]
 
 open ENNReal Filter Emetric
 
+#print edist_ne_top_of_mem_ball /-
 /-- In an emetric ball, the distance between points is everywhere finite -/
 theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ :=
   lt_top_iff_ne_top.1 <|
@@ -1556,6 +1937,7 @@ theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : ed
       _ < r + r := by rw [edist_comm a x, edist_comm a y] <;> exact add_lt_add x.2 y.2
       _ ≤ ⊤ := le_top
 #align edist_ne_top_of_mem_ball edist_ne_top_of_mem_ball
+-/
 
 #print metricSpaceEMetricBall /-
 /-- Each ball in an extended metric space gives us a metric space, as the edist
@@ -1582,12 +1964,15 @@ variable [PseudoEMetricSpace α]
 
 open Emetric
 
+#print tendsto_iff_edist_tendsto_0 /-
 theorem tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} :
     Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) := by
   simp only [emetric.nhds_basis_eball.tendsto_right_iff, EMetric.mem_ball,
     @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and_iff]
 #align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0
+-/
 
+#print EMetric.cauchySeq_iff_le_tendsto_0 /-
 /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the
 most efficient. -/
 theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s : β → α} :
@@ -1637,7 +2022,9 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
           edist (s m) (s n) ≤ b N := b_bound m n N hm hn
           _ < ε := hN _ (le_refl N)⟩⟩
 #align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0
+-/
 
+#print continuous_of_le_add_edist /-
 theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ⊤)
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f :=
   by
@@ -1667,7 +2054,9 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
           _ ≤ f x + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f x))
           _ = f x + ε := by rw [hεC]
 #align continuous_of_le_add_edist continuous_of_le_add_edist
+-/
 
+#print continuous_edist /-
 theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
   by
   apply continuous_of_le_add_edist 2 (by norm_num)
@@ -1679,18 +2068,24 @@ theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
       (add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _)
     _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm]
 #align continuous_edist continuous_edist
+-/
 
+#print Continuous.edist /-
 @[continuity]
 theorem Continuous.edist [TopologicalSpace β] {f g : β → α} (hf : Continuous f)
     (hg : Continuous g) : Continuous fun b => edist (f b) (g b) :=
   continuous_edist.comp (hf.prod_mk hg : _)
 #align continuous.edist Continuous.edist
+-/
 
+#print Filter.Tendsto.edist /-
 theorem Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf : Tendsto f x (𝓝 a))
     (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => edist (f x) (g x)) x (𝓝 (edist a b)) :=
   (continuous_edist.Tendsto (a, b)).comp (hf.prod_mk_nhds hg)
 #align filter.tendsto.edist Filter.Tendsto.edist
+-/
 
+#print cauchySeq_of_edist_le_of_tsum_ne_top /-
 theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ≥0∞)
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f :=
   by
@@ -1698,6 +2093,7 @@ theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ
   rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd 
   exact cauchySeq_of_edist_le_of_summable d hf hd
 #align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_top
+-/
 
 #print EMetric.isClosed_ball /-
 theorem EMetric.isClosed_ball {a : α} {r : ℝ≥0∞} : IsClosed (closedBall a r) :=
@@ -1723,6 +2119,7 @@ theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
 #align metric.diam_closure Metric.diam_closure
 -/
 
+#print isClosed_setOf_lipschitzOnWith /-
 theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0)
     (s : Set α) : IsClosed {f : α → β | LipschitzOnWith K f s} :=
   by
@@ -1730,14 +2127,18 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
   refine' isClosed_biInter fun x hx => isClosed_biInter fun y hy => isClosed_le _ _
   exacts [Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
+-/
 
+#print isClosed_setOf_lipschitzWith /-
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
     IsClosed {f : α → β | LipschitzWith K f} := by
   simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
 #align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWith
+-/
 
 namespace Real
 
+#print Real.ediam_eq /-
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
 theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) :=
@@ -1754,7 +2155,9 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
       _ ≤ diam (closure s) :=
         dist_le_diam_of_mem h.closure (csSup_mem_closure hne h'.2) (csInf_mem_closure hne h'.1)
 #align real.ediam_eq Real.ediam_eq
+-/
 
+#print Real.diam_eq /-
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
 theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s :=
   by
@@ -1762,7 +2165,9 @@ theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s
   rw [Real.bounded_iff_bddBelow_bddAbove] at h 
   exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
+-/
 
+#print Real.ediam_Ioo /-
 @[simp]
 theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) :=
   by
@@ -1770,7 +2175,9 @@ theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a)
   · simp [h]
   · rw [Real.ediam_eq (bounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h]
 #align real.ediam_Ioo Real.ediam_Ioo
+-/
 
+#print Real.ediam_Icc /-
 @[simp]
 theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
   by
@@ -1778,37 +2185,51 @@ theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a)
   · rw [Real.ediam_eq (bounded_Icc _ _), csSup_Icc h, csInf_Icc h]
   · simp [h, h.le]
 #align real.ediam_Icc Real.ediam_Icc
+-/
 
+#print Real.ediam_Ico /-
 @[simp]
 theorem ediam_Ico (a b : ℝ) : EMetric.diam (Ico a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ico_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ico_self)
 #align real.ediam_Ico Real.ediam_Ico
+-/
 
+#print Real.ediam_Ioc /-
 @[simp]
 theorem ediam_Ioc (a b : ℝ) : EMetric.diam (Ioc a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ioc_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ioc_self)
 #align real.ediam_Ioc Real.ediam_Ioc
+-/
 
+#print Real.diam_Icc /-
 theorem diam_Icc {a b : ℝ} (h : a ≤ b) : Metric.diam (Icc a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Icc Real.diam_Icc
+-/
 
+#print Real.diam_Ico /-
 theorem diam_Ico {a b : ℝ} (h : a ≤ b) : Metric.diam (Ico a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ico Real.diam_Ico
+-/
 
+#print Real.diam_Ioc /-
 theorem diam_Ioc {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioc a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioc Real.diam_Ioc
+-/
 
+#print Real.diam_Ioo /-
 theorem diam_Ioo {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioo a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioo Real.diam_Ioo
+-/
 
 end Real
 
+#print edist_le_tsum_of_edist_le_of_tendsto /-
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
 then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`. -/
 theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ≥0∞)
@@ -1820,13 +2241,16 @@ theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ
   rw [Finset.sum_Ico_eq_sum_range]
   exact sum_le_tsum _ (fun _ _ => zero_le _) ENNReal.summable
 #align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendsto
+-/
 
+#print edist_le_tsum_of_edist_le_of_tendsto₀ /-
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
 then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`. -/
 theorem edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ℝ≥0∞)
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : Tendsto f atTop (𝓝 a)) :
     edist (f 0) a ≤ ∑' m, d m := by simpa using edist_le_tsum_of_edist_le_of_tendsto d hf ha 0
 #align edist_le_tsum_of_edist_le_of_tendsto₀ edist_le_tsum_of_edist_le_of_tendsto₀
+-/
 
 end
 
Diff
@@ -673,7 +673,7 @@ theorem iSup_add_iSup_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι 
 #align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotone
 
 theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
-    (hf : ∀ a, Monotone (f a)) : (∑ a in s, iSup (f a)) = ⨆ n, ∑ a in s, f a n :=
+    (hf : ∀ a, Monotone (f a)) : ∑ a in s, iSup (f a) = ⨆ n, ∑ a in s, f a n :=
   by
   refine' Finset.induction_on s _ _
   · simp
@@ -850,7 +850,7 @@ protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
   unfold HasSum <;> rw [this, tendsto_coe]
 #align ennreal.has_sum_coe ENNReal.hasSum_coe
 
-protected theorem tsum_coe_eq {f : α → ℝ≥0} (h : HasSum f r) : (∑' a, (f a : ℝ≥0∞)) = r :=
+protected theorem tsum_coe_eq {f : α → ℝ≥0} (h : HasSum f r) : ∑' a, (f a : ℝ≥0∞) = r :=
   (ENNReal.hasSum_coe.2 h).tsum_eq
 #align ennreal.tsum_coe_eq ENNReal.tsum_coe_eq
 
@@ -867,7 +867,7 @@ protected theorem summable : Summable f :=
   ⟨_, ENNReal.hasSum⟩
 #align ennreal.summable ENNReal.summable
 
-theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ≥0∞)) ≠ ∞ ↔ Summable f :=
+theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : ∑' b, (f b : ℝ≥0∞) ≠ ∞ ↔ Summable f :=
   by
   refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
   lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h with a ha
@@ -876,12 +876,12 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ
   exact ennreal.summable.has_sum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
-protected theorem tsum_eq_iSup_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
+protected theorem tsum_eq_iSup_sum : ∑' a, f a = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
 #align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
 
 protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
-    (∑' a, f a) = ⨆ i, ∑ a in s i, f a :=
+    ∑' a, f a = ⨆ i, ∑ a in s i, f a :=
   by
   rw [ENNReal.tsum_eq_iSup_sum]
   symm
@@ -891,44 +891,44 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
-    (∑' p : Σ a, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
+    ∑' p : Σ a, β a, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma' {β : α → Type _} (f : (Σ a, β a) → ℝ≥0∞) :
-    (∑' p : Σ a, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
+    ∑' p : Σ a, β a, f p = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
-protected theorem tsum_prod {f : α → β → ℝ≥0∞} : (∑' p : α × β, f p.1 p.2) = ∑' (a) (b), f a b :=
+protected theorem tsum_prod {f : α → β → ℝ≥0∞} : ∑' p : α × β, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod ENNReal.tsum_prod
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
-protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : (∑' p : α × β, f p) = ∑' (a) (b), f (a, b) :=
+protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : ∑' p : α × β, f p = ∑' (a) (b), f (a, b) :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod' ENNReal.tsum_prod'
 
-protected theorem tsum_comm {f : α → β → ℝ≥0∞} : (∑' a, ∑' b, f a b) = ∑' b, ∑' a, f a b :=
+protected theorem tsum_comm {f : α → β → ℝ≥0∞} : ∑' a, ∑' b, f a b = ∑' b, ∑' a, f a b :=
   tsum_comm' ENNReal.summable (fun _ => ENNReal.summable) fun _ => ENNReal.summable
 #align ennreal.tsum_comm ENNReal.tsum_comm
 
-protected theorem tsum_add : (∑' a, f a + g a) = (∑' a, f a) + ∑' a, g a :=
+protected theorem tsum_add : ∑' a, (f a + g a) = ∑' a, f a + ∑' a, g a :=
   tsum_add ENNReal.summable ENNReal.summable
 #align ennreal.tsum_add ENNReal.tsum_add
 
-protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : (∑' a, f a) ≤ ∑' a, g a :=
+protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : ∑' a, f a ≤ ∑' a, g a :=
   tsum_le_tsum h ENNReal.summable ENNReal.summable
 #align ennreal.tsum_le_tsum ENNReal.tsum_le_tsum
 
-protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x in s, f x) ≤ ∑' x, f x :=
+protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : ∑ x in s, f x ≤ ∑' x, f x :=
   sum_le_tsum s (fun x hx => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
 protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
-    (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
+    ∑' i : ℕ, f i = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
   ENNReal.tsum_eq_iSup_sum' _ fun t =>
     let ⟨n, hn⟩ := t.exists_nat_subset_range
     let ⟨k, _, hk⟩ := exists_le_of_tendsto_atTop hN 0 n
@@ -936,12 +936,12 @@ protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (
 #align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'
 
 protected theorem tsum_eq_iSup_nat {f : ℕ → ℝ≥0∞} :
-    (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
+    ∑' i : ℕ, f i = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
   ENNReal.tsum_eq_iSup_sum' _ Finset.exists_nat_subset_range
 #align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_nat
 
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
-    (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
+    ∑' i, f i = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   by
   rw [ENNReal.tsum_eq_iSup_nat, Filter.liminf_eq_iSup_iInf_of_nat]
   congr
@@ -957,15 +957,15 @@ protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
 #align ennreal.le_tsum ENNReal.le_tsum
 
 @[simp]
-protected theorem tsum_eq_zero : (∑' i, f i) = 0 ↔ ∀ i, f i = 0 :=
+protected theorem tsum_eq_zero : ∑' i, f i = 0 ↔ ∀ i, f i = 0 :=
   ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ ENNReal.le_tsum i, fun h => by simp [h]⟩
 #align ennreal.tsum_eq_zero ENNReal.tsum_eq_zero
 
-protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞
+protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → ∑' a, f a = ∞
   | ⟨a, ha⟩ => top_unique <| ha ▸ ENNReal.le_tsum a
 #align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_top
 
-protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞) (j : α) :
+protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞) (j : α) :
     a j < ∞ := by
   have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
   simp only [not_exists] at key 
@@ -973,13 +973,13 @@ protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
 @[simp]
-protected theorem tsum_top [Nonempty α] : (∑' a : α, ∞) = ∞ :=
+protected theorem tsum_top [Nonempty α] : ∑' a : α, ∞ = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
 
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
-    (∑' a : α, c) = ∞ :=
+    ∑' a : α, c = ∞ :=
   by
   have A : tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) at_top (𝓝 (∞ * c)) :=
     by
@@ -993,15 +993,15 @@ theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞
   simpa [hc] using le_of_tendsto' A B
 #align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zero
 
-protected theorem ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
+protected theorem ne_top_of_tsum_ne_top (h : ∑' a, f a ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
   h <| ENNReal.tsum_eq_top_of_eq_top ⟨a, ha⟩
 #align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_top
 
-protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
+protected theorem tsum_mul_left : ∑' i, a * f i = a * ∑' i, f i :=
   if h : ∀ i, f i = 0 then by simp [h]
   else
     let ⟨i, (hi : f i ≠ 0)⟩ := not_forall.mp h
-    have sum_ne_0 : (∑' i, f i) ≠ 0 :=
+    have sum_ne_0 : ∑' i, f i ≠ 0 :=
       ne_of_gt <|
         calc
           0 < f i := lt_of_le_of_ne (zero_le _) hi.symm
@@ -1014,12 +1014,12 @@ protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
     HasSum.tsum_eq this
 #align ennreal.tsum_mul_left ENNReal.tsum_mul_left
 
-protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
+protected theorem tsum_mul_right : ∑' i, f i * a = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
 protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
-    (∑' i, a • f i) = a • ∑' i, f i := by
+    ∑' i, a • f i = a • ∑' i, f i := by
   simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
 
@@ -1055,17 +1055,17 @@ theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
   rw [← has_sum_iff_tendsto_nat]; exact ennreal.summable.has_sum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
-theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) (x : α) :
+theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) (x : α) :
     (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
   coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
 #align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
 
-theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) :
+theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) :
     Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf
 #align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
 
-theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
+theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto f cofinite (𝓝 0) :=
   by
   have f_ne_top : ∀ n, f n ≠ ∞ := ENNReal.ne_top_of_tsum_ne_top hf
@@ -1075,14 +1075,14 @@ theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf :
   exact NNReal.tendsto_cofinite_zero_of_summable (summable_to_nnreal_of_tsum_ne_top hf)
 #align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_top
 
-theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
+theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto f atTop (𝓝 0) := by rw [← Nat.cofinite_eq_atTop];
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
 #align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_top
 
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
-theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
+theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto (fun s : Finset α => ∑' b : { x // x ∉ s }, f b) atTop (𝓝 0) :=
   by
   lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
@@ -1097,67 +1097,64 @@ protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x
   tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
 #align ennreal.tsum_apply ENNReal.tsum_apply
 
-theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑' i, g i) ≠ ∞) (h₂ : g ≤ f) :
-    (∑' i, f i - g i) = (∑' i, f i) - ∑' i, g i :=
+theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : ∑' i, g i ≠ ∞) (h₂ : g ≤ f) :
+    ∑' i, (f i - g i) = ∑' i, f i - ∑' i, g i :=
   by
-  have h₃ : (∑' i, f i - g i) = (∑' i, f i - g i + g i) - ∑' i, g i := by
+  have h₃ : ∑' i, (f i - g i) = ∑' i, (f i - g i + g i) - ∑' i, g i := by
     rw [ENNReal.tsum_add, ENNReal.add_sub_cancel_right h₁]
   have h₄ : (fun i => f i - g i + g i) = f := by ext n; rw [tsub_add_cancel_of_le (h₂ n)]
   rw [h₄] at h₃ ; apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
 
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
-    (∑' x : s, f x) ≤ ∑' x : t, f x :=
-  by
+    ∑' x : s, f x ≤ ∑' x : t, f x := by
   simp only [tsum_subtype]
   apply ENNReal.tsum_le_tsum
   exact indicator_le_indicator_of_subset h fun _ => zero_le _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
-    (∑' x : s ∪ t, f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
+    ∑' x : s ∪ t, f x ≤ ∑' x : s, f x + ∑' x : t, f x :=
   calc
-    (∑' x : s ∪ t, f x) = ∑' x : s ∪ t \ s, f x := by apply tsum_congr_subtype; rw [union_diff_self]
-    _ = (∑' x : s, f x) + ∑' x : t \ s, f x :=
+    ∑' x : s ∪ t, f x = ∑' x : s ∪ t \ s, f x := by apply tsum_congr_subtype; rw [union_diff_self]
+    _ = ∑' x : s, f x + ∑' x : t \ s, f x :=
       (tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable)
-    _ ≤ (∑' x : s, f x) + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
+    _ ≤ ∑' x : s, f x + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
-    (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
+    ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x := by
   classical
   induction' s using Finset.induction_on with i s hi ihs h
   · simp
   have : (⋃ j ∈ insert i s, t j) = t i ∪ ⋃ j ∈ s, t j := by simp
   rw [tsum_congr_subtype f this]
   calc
-    (∑' x : t i ∪ ⋃ j ∈ s, t j, f x) ≤ (∑' x : t i, f x) + ∑' x : ⋃ j ∈ s, t j, f x :=
+    ∑' x : t i ∪ ⋃ j ∈ s, t j, f x ≤ ∑' x : t i, f x + ∑' x : ⋃ j ∈ s, t j, f x :=
       tsum_union_le _ _ _
-    _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
+    _ ≤ ∑' x : t i, f x + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
     _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
-    (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
+    ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
   classical
   have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
   rw [tsum_congr_subtype f this]
   exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 
-theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
-    (∑' x, f x) = f b + ∑' x, ite (x = b) 0 (f x) :=
+theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) : ∑' x, f x = f b + ∑' x, ite (x = b) 0 (f x) :=
   tsum_eq_add_tsum_ite' b ENNReal.summable
 #align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_ite
 
-theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞) (hf0 : f 0 ≠ ∞) :
-    (∑' n, f (n + 1)) = ∞ :=
+theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (hf0 : f 0 ≠ ∞) :
+    ∑' n, f (n + 1) = ∞ :=
   by
   rw [← tsum_eq_tsum_of_hasSum_iff_hasSum fun _ => (notMemRangeEquiv 1).hasSum_iff]
   swap; · infer_instance
   have h₁ :
-    ((∑' b : { n // n ∈ Finset.range 1 }, f b) + ∑' b : { n // n ∉ Finset.range 1 }, f b) =
-      ∑' b, f b :=
+    ∑' b : { n // n ∈ Finset.range 1 }, f b + ∑' b : { n // n ∉ Finset.range 1 }, f b = ∑' b, f b :=
     tsum_add_tsum_compl ENNReal.summable ENNReal.summable
   rw [Finset.tsum_subtype, Finset.sum_range_one, hf, ENNReal.add_eq_top] at h₁ 
   rw [← h₁.resolve_left hf0]
@@ -1169,7 +1166,7 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
 
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
-theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞)
+theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞)
     {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : {i : ι | ε ≤ a i}.Finite :=
   by
   by_cases ε_infty : ε = ∞
@@ -1191,7 +1188,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
 
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
-    (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
+    (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
     ∃ hf : {i : ι | ε ≤ a i}.Finite, ↑hf.toFinset.card ≤ c / ε :=
   by
   by_cases ε = ∞
@@ -1232,20 +1229,20 @@ theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : 
 #align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iff
 
 theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
-    (∑' a, (f a : ℝ≥0∞)) ≠ ∞ ↔ Summable fun a => (f a : ℝ) :=
+    ∑' a, (f a : ℝ≥0∞) ≠ ∞ ↔ Summable fun a => (f a : ℝ) :=
   by
   rw [NNReal.summable_coe]
   exact tsum_coe_ne_top_iff_summable
 #align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coe
 
 theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
-    (∑' a, (f a : ℝ≥0∞)) = ∞ ↔ ¬Summable fun a => (f a : ℝ) :=
+    ∑' a, (f a : ℝ≥0∞) = ∞ ↔ ¬Summable fun a => (f a : ℝ) :=
   by
-  rw [← @Classical.not_not ((∑' a, ↑(f a)) = ⊤)]
+  rw [← @Classical.not_not (∑' a, ↑(f a) = ⊤)]
   exact not_congr tsum_coe_ne_top_iff_summable_coe
 #align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coe
 
-theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
+theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) :
     HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) :=
   by
   lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hsum
@@ -1253,7 +1250,7 @@ theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
   exact (tsum_coe_ne_top_iff_summable.1 hsum).HasSum
 #align ennreal.has_sum_to_real ENNReal.hasSum_toReal
 
-theorem summable_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) : Summable fun x => (f x).toReal :=
+theorem summable_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) : Summable fun x => (f x).toReal :=
   (hasSum_toReal hsum).Summable
 #align ennreal.summable_to_real ENNReal.summable_toReal
 
@@ -1263,7 +1260,7 @@ namespace NNReal
 
 open scoped NNReal
 
-theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
+theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : ∑' b, f b = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
   by
   by_cases h : Summable f
   · rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe]
@@ -1275,7 +1272,7 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b, g b ≤ f b) (hfr : HasSum f r) :
     ∃ p ≤ r, HasSum g p :=
-  have : (∑' b, (g b : ℝ≥0∞)) ≤ r :=
+  have : ∑' b, (g b : ℝ≥0∞) ≤ r :=
     by
     refine' hasSum_le (fun b => _) ennreal.summable.has_sum (ENNReal.hasSum_coe.2 hfr)
     exact ENNReal.coe_le_coe.2 (hgf _)
@@ -1316,21 +1313,20 @@ theorem summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_at_top]
 #align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTop
 
-theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f :=
-  by
+theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) :
+    Summable f := by
   apply summable_iff_not_tendsto_nat_at_top.2 fun H => _
   rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩
   exact lt_irrefl _ (hn.trans_le (h n))
 #align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_le
 
-theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
+theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) :
+    ∑' n, f n ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
 #align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_le
 
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
-    (hi : Function.Injective i) : (∑' x, f (i x)) ≤ ∑' x, f x :=
+    (hi : Function.Injective i) : ∑' x, f (i x) ≤ ∑' x, f x :=
   tsum_le_tsum_of_inj i hi (fun c hc => zero_le _) (fun b => le_rfl) (summable_comp_injective hf hi)
     hf
 #align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_inj
@@ -1355,7 +1351,7 @@ theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) :
 #align nnreal.indicator_summable NNReal.indicator_summable
 
 theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set α} (h : ∃ a ∈ s, f a ≠ 0) :
-    (∑' x, (s.indicator f) x) ≠ 0 := fun h' =>
+    ∑' x, (s.indicator f) x ≠ 0 := fun h' =>
   let ⟨a, ha, hap⟩ := h
   hap
     (trans (Set.indicator_apply_eq_self.mpr (absurd ha)).symm
@@ -1389,12 +1385,12 @@ theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum
 #align nnreal.has_sum_strict_mono NNReal.hasSum_strict_mono
 
 theorem tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
-    (hg : Summable g) : (∑' n, f n) < ∑' n, g n :=
+    (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
   hasSum_lt h hi (summable_of_le h hg).HasSum hg.HasSum
 #align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsum
 
 @[mono]
-theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : (∑' n, f n) < ∑' n, g n :=
+theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : ∑' n, f n < ∑' n, g n :=
   let ⟨hle, i, hi⟩ := Pi.lt_def.mp h
   tsum_lt_tsum hle hi hg
 #align nnreal.tsum_strict_mono NNReal.tsum_strict_mono
@@ -1404,7 +1400,7 @@ theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i)
 #align nnreal.tsum_pos NNReal.tsum_pos
 
 theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
-    (∑' x, f x) = f i + ∑' x, ite (x = i) 0 (f x) :=
+    ∑' x, f x = f i + ∑' x, ite (x = i) 0 (f x) :=
   by
   refine' tsum_eq_add_tsum_ite' i (NNReal.summable_of_le (fun i' => _) hf)
   rw [Function.update_apply]
@@ -1426,7 +1422,7 @@ theorem tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
   simp only [ENNReal.toReal, tsum_to_nnreal_eq hf, NNReal.coe_tsum]
 #align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eq
 
-theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞) :
+theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : ∑' i, f i ≠ ∞) :
     Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
   by
   lift f to ℕ → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
@@ -1436,7 +1432,7 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞
 #align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
 
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   tsum_le_of_sum_range_le ENNReal.summable h
 #align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
 
@@ -1456,7 +1452,7 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
 theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
-    (hi : f i < g i) : (∑' x, f x) < ∑' x, g x :=
+    (hi : f i < g i) : ∑' x, f x < ∑' x, g x :=
   hasSum_lt h hi hfi ENNReal.summable.HasSum ENNReal.summable.HasSum
 #align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsum
 
@@ -1520,13 +1516,13 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σ x, β x) →
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
-    (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
+    (h : ∀ u : Finset ι, ∑ x in u, f x ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
     tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
 
 theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f :=
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : Summable f :=
   by
   apply (summable_iff_not_tendsto_nat_atTop_of_nonneg hf).2 fun H => _
   rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩
@@ -1534,7 +1530,7 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤
 #align summable_of_sum_range_le summable_of_sum_range_le
 
 theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
 #align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_le
 
@@ -1542,7 +1538,7 @@ theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0
 series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
 then the series of `f` is strictly smaller than the series of `g`. -/
 theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ, 0 ≤ f b)
-    (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : (∑' n, f n) < ∑' n, g n :=
+    (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
   tsum_lt_tsum h hi (summable_of_nonneg_of_le h0 h hg) hg
 #align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonneg
 
Diff
@@ -274,7 +274,6 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     calc
       a < b := ab
       _ ≤ y := h₁
-      
   · rcases exists_between xs with ⟨b, xb, ba⟩
     have bx_pos : 0 < b - x := tsub_pos_iff_lt.2 xb
     have xbx : x + (b - x) = b := add_tsub_cancel_of_le xb.le
@@ -284,7 +283,6 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     calc
       y ≤ b := h₂
       _ < a := ba
-      
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
@@ -342,7 +340,6 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
       calc
         (n : ℝ≥0∞) + y + (b + 1) = (n : ℝ≥0∞) + (b + 1) + y := by abel
         _ < x + (b + 1) := ENNReal.add_lt_add hx hy
-        
     exact lt_of_add_lt_add_right this
   · simp only [some_eq_coe, WithTop.sub_top, none_eq_top]
     suffices H : ∀ᶠ p : ℝ≥0∞ × ℝ≥0∞ in 𝓝 (a, ∞), 0 = p.1 - p.2
@@ -1009,7 +1006,6 @@ protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
         calc
           0 < f i := lt_of_le_of_ne (zero_le _) hi.symm
           _ ≤ ∑' i, f i := ENNReal.le_tsum _
-          
     have : Tendsto (fun s : Finset α => ∑ j in s, a * f j) atTop (𝓝 (a * ∑' i, f i)) := by
       rw [←
           show ((· * ·) a ∘ fun s : Finset α => ∑ j in s, f j) = fun s => ∑ j in s, a * f j from
@@ -1039,12 +1035,10 @@ theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b :
                 Finset.sum_le_sum_of_ne_zero fun b _ hb =>
                   suffices a = b by simpa using this.symm
                   by_contradiction fun h => by simpa [h] using hb
-              _ = f a := by simp
-              )
+              _ = f a := by simp)
     (calc
       f a ≤ ⨆ h : a = a, f a := le_iSup (fun h : a = a => f a) rfl
-      _ ≤ ∑' b : α, ⨆ h : a = b, f b := ENNReal.le_tsum _
-      )
+      _ ≤ ∑' b : α, ⨆ h : a = b, f b := ENNReal.le_tsum _)
 #align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
 
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
@@ -1127,7 +1121,6 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     _ = (∑' x : s, f x) + ∑' x : t \ s, f x :=
       (tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable)
     _ ≤ (∑' x : s, f x) + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
-    
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
@@ -1142,7 +1135,6 @@ theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
       tsum_union_le _ _ _
     _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
     _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
-    
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
@@ -1567,7 +1559,6 @@ theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : ed
       edist x y ≤ edist a x + edist a y := edist_triangle_left x.1 y.1 a
       _ < r + r := by rw [edist_comm a x, edist_comm a y] <;> exact add_lt_add x.2 y.2
       _ ≤ ⊤ := le_top
-      
 #align edist_ne_top_of_mem_ball edist_ne_top_of_mem_ball
 
 #print metricSpaceEMetricBall /-
@@ -1648,8 +1639,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
       ⟨N, fun m hm n hn =>
         calc
           edist (s m) (s n) ≤ b N := b_bound m n N hm hn
-          _ < ε := hN _ (le_refl N)
-          ⟩⟩
+          _ < ε := hN _ (le_refl N)⟩⟩
 #align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0
 
 theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ⊤)
@@ -1675,13 +1665,11 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
           f x ≤ f y + C * edist x y := h x y
           _ ≤ f y + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f y))
           _ = f y + ε := by rw [hεC]
-          
       ·
         calc
           f y ≤ f x + C * edist y x := h y x
           _ ≤ f x + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f x))
           _ = f x + ε := by rw [hεC]
-          
 #align continuous_of_le_add_edist continuous_of_le_add_edist
 
 theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
@@ -1694,7 +1682,6 @@ theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
     _ ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) :=
       (add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _)
     _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm]
-    
 #align continuous_edist continuous_edist
 
 @[continuity]
@@ -1770,7 +1757,6 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
       Sup s - Inf s ≤ dist (Sup s) (Inf s) := le_abs_self _
       _ ≤ diam (closure s) :=
         dist_le_diam_of_mem h.closure (csSup_mem_closure hne h'.2) (csInf_mem_closure hne h'.1)
-      
 #align real.ediam_eq Real.ediam_eq
 
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
Diff
@@ -171,7 +171,7 @@ def ltTopHomeomorphNNReal : {a | a < ∞} ≃ₜ ℝ≥0 := by
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
 #align ennreal.nhds_top ENNReal.nhds_top
@@ -218,7 +218,7 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
 #align ennreal.nhds_zero ENNReal.nhds_zero
Diff
@@ -65,9 +65,9 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
       · rw [@OrderTopology.topology_eq_generate_intervals ℝ≥0∞ _, ← coinduced_le_iff_le_induced]
         refine' le_generateFrom fun s ha => _
         rcases ha with ⟨a, rfl | rfl⟩
-        show IsOpen { b : ℝ≥0 | a < ↑b }
+        show IsOpen {b : ℝ≥0 | a < ↑b}
         · cases a <;> simp [none_eq_top, some_eq_coe, isOpen_lt']
-        show IsOpen { b : ℝ≥0 | ↑b < a }
+        show IsOpen {b : ℝ≥0 | ↑b < a}
         · cases a <;> simp [none_eq_top, some_eq_coe, isOpen_gt', isOpen_const]
       · rw [@OrderTopology.topology_eq_generate_intervals ℝ≥0 _]
         refine' le_generateFrom fun s ha => _
@@ -76,7 +76,7 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
         exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_eq_coe.1⟩
 #align ennreal.embedding_coe ENNReal.embedding_coe
 
-theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ⊤ } :=
+theorem isOpen_ne_top : IsOpen {a : ℝ≥0∞ | a ≠ ⊤} :=
   isOpen_ne
 #align ennreal.is_open_ne_top ENNReal.isOpen_ne_top
 
@@ -145,11 +145,11 @@ theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥
     (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞)
     (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g :=
   by
-  filter_upwards [hfi, hgi, hfg]with _ hfx hgx _
+  filter_upwards [hfi, hgi, hfg] with _ hfx hgx _
   rwa [← ENNReal.toReal_eq_toReal hfx hgx]
 #align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEq
 
-theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal { a | a ≠ ∞ } := fun a ha =>
+theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal {a | a ≠ ∞} := fun a ha =>
   ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
 #align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNReal
 
@@ -158,7 +158,7 @@ theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toRea
 #align ennreal.tendsto_to_real ENNReal.tendsto_toReal
 
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
-def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
+def neTopHomeomorphNNReal : {a | a ≠ ∞} ≃ₜ ℝ≥0 :=
   {
     neTopEquivNNReal with
     continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toNNReal
@@ -166,7 +166,7 @@ def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
 #align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNNReal
 
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
-def ltTopHomeomorphNNReal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
+def ltTopHomeomorphNNReal : {a | a < ∞} ≃ₜ ℝ≥0 := by
   refine' (Homeomorph.setCongr <| Set.ext fun x => _).trans ne_top_homeomorph_nnreal <;>
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
@@ -479,7 +479,7 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
 #align ennreal.continuous_pow ENNReal.continuous_pow
 
 theorem continuousOn_sub :
-    ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) { p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩ } :=
+    ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) {p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩} :=
   by
   rw [ContinuousOn]
   rintro ⟨x, y⟩ hp
@@ -499,7 +499,7 @@ theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (
   continuous_sub_left coe_ne_top
 #align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_sub
 
-theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) { x : ℝ≥0∞ | x ≠ ∞ } :=
+theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {x : ℝ≥0∞ | x ≠ ∞} :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
   apply ContinuousOn.comp continuous_on_sub (Continuous.continuousOn (Continuous.Prod.mk a))
@@ -788,7 +788,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
               is_bounded_default)
           _)
   simp only [eventually_map, ENNReal.coe_le_coe]
-  filter_upwards [h r]with i hi using hi.trans (le_abs_self (x i))
+  filter_upwards [h r] with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
@@ -806,7 +806,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
               is_bounded_default)
           _)
   simp only [eventually_map, ENNReal.coe_le_coe]
-  filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
+  filter_upwards [h (-r)] with i hi using (le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -820,20 +820,20 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     obtain ⟨q, hq⟩ := exists_rat_gt R
     refine' ⟨q, q + 1, (lt_add_iff_pos_right _).2 zero_lt_one, _, _⟩
     · refine' fun hcon => hR _
-      filter_upwards [hcon]with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
+      filter_upwards [hcon] with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
         not_exists, not_forall, not_le, exists_prop] at hbdd 
       refine' fun hcon => hbdd ↑(q + 1) _
-      filter_upwards [hcon]with x hx using not_lt.1 hx
+      filter_upwards [hcon] with x hx using not_lt.1 hx
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top' hf
     obtain ⟨q, hq⟩ := exists_rat_lt R
     refine' ⟨q - 1, q, (sub_lt_self_iff _).2 zero_lt_one, _, _⟩
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
         not_exists, not_forall, not_le, exists_prop] at hbdd 
       refine' fun hcon => hbdd ↑(q - 1) _
-      filter_upwards [hcon]with x hx using not_lt.1 hx
+      filter_upwards [hcon] with x hx using not_lt.1 hx
     · refine' fun hcon => hR _
-      filter_upwards [hcon]with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le)
+      filter_upwards [hcon] with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le)
 #align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_under
 
 end Liminf
@@ -1133,24 +1133,24 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
   classical
-    induction' s using Finset.induction_on with i s hi ihs h
-    · simp
-    have : (⋃ j ∈ insert i s, t j) = t i ∪ ⋃ j ∈ s, t j := by simp
-    rw [tsum_congr_subtype f this]
-    calc
-      (∑' x : t i ∪ ⋃ j ∈ s, t j, f x) ≤ (∑' x : t i, f x) + ∑' x : ⋃ j ∈ s, t j, f x :=
-        tsum_union_le _ _ _
-      _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
-      _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
-      
+  induction' s using Finset.induction_on with i s hi ihs h
+  · simp
+  have : (⋃ j ∈ insert i s, t j) = t i ∪ ⋃ j ∈ s, t j := by simp
+  rw [tsum_congr_subtype f this]
+  calc
+    (∑' x : t i ∪ ⋃ j ∈ s, t j, f x) ≤ (∑' x : t i, f x) + ∑' x : ⋃ j ∈ s, t j, f x :=
+      tsum_union_le _ _ _
+    _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
+    _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
+    
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
   classical
-    have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
-    rw [tsum_congr_subtype f this]
-    exact tsum_bUnion_le _ _ _
+  have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
+  rw [tsum_congr_subtype f this]
+  exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
@@ -1178,7 +1178,7 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
 theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞)
-    {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : { i : ι | ε ≤ a i }.Finite :=
+    {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : {i : ι | ε ≤ a i}.Finite :=
   by
   by_cases ε_infty : ε = ∞
   · rw [ε_infty]
@@ -1189,7 +1189,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
     (nnreal.summable_coe.mpr (summable_to_nnreal_of_tsum_ne_top tsum_ne_top)).tendsto_cofinite_zero
       (Iio_mem_nhds (to_real_pos ε_ne_zero ε_infty))
   simp only [Filter.mem_map, Filter.mem_cofinite, preimage] at key 
-  have obs : { i : ι | ↑(a i).toNNReal ∈ Iio ε.to_real }ᶜ = { i : ι | ε ≤ a i } :=
+  have obs : {i : ι | ↑(a i).toNNReal ∈ Iio ε.to_real}ᶜ = {i : ι | ε ≤ a i} :=
     by
     ext i
     simpa only [mem_Iio, mem_compl_iff, mem_set_of_eq, not_lt] using
@@ -1200,10 +1200,10 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
     (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
-    ∃ hf : { i : ι | ε ≤ a i }.Finite, ↑hf.toFinset.card ≤ c / ε :=
+    ∃ hf : {i : ι | ε ≤ a i}.Finite, ↑hf.toFinset.card ≤ c / ε :=
   by
   by_cases ε = ∞
-  · have obs : { i : ι | ε ≤ a i } = ∅ :=
+  · have obs : {i : ι | ε ≤ a i} = ∅ :=
       by
       rw [eq_empty_iff_forall_not_mem]
       intro i hi
@@ -1212,7 +1212,7 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
       exact c_ne_top (le_antisymm le_top oops)
     simp only [obs, finite_empty, finite.to_finset_empty, Finset.card_empty, algebraMap.coe_zero,
       zero_le', exists_true_left]
-  have hf : { i : ι | ε ≤ a i }.Finite :=
+  have hf : {i : ι | ε ≤ a i}.Finite :=
     ENNReal.finite_const_le_of_tsum_ne_top (lt_of_le_of_lt tsum_le_c c_ne_top.lt_top).Ne ε_ne_zero
   use hf
   have at_least : ∀ i ∈ hf.to_finset, ε ≤ a i :=
@@ -1612,7 +1612,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
     rw [EMetric.cauchySeq_iff] at hs 
     /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking
       the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/
-    let b N := Sup ((fun p : β × β => edist (s p.1) (s p.2)) '' { p | p.1 ≥ N ∧ p.2 ≥ N })
+    let b N := Sup ((fun p : β × β => edist (s p.1) (s p.2)) '' {p | p.1 ≥ N ∧ p.2 ≥ N})
     --Prove that it bounds the distances of points in the Cauchy sequence
     have C : ∀ n m N, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N :=
       by
@@ -1741,7 +1741,7 @@ theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
 -/
 
 theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0)
-    (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } :=
+    (s : Set α) : IsClosed {f : α → β | LipschitzOnWith K f s} :=
   by
   simp only [LipschitzOnWith, set_of_forall]
   refine' isClosed_biInter fun x hx => isClosed_biInter fun y hy => isClosed_le _ _
@@ -1749,7 +1749,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
-    IsClosed { f : α → β | LipschitzWith K f } := by
+    IsClosed {f : α → β | LipschitzWith K f} := by
   simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
 #align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWith
 
Diff
@@ -210,8 +210,8 @@ theorem tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) :=
 @[simp, norm_cast]
 theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by
-  rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff] <;>
-    [simp;infer_instance;infer_instance]
+  rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff] <;> [simp; infer_instance;
+    infer_instance]
 #align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_top
 
 theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
@@ -270,7 +270,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     have xxb : x - (x - b) = b := sub_sub_cancel xt bx.le
     refine' iInf_le_of_le (x - b) (iInf_le_of_le xb_pos _)
     simp only [mem_principal, le_principal_iff]
-    intro y; rintro ⟨h₁, h₂⟩; rw [xxb] at h₁;
+    intro y; rintro ⟨h₁, h₂⟩; rw [xxb] at h₁ ;
     calc
       a < b := ab
       _ ≤ y := h₁
@@ -280,7 +280,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     have xbx : x + (b - x) = b := add_tsub_cancel_of_le xb.le
     refine' iInf_le_of_le (b - x) (iInf_le_of_le bx_pos _)
     simp only [mem_principal, le_principal_iff]
-    intro y; rintro ⟨h₁, h₂⟩; rw [xbx] at h₂;
+    intro y; rintro ⟨h₁, h₂⟩; rw [xbx] at h₂ ;
     calc
       y ≤ b := h₂
       _ < a := ba
@@ -328,7 +328,7 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
   by
   cases a <;> cases b
-  · simp only [eq_self_iff_true, not_true, Ne.def, none_eq_top, or_self_iff] at h; contradiction
+  · simp only [eq_self_iff_true, not_true, Ne.def, none_eq_top, or_self_iff] at h ; contradiction
   · simp only [some_eq_coe, WithTop.top_sub_coe, none_eq_top]
     apply tendsto_nhds_top_iff_nnreal.2 fun n => _
     rw [nhds_prod_eq, eventually_prod_iff]
@@ -380,9 +380,9 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     refine' this.mono fun c hc => _
     exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2)
   cases a
-  · simp [none_eq_top] at hb; simp [none_eq_top, ht b hb, top_mul, hb]
+  · simp [none_eq_top] at hb ; simp [none_eq_top, ht b hb, top_mul, hb]
   cases b
-  · simp [none_eq_top] at ha
+  · simp [none_eq_top] at ha 
     simp [*, nhds_swap (a : ℝ≥0∞) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (· ∘ ·),
       mul_comm]
   simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (· ∘ ·)]
@@ -483,7 +483,7 @@ theorem continuousOn_sub :
   by
   rw [ContinuousOn]
   rintro ⟨x, y⟩ hp
-  simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp
+  simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp 
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_distrib.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
@@ -526,7 +526,7 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   by
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
     (ENNReal.continuousAt_mul_const (Or.inr one_ne_zero)).mono_left inf_le_left
-  rw [one_mul] at this
+  rw [one_mul] at this 
   haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, zero_lt_one⟩
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
@@ -538,7 +538,7 @@ theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = 
   · rcases h H.1 H.2 with ⟨i, hi⟩
     rw [H.2, MulZeroClass.mul_zero, ← bot_eq_zero, iInf_eq_bot]
     exact fun b hb => ⟨i, by rwa [hi, MulZeroClass.mul_zero, ← bot_eq_zero]⟩
-  · rw [not_and_or] at H
+  · rw [not_and_or] at H 
     cases isEmpty_or_nonempty ι
     · rw [iInf_of_empty, iInf_of_empty, mul_top, if_neg]
       exact mt h0 (not_nonempty_iff.2 ‹_›)
@@ -778,7 +778,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
   by
   by_contra h
-  simp_rw [not_exists, not_frequently, not_lt] at h
+  simp_rw [not_exists, not_frequently, not_lt] at h 
   refine'
     hx
       (ENNReal.eq_top_of_forall_nnreal_le fun r =>
@@ -796,7 +796,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
   by
   by_contra h
-  simp_rw [not_exists, not_frequently, not_lt] at h
+  simp_rw [not_exists, not_frequently, not_lt] at h 
   refine'
     hx
       (ENNReal.eq_top_of_forall_nnreal_le fun r =>
@@ -814,7 +814,7 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
     ∃ a b : ℚ, a < b ∧ (∃ᶠ i in l, x i < a) ∧ ∃ᶠ i in l, ↑b < x i :=
   by
-  rw [is_bounded_under_le_abs, not_and_or] at hbdd
+  rw [is_bounded_under_le_abs, not_and_or] at hbdd 
   obtain hbdd | hbdd := hbdd
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top hf
     obtain ⟨q, hq⟩ := exists_rat_gt R
@@ -822,14 +822,14 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
     · refine' fun hcon => hR _
       filter_upwards [hcon]with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
-        not_exists, not_forall, not_le, exists_prop] at hbdd
+        not_exists, not_forall, not_le, exists_prop] at hbdd 
       refine' fun hcon => hbdd ↑(q + 1) _
       filter_upwards [hcon]with x hx using not_lt.1 hx
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top' hf
     obtain ⟨q, hq⟩ := exists_rat_lt R
     refine' ⟨q - 1, q, (sub_lt_self_iff _).2 zero_lt_one, _, _⟩
     · simp only [is_bounded_under, is_bounded, eventually_map, eventually_at_top, ge_iff_le,
-        not_exists, not_forall, not_le, exists_prop] at hbdd
+        not_exists, not_forall, not_le, exists_prop] at hbdd 
       refine' fun hcon => hbdd ↑(q - 1) _
       filter_upwards [hcon]with x hx using not_lt.1 hx
     · refine' fun hcon => hR _
@@ -894,13 +894,13 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
-    (∑' p : Σa, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
+    (∑' p : Σ a, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
-protected theorem tsum_sigma' {β : α → Type _} (f : (Σa, β a) → ℝ≥0∞) :
-    (∑' p : Σa, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
+protected theorem tsum_sigma' {β : α → Type _} (f : (Σ a, β a) → ℝ≥0∞) :
+    (∑' p : Σ a, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
 
@@ -971,7 +971,7 @@ protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) =
 protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞) (j : α) :
     a j < ∞ := by
   have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
-  simp only [not_exists] at key
+  simp only [not_exists] at key 
   exact lt_top_iff_ne_top.mpr (key tsum_ne_top j)
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
@@ -1109,7 +1109,7 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑'
   have h₃ : (∑' i, f i - g i) = (∑' i, f i - g i + g i) - ∑' i, g i := by
     rw [ENNReal.tsum_add, ENNReal.add_sub_cancel_right h₁]
   have h₄ : (fun i => f i - g i + g i) = f := by ext n; rw [tsub_add_cancel_of_le (h₂ n)]
-  rw [h₄] at h₃; apply h₃
+  rw [h₄] at h₃ ; apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
 
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
@@ -1167,11 +1167,11 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
     ((∑' b : { n // n ∈ Finset.range 1 }, f b) + ∑' b : { n // n ∉ Finset.range 1 }, f b) =
       ∑' b, f b :=
     tsum_add_tsum_compl ENNReal.summable ENNReal.summable
-  rw [Finset.tsum_subtype, Finset.sum_range_one, hf, ENNReal.add_eq_top] at h₁
+  rw [Finset.tsum_subtype, Finset.sum_range_one, hf, ENNReal.add_eq_top] at h₁ 
   rw [← h₁.resolve_left hf0]
   apply tsum_congr
   rintro ⟨i, hi⟩
-  simp only [Multiset.mem_range, not_lt] at hi
+  simp only [Multiset.mem_range, not_lt] at hi 
   simp only [tsub_add_cancel_of_le hi, coe_notMemRangeEquiv, Function.comp_apply, Subtype.coe_mk]
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 
@@ -1188,13 +1188,13 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
   have key :=
     (nnreal.summable_coe.mpr (summable_to_nnreal_of_tsum_ne_top tsum_ne_top)).tendsto_cofinite_zero
       (Iio_mem_nhds (to_real_pos ε_ne_zero ε_infty))
-  simp only [Filter.mem_map, Filter.mem_cofinite, preimage] at key
+  simp only [Filter.mem_map, Filter.mem_cofinite, preimage] at key 
   have obs : { i : ι | ↑(a i).toNNReal ∈ Iio ε.to_real }ᶜ = { i : ι | ε ≤ a i } :=
     by
     ext i
     simpa only [mem_Iio, mem_compl_iff, mem_set_of_eq, not_lt] using
       to_real_le_to_real ε_infty (ENNReal.ne_top_of_tsum_ne_top tsum_ne_top _)
-  rwa [obs] at key
+  rwa [obs] at key 
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
 
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
@@ -1208,7 +1208,7 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
       rw [eq_empty_iff_forall_not_mem]
       intro i hi
       have oops := (le_trans hi (le_tsum' (@ENNReal.summable _ a) i)).trans tsum_le_c
-      rw [h] at oops
+      rw [h] at oops 
       exact c_ne_top (le_antisymm le_top oops)
     simp only [obs, finite_empty, finite.to_finset_empty, Finset.card_empty, algebraMap.coe_zero,
       zero_le', exists_true_left]
@@ -1222,7 +1222,7 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
   have partial_sum :=
     @sum_le_tsum _ _ _ _ _ a hf.to_finset (fun _ _ => zero_le') (@ENNReal.summable _ a)
   have lower_bound := Finset.sum_le_sum at_least
-  simp only [Finset.sum_const, nsmul_eq_mul] at lower_bound
+  simp only [Finset.sum_const, nsmul_eq_mul] at lower_bound 
   have key := (ENNReal.le_div_iff_mul_le (Or.inl ε_ne_zero) (Or.inl h)).mpr lower_bound
   exact le_trans key (ENNReal.div_le_div_right (partial_sum.trans tsum_le_c) _)
 #align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_le
@@ -1276,7 +1276,7 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f
   by_cases h : Summable f
   · rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe]
   · have A := tsum_eq_zero_of_not_summable h
-    simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h
+    simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h 
     simp only [h, ENNReal.top_toNNReal, A]
 #align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsum
 
@@ -1314,7 +1314,7 @@ theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
   constructor
   · intro h
     refine' ((tendsto_of_monotone _).resolve_right h).comp _
-    exacts[Finset.sum_mono_set _, tendsto_finset_range]
+    exacts [Finset.sum_mono_set _, tendsto_finset_range]
   · rintro hnat ⟨r, hr⟩
     exact not_tendsto_nhds_of_tendsto_atTop hnat _ (has_sum_iff_tendsto_nat.1 hr)
 #align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTop
@@ -1343,7 +1343,7 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ≥0} (hf : Summab
     hf
 #align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_inj
 
-theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ≥0} :
+theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σ x, β x) → ℝ≥0} :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ :=
   by
   constructor
@@ -1459,7 +1459,7 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
     lift g to α → ℝ≥0 using hg'
     lift sf to ℝ≥0 using hsf
     lift sg to ℝ≥0 using hsg
-    simp only [coe_le_coe, coe_lt_coe] at h hi⊢
+    simp only [coe_le_coe, coe_lt_coe] at h hi ⊢
     exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
@@ -1474,7 +1474,7 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f :=
   by
   lift f to α → ℝ≥0 using hn
-  rw [NNReal.summable_coe] at hf
+  rw [NNReal.summable_coe] at hf 
   simpa only [(· ∘ ·), ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
 
@@ -1484,7 +1484,7 @@ theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf
   by
   lift f to β → ℝ≥0 using fun b => (hg b).trans (hgf b)
   lift g to β → ℝ≥0 using hg
-  rw [NNReal.summable_coe] at hf⊢
+  rw [NNReal.summable_coe] at hf ⊢
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
 #align summable_of_nonneg_of_le summable_of_nonneg_of_le
 
@@ -1522,9 +1522,9 @@ theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf]
 #align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonneg
 
-theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
+theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
-  lift f to (Σx, β x) → ℝ≥0 using hf; exact_mod_cast NNReal.summable_sigma
+  lift f to (Σ x, β x) → ℝ≥0 using hf; exact_mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
@@ -1609,7 +1609,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
         (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) :=
   ⟨by
     intro hs
-    rw [EMetric.cauchySeq_iff] at hs
+    rw [EMetric.cauchySeq_iff] at hs 
     /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking
       the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/
     let b N := Sup ((fun p : β × β => edist (s p.1) (s p.2)) '' { p | p.1 ≥ N ∧ p.2 ≥ N })
@@ -1656,21 +1656,21 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f :=
   by
   rcases eq_or_ne C 0 with (rfl | C0)
-  · simp only [MulZeroClass.zero_mul, add_zero] at h
+  · simp only [MulZeroClass.zero_mul, add_zero] at h 
     exact continuous_of_const fun x y => le_antisymm (h _ _) (h _ _)
   · refine' continuous_iff_continuousAt.2 fun x => _
     by_cases hx : f x = ∞
     · have : f =ᶠ[𝓝 x] fun _ => ∞ :=
         by
         filter_upwards [EMetric.ball_mem_nhds x ENNReal.coe_lt_top]
-        refine' fun y (hy : edist y x < ⊤) => _; rw [edist_comm] at hy
+        refine' fun y (hy : edist y x < ⊤) => _; rw [edist_comm] at hy 
         simpa [hx, ENNReal.mul_ne_top hC hy.ne] using h x y
       exact this.continuous_at
     · refine' (ENNReal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
       filter_upwards [EMetric.closedBall_mem_nhds x (ENNReal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
       have hεC : C * (ε / C) = ε := ENNReal.mul_div_cancel' C0 hC
       refine' fun y (hy : edist y x ≤ ε / C) => ⟨tsub_le_iff_right.2 _, _⟩
-      · rw [edist_comm] at hy
+      · rw [edist_comm] at hy 
         calc
           f x ≤ f y + C * edist x y := h x y
           _ ≤ f y + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f y))
@@ -1712,7 +1712,7 @@ theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f :=
   by
   lift d to ℕ → NNReal using fun i => ENNReal.ne_top_of_tsum_ne_top hd i
-  rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd
+  rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd 
   exact cauchySeq_of_edist_le_of_summable d hf hd
 #align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_top
 
@@ -1729,7 +1729,7 @@ theorem EMetric.diam_closure (s : Set α) : diam (closure s) = diam s :=
   refine' le_antisymm (diam_le fun x hx y hy => _) (diam_mono subset_closure)
   have : edist x y ∈ closure (Iic (diam s)) :=
     map_mem_closure₂ continuous_edist hx hy fun x hx y hy => edist_le_diam_of_mem hx hy
-  rwa [closure_Iic] at this
+  rwa [closure_Iic] at this 
 #align emetric.diam_closure EMetric.diam_closure
 -/
 
@@ -1745,7 +1745,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
   by
   simp only [LipschitzOnWith, set_of_forall]
   refine' isClosed_biInter fun x hx => isClosed_biInter fun y hy => isClosed_le _ _
-  exacts[Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
+  exacts [Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
@@ -1777,7 +1777,7 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
 theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s :=
   by
   rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
-  rw [Real.bounded_iff_bddBelow_bddAbove] at h
+  rw [Real.bounded_iff_bddBelow_bddAbove] at h 
   exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
Diff
@@ -26,7 +26,7 @@ noncomputable section
 
 open Classical Set Filter Metric
 
-open Classical Topology ENNReal NNReal BigOperators Filter
+open scoped Classical Topology ENNReal NNReal BigOperators Filter
 
 variable {α : Type _} {β : Type _} {γ : Type _}
 
@@ -1269,7 +1269,7 @@ end ENNReal
 
 namespace NNReal
 
-open NNReal
+open scoped NNReal
 
 theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
   by
Diff
@@ -59,12 +59,6 @@ instance : NormalSpace ℝ≥0∞ :=
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.Embedding.SecondCountableTopology
 
-/- warning: ennreal.embedding_coe -> ENNReal.embedding_coe is a dubious translation:
-lean 3 declaration is
-  Embedding.{0, 0} NNReal ENNReal NNReal.topologicalSpace ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))
-but is expected to have type
-  Embedding.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
-Case conversion may be inaccurate. Consider using '#align ennreal.embedding_coe ENNReal.embedding_coeₓ'. -/
 theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨⟨by
       refine' le_antisymm _ _
@@ -82,148 +76,64 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
         exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_eq_coe.1⟩
 #align ennreal.embedding_coe ENNReal.embedding_coe
 
-/- warning: ennreal.is_open_ne_top -> ENNReal.isOpen_ne_top is a dubious translation:
-lean 3 declaration is
-  IsOpen.{0} ENNReal ENNReal.topologicalSpace (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  IsOpen.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.is_open_ne_top ENNReal.isOpen_ne_topₓ'. -/
 theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ⊤ } :=
   isOpen_ne
 #align ennreal.is_open_ne_top ENNReal.isOpen_ne_top
 
-/- warning: ennreal.is_open_Ico_zero -> ENNReal.isOpen_Ico_zero is a dubious translation:
-lean 3 declaration is
-  forall {b : ENNReal}, IsOpen.{0} ENNReal ENNReal.topologicalSpace (Set.Ico.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) b)
-but is expected to have type
-  forall {b : ENNReal}, IsOpen.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Set.Ico.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) b)
-Case conversion may be inaccurate. Consider using '#align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zeroₓ'. -/
 theorem isOpen_Ico_zero : IsOpen (Ico 0 b) := by rw [ENNReal.Ico_eq_Iio]; exact isOpen_Iio
 #align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zero
 
-/- warning: ennreal.open_embedding_coe -> ENNReal.openEmbedding_coe is a dubious translation:
-lean 3 declaration is
-  OpenEmbedding.{0, 0} NNReal ENNReal NNReal.topologicalSpace ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))
-but is expected to have type
-  OpenEmbedding.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
-Case conversion may be inaccurate. Consider using '#align ennreal.open_embedding_coe ENNReal.openEmbedding_coeₓ'. -/
 theorem openEmbedding_coe : OpenEmbedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨embedding_coe, by convert is_open_ne_top; ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
 #align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
 
-/- warning: ennreal.coe_range_mem_nhds -> ENNReal.coe_range_mem_nhds is a dubious translation:
-lean 3 declaration is
-  forall {r : NNReal}, Membership.Mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (Filter.hasMem.{0} ENNReal) (Set.range.{0, 1} ENNReal NNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))) (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))
-but is expected to have type
-  forall {r : NNReal}, Membership.mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (instMembershipSetFilter.{0} ENNReal) (Set.range.{0, 1} ENNReal NNReal ENNReal.some) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some r))
-Case conversion may be inaccurate. Consider using '#align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhdsₓ'. -/
 theorem coe_range_mem_nhds : range (coe : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) :=
   IsOpen.mem_nhds openEmbedding_coe.open_range <| mem_range_self _
 #align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhds
 
-/- warning: ennreal.tendsto_coe -> ENNReal.tendsto_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> NNReal} {a : NNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (m a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) a))) (Filter.Tendsto.{u1, 0} α NNReal m f (nhds.{0} NNReal NNReal.topologicalSpace a))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> NNReal} {a : NNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => ENNReal.some (m a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some a))) (Filter.Tendsto.{u1, 0} α NNReal m f (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal a))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe ENNReal.tendsto_coeₓ'. -/
 @[norm_cast]
 theorem tendsto_coe {f : Filter α} {m : α → ℝ≥0} {a : ℝ≥0} :
     Tendsto (fun a => (m a : ℝ≥0∞)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) :=
   embedding_coe.tendsto_nhds_iff.symm
 #align ennreal.tendsto_coe ENNReal.tendsto_coe
 
-/- warning: ennreal.continuous_coe -> ENNReal.continuous_coe is a dubious translation:
-lean 3 declaration is
-  Continuous.{0, 0} NNReal ENNReal NNReal.topologicalSpace ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))
-but is expected to have type
-  Continuous.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_coe ENNReal.continuous_coeₓ'. -/
 theorem continuous_coe : Continuous (coe : ℝ≥0 → ℝ≥0∞) :=
   embedding_coe.Continuous
 #align ennreal.continuous_coe ENNReal.continuous_coe
 
-/- warning: ennreal.continuous_coe_iff -> ENNReal.continuous_coe_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> NNReal}, Iff (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (Continuous.{u1, 0} α NNReal _inst_1 NNReal.topologicalSpace f)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> NNReal}, Iff (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal (fun (a : α) => ENNReal.some (f a))) (Continuous.{u1, 0} α NNReal _inst_1 NNReal.instTopologicalSpaceNNReal f)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_coe_iff ENNReal.continuous_coe_iffₓ'. -/
 theorem continuous_coe_iff {α} [TopologicalSpace α] {f : α → ℝ≥0} :
     (Continuous fun a => (f a : ℝ≥0∞)) ↔ Continuous f :=
   embedding_coe.continuous_iff.symm
 #align ennreal.continuous_coe_iff ENNReal.continuous_coe_iff
 
-/- warning: ennreal.nhds_coe -> ENNReal.nhds_coe is a dubious translation:
-lean 3 declaration is
-  forall {r : NNReal}, Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r)) (Filter.map.{0, 0} NNReal ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe)))) (nhds.{0} NNReal NNReal.topologicalSpace r))
-but is expected to have type
-  forall {r : NNReal}, Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some r)) (Filter.map.{0, 0} NNReal ENNReal ENNReal.some (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal r))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_coe ENNReal.nhds_coeₓ'. -/
 theorem nhds_coe {r : ℝ≥0} : 𝓝 (r : ℝ≥0∞) = (𝓝 r).map coe :=
   (openEmbedding_coe.map_nhds_eq r).symm
 #align ennreal.nhds_coe ENNReal.nhds_coe
 
-/- warning: ennreal.tendsto_nhds_coe_iff -> ENNReal.tendsto_nhds_coe_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {l : Filter.{u1} α} {x : NNReal} {f : ENNReal -> α}, Iff (Filter.Tendsto.{0, u1} ENNReal α f (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x)) l) (Filter.Tendsto.{0, u1} NNReal α (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))) (nhds.{0} NNReal NNReal.topologicalSpace x) l)
-but is expected to have type
-  forall {α : Type.{u1}} {l : Filter.{u1} α} {x : NNReal} {f : ENNReal -> α}, Iff (Filter.Tendsto.{0, u1} ENNReal α f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some x)) l) (Filter.Tendsto.{0, u1} NNReal α (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ENNReal.some) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal x) l)
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iffₓ'. -/
 theorem tendsto_nhds_coe_iff {α : Type _} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ coe : ℝ≥0 → α) (𝓝 x) l :=
   show _ ≤ _ ↔ _ ≤ _ by rw [nhds_coe, Filter.map_map]
 #align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iff
 
-/- warning: ennreal.continuous_at_coe_iff -> ENNReal.continuousAt_coe_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : NNReal} {f : ENNReal -> α}, Iff (ContinuousAt.{0, u1} ENNReal α ENNReal.topologicalSpace _inst_1 f ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x)) (ContinuousAt.{0, u1} NNReal α NNReal.topologicalSpace _inst_1 (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : NNReal} {f : ENNReal -> α}, Iff (ContinuousAt.{0, u1} ENNReal α ENNReal.instTopologicalSpaceENNReal _inst_1 f (ENNReal.some x)) (ContinuousAt.{0, u1} NNReal α NNReal.instTopologicalSpaceNNReal _inst_1 (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ENNReal.some) x)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iffₓ'. -/
 theorem continuousAt_coe_iff {α : Type _} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     ContinuousAt f ↑x ↔ ContinuousAt (f ∘ coe : ℝ≥0 → α) x :=
   tendsto_nhds_coe_iff
 #align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iff
 
-/- warning: ennreal.nhds_coe_coe -> ENNReal.nhds_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall {r : NNReal} {p : NNReal}, Eq.{1} (Filter.{0} (Prod.{0, 0} ENNReal ENNReal)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) p))) (Filter.map.{0, 0} (Prod.{0, 0} NNReal NNReal) (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} NNReal NNReal) => Prod.mk.{0, 0} ENNReal ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (Prod.fst.{0, 0} NNReal NNReal p)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (Prod.snd.{0, 0} NNReal NNReal p))) (nhds.{0} (Prod.{0, 0} NNReal NNReal) (Prod.topologicalSpace.{0, 0} NNReal NNReal NNReal.topologicalSpace NNReal.topologicalSpace) (Prod.mk.{0, 0} NNReal NNReal r p)))
-but is expected to have type
-  forall {r : NNReal} {p : NNReal}, Eq.{1} (Filter.{0} (Prod.{0, 0} ENNReal ENNReal)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal (ENNReal.some r) (ENNReal.some p))) (Filter.map.{0, 0} (Prod.{0, 0} NNReal NNReal) (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} NNReal NNReal) => Prod.mk.{0, 0} ENNReal ENNReal (ENNReal.some (Prod.fst.{0, 0} NNReal NNReal p)) (ENNReal.some (Prod.snd.{0, 0} NNReal NNReal p))) (nhds.{0} (Prod.{0, 0} NNReal NNReal) (instTopologicalSpaceProd.{0, 0} NNReal NNReal NNReal.instTopologicalSpaceNNReal NNReal.instTopologicalSpaceNNReal) (Prod.mk.{0, 0} NNReal NNReal r p)))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_coe_coe ENNReal.nhds_coe_coeₓ'. -/
 theorem nhds_coe_coe {r p : ℝ≥0} :
     𝓝 ((r : ℝ≥0∞), (p : ℝ≥0∞)) = (𝓝 (r, p)).map fun p : ℝ≥0 × ℝ≥0 => (p.1, p.2) :=
   ((openEmbedding_coe.Prod openEmbedding_coe).map_nhds_eq (r, p)).symm
 #align ennreal.nhds_coe_coe ENNReal.nhds_coe_coe
 
-/- warning: ennreal.continuous_of_real -> ENNReal.continuous_ofReal is a dubious translation:
-lean 3 declaration is
-  Continuous.{0, 0} Real ENNReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) ENNReal.topologicalSpace ENNReal.ofReal
-but is expected to have type
-  Continuous.{0, 0} Real ENNReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) ENNReal.instTopologicalSpaceENNReal ENNReal.ofReal
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_of_real ENNReal.continuous_ofRealₓ'. -/
 theorem continuous_ofReal : Continuous ENNReal.ofReal :=
   (continuous_coe_iff.2 continuous_id).comp continuous_real_toNNReal
 #align ennreal.continuous_of_real ENNReal.continuous_ofReal
 
-/- warning: ennreal.tendsto_of_real -> ENNReal.tendsto_ofReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> Real} {a : Real}, (Filter.Tendsto.{u1, 0} α Real m f (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => ENNReal.ofReal (m a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (ENNReal.ofReal a)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> Real} {a : Real}, (Filter.Tendsto.{u1, 0} α Real m f (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => ENNReal.ofReal (m a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.ofReal a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_of_real ENNReal.tendsto_ofRealₓ'. -/
 theorem tendsto_ofReal {f : Filter α} {m : α → ℝ} {a : ℝ} (h : Tendsto m f (𝓝 a)) :
     Tendsto (fun a => ENNReal.ofReal (m a)) f (𝓝 (ENNReal.ofReal a)) :=
   Tendsto.comp (Continuous.tendsto continuous_ofReal _) h
 #align ennreal.tendsto_of_real ENNReal.tendsto_ofReal
 
-/- warning: ennreal.tendsto_to_nnreal -> ENNReal.tendsto_toNNReal is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} ENNReal NNReal ENNReal.toNNReal (nhds.{0} ENNReal ENNReal.topologicalSpace a) (nhds.{0} NNReal NNReal.topologicalSpace (ENNReal.toNNReal a)))
-but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} ENNReal NNReal ENNReal.toNNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal (ENNReal.toNNReal a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_to_nnreal ENNReal.tendsto_toNNRealₓ'. -/
 theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 a.toNNReal) :=
   by
   lift a to ℝ≥0 using ha
@@ -231,12 +141,6 @@ theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toN
   exact tendsto_id
 #align ennreal.tendsto_to_nnreal ENNReal.tendsto_toNNReal
 
-/- warning: ennreal.eventually_eq_of_to_real_eventually_eq -> ENNReal.eventuallyEq_of_toReal_eventuallyEq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {l : Filter.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) l) -> (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) l) -> (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => ENNReal.toReal (f x)) (fun (x : α) => ENNReal.toReal (g x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal l f g)
-but is expected to have type
-  forall {α : Type.{u1}} {l : Filter.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) l) -> (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) l) -> (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => ENNReal.toReal (f x)) (fun (x : α) => ENNReal.toReal (g x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal l f g)
-Case conversion may be inaccurate. Consider using '#align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEqₓ'. -/
 theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥0∞}
     (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞)
     (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g :=
@@ -245,32 +149,14 @@ theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥
   rwa [← ENNReal.toReal_eq_toReal hfx hgx]
 #align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEq
 
-/- warning: ennreal.continuous_on_to_nnreal -> ENNReal.continuousOn_toNNReal is a dubious translation:
-lean 3 declaration is
-  ContinuousOn.{0, 0} ENNReal NNReal ENNReal.topologicalSpace NNReal.topologicalSpace ENNReal.toNNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  ContinuousOn.{0, 0} ENNReal NNReal ENNReal.instTopologicalSpaceENNReal NNReal.instTopologicalSpaceNNReal ENNReal.toNNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNRealₓ'. -/
 theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal { a | a ≠ ∞ } := fun a ha =>
   ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
 #align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNReal
 
-/- warning: ennreal.tendsto_to_real -> ENNReal.tendsto_toReal is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} ENNReal Real ENNReal.toReal (nhds.{0} ENNReal ENNReal.topologicalSpace a) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal a)))
-but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} ENNReal Real ENNReal.toReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_to_real ENNReal.tendsto_toRealₓ'. -/
 theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) :=
   NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
 #align ennreal.tendsto_to_real ENNReal.tendsto_toReal
 
-/- warning: ennreal.ne_top_homeomorph_nnreal -> ENNReal.neTopHomeomorphNNReal is a dubious translation:
-lean 3 declaration is
-  Homeomorph.{0, 0} (coeSort.{1, 2} (Set.{0} ENNReal) Type (Set.hasCoeToSort.{0} ENNReal) (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) NNReal (Subtype.topologicalSpace.{0} ENNReal (fun (x : ENNReal) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) ENNReal.topologicalSpace) NNReal.topologicalSpace
-but is expected to have type
-  Homeomorph.{0, 0} (Set.Elem.{0} ENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) NNReal (instTopologicalSpaceSubtype.{0} ENNReal (fun (x : ENNReal) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) ENNReal.instTopologicalSpaceENNReal) NNReal.instTopologicalSpaceNNReal
-Case conversion may be inaccurate. Consider using '#align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNNRealₓ'. -/
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
   {
@@ -279,66 +165,30 @@ def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
     continuous_invFun := continuous_coe.subtype_mk _ }
 #align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNNReal
 
-/- warning: ennreal.lt_top_homeomorph_nnreal -> ENNReal.ltTopHomeomorphNNReal is a dubious translation:
-lean 3 declaration is
-  Homeomorph.{0, 0} (coeSort.{1, 2} (Set.{0} ENNReal) Type (Set.hasCoeToSort.{0} ENNReal) (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) NNReal (Subtype.topologicalSpace.{0} ENNReal (fun (x : ENNReal) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) ENNReal.topologicalSpace) NNReal.topologicalSpace
-but is expected to have type
-  Homeomorph.{0, 0} (Set.Elem.{0} ENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) NNReal (instTopologicalSpaceSubtype.{0} ENNReal (fun (x : ENNReal) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) ENNReal.instTopologicalSpaceENNReal) NNReal.instTopologicalSpaceNNReal
-Case conversion may be inaccurate. Consider using '#align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNRealₓ'. -/
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def ltTopHomeomorphNNReal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
   refine' (Homeomorph.setCongr <| Set.ext fun x => _).trans ne_top_homeomorph_nnreal <;>
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
 
-/- warning: ennreal.nhds_top -> ENNReal.nhds_top is a dubious translation:
-lean 3 declaration is
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
-but is expected to have type
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top ENNReal.nhds_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
 #align ennreal.nhds_top ENNReal.nhds_top
 
-/- warning: ennreal.nhds_top' -> ENNReal.nhds_top' is a dubious translation:
-lean 3 declaration is
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))))
-but is expected to have type
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ENNReal.some r))))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top' ENNReal.nhds_top'ₓ'. -/
 theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
   nhds_top.trans <| iInf_ne_top _
 #align ennreal.nhds_top' ENNReal.nhds_top'
 
-/- warning: ennreal.nhds_top_basis -> ENNReal.nhds_top_basis is a dubious translation:
-lean 3 declaration is
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
-but is expected to have type
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a)
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top_basis ENNReal.nhds_top_basisₓ'. -/
 theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :=
   nhds_top_basis
 #align ennreal.nhds_top_basis ENNReal.nhds_top_basis
 
-/- warning: ennreal.tendsto_nhds_top_iff_nnreal -> ENNReal.tendsto_nhds_top_iff_nnreal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x) (m a)) f)
-but is expected to have type
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some x) (m a)) f)
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnrealₓ'. -/
 theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
   simp only [nhds_top', tendsto_infi, tendsto_principal, mem_Ioi]
 #align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnreal
 
-/- warning: ennreal.tendsto_nhds_top_iff_nat -> ENNReal.tendsto_nhds_top_iff_nat is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f)
-but is expected to have type
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (m a)) f)
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_natₓ'. -/
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
   tendsto_nhds_top_iff_nnreal.trans
@@ -347,34 +197,16 @@ theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
       (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_nat, coe_lt_coe]⟩
 #align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
 
-/- warning: ennreal.tendsto_nhds_top -> ENNReal.tendsto_nhds_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_topₓ'. -/
 theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) :
     Tendsto m f (𝓝 ⊤) :=
   tendsto_nhds_top_iff_nat.2 h
 #align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_top
 
-/- warning: ennreal.tendsto_nat_nhds_top -> ENNReal.tendsto_nat_nhds_top is a dubious translation:
-lean 3 declaration is
-  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_topₓ'. -/
 theorem tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) :=
   tendsto_nhds_top fun n =>
     mem_atTop_sets.2 ⟨n + 1, fun m hm => mem_setOf.2 <| Nat.cast_lt.2 <| Nat.lt_of_succ_le hm⟩
 #align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_top
 
-/- warning: ennreal.tendsto_coe_nhds_top -> ENNReal.tendsto_coe_nhds_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {l : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) l (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Filter.Tendsto.{u1, 0} α NNReal f l (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal} {l : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => ENNReal.some (f x)) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Filter.Tendsto.{u1, 0} α NNReal f l (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_topₓ'. -/
 @[simp, norm_cast]
 theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by
@@ -382,75 +214,33 @@ theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     [simp;infer_instance;infer_instance]
 #align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_top
 
-/- warning: ennreal.tendsto_of_real_at_top -> ENNReal.tendsto_ofReal_atTop is a dubious translation:
-lean 3 declaration is
-  Filter.Tendsto.{0, 0} Real ENNReal ENNReal.ofReal (Filter.atTop.{0} Real Real.preorder) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  Filter.Tendsto.{0, 0} Real ENNReal ENNReal.ofReal (Filter.atTop.{0} Real Real.instPreorderReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTopₓ'. -/
 theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 
-/- warning: ennreal.nhds_zero -> ENNReal.nhds_zero is a dubious translation:
-lean 3 declaration is
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
-but is expected to have type
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero ENNReal.nhds_zeroₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
 #align ennreal.nhds_zero ENNReal.nhds_zero
 
-/- warning: ennreal.nhds_zero_basis -> ENNReal.nhds_zero_basis is a dubious translation:
-lean 3 declaration is
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
-but is expected to have type
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a)
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero_basis ENNReal.nhds_zero_basisₓ'. -/
 theorem nhds_zero_basis : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) fun a => Iio a :=
   nhds_bot_basis
 #align ennreal.nhds_zero_basis ENNReal.nhds_zero_basis
 
-/- warning: ennreal.nhds_zero_basis_Iic -> ENNReal.nhds_zero_basis_Iic is a dubious translation:
-lean 3 declaration is
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iicₓ'. -/
 theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) Iic :=
   nhds_bot_basis_Iic
 #align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iic
 
-/- warning: ennreal.nhds_within_Ioi_coe_ne_bot -> ENNReal.nhdsWithin_Ioi_coe_neBot is a dubious translation:
-lean 3 declaration is
-  forall {r : NNReal}, Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r)))
-but is expected to have type
-  forall {r : NNReal}, Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some r) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ENNReal.some r)))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBotₓ'. -/
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_self_neBot' ⟨⊤, ENNReal.coe_lt_top⟩
 #align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBot
 
-/- warning: ennreal.nhds_within_Ioi_zero_ne_bot -> ENNReal.nhdsWithin_Ioi_zero_neBot is a dubious translation:
-lean 3 declaration is
-  Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_within_Ioi_zero_ne_bot ENNReal.nhdsWithin_Ioi_zero_neBotₓ'. -/
 @[instance]
 theorem nhdsWithin_Ioi_zero_neBot : (𝓝[>] (0 : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_coe_neBot
 #align ennreal.nhds_within_Ioi_zero_ne_bot ENNReal.nhdsWithin_Ioi_zero_neBot
 
-/- warning: ennreal.Icc_mem_nhds -> ENNReal.Icc_mem_nhds is a dubious translation:
-lean 3 declaration is
-  forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Membership.Mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (Filter.hasMem.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε)) (nhds.{0} ENNReal ENNReal.topologicalSpace x))
-but is expected to have type
-  forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Membership.mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (instMembershipSetFilter.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x))
-Case conversion may be inaccurate. Consider using '#align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhdsₓ'. -/
 -- using Icc because
 -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0
 -- • (x - y ≤ ε ↔ x ≤ ε + y) is true, while (x - y < ε ↔ x < ε + y) is not
@@ -465,12 +255,6 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
     exact ⟨isOpen_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0⟩
 #align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
 
-/- warning: ennreal.nhds_of_ne_top -> ENNReal.nhds_of_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
-but is expected to have type
-  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
-Case conversion may be inaccurate. Consider using '#align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_topₓ'. -/
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   by
   refine' le_antisymm _ _
@@ -503,12 +287,6 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
       
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
-/- warning: ennreal.tendsto_nhds -> ENNReal.tendsto_nhds is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε))) f)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε))) f)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds ENNReal.tendsto_nhdsₓ'. -/
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
 protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ⊤) :
@@ -516,12 +294,6 @@ protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ
   simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc]
 #align ennreal.tendsto_nhds ENNReal.tendsto_nhds
 
-/- warning: ennreal.tendsto_nhds_zero -> ENNReal.tendsto_nhds_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (u x) ε) f))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (u x) ε) f))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zeroₓ'. -/
 protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
     Tendsto u f (𝓝 0) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ≤ ε :=
   by
@@ -529,12 +301,6 @@ protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
   simp only [true_and_iff, zero_tsub, zero_le, zero_add, Set.mem_Icc]
 #align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zero
 
-/- warning: ennreal.tendsto_at_top -> ENNReal.tendsto_atTop is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toHasLe.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε)))))))
-but is expected to have type
-  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε)))))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top ENNReal.tendsto_atTopₓ'. -/
 protected theorem tendsto_atTop [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} {a : ℝ≥0∞}
     (ha : a ≠ ⊤) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) := by
   simp only [ENNReal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, Filter.Eventually]
@@ -550,12 +316,6 @@ instance : ContinuousAdd ℝ≥0∞ :=
   simp only [ContinuousAt, some_eq_coe, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (· ∘ ·),
     tendsto_coe, tendsto_add]
 
-/- warning: ennreal.tendsto_at_top_zero -> ENNReal.tendsto_atTop_zero is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toHasLe.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f n) ε))))
-but is expected to have type
-  forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f n) ε))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zeroₓ'. -/
 protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} :
     Filter.atTop.Tendsto f (𝓝 0) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ≤ ε :=
   by
@@ -564,12 +324,6 @@ protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f
   · exact hβ
 #align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zero
 
-/- warning: ennreal.tendsto_sub -> ENNReal.tendsto_sub is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a b)))
-but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_sub ENNReal.tendsto_subₓ'. -/
 theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
   by
@@ -606,12 +360,6 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     exact Continuous.tendsto (by continuity) _
 #align ennreal.tendsto_sub ENNReal.tendsto_sub
 
-/- warning: ennreal.tendsto.sub -> ENNReal.Tendsto.sub is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.sub ENNReal.Tendsto.subₓ'. -/
 protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (hmb : Tendsto mb f (𝓝 b)) (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun a => ma a - mb a) f (𝓝 (a - b)) :=
@@ -619,12 +367,6 @@ protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α
     Tendsto.comp (ENNReal.tendsto_sub h) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.sub ENNReal.Tendsto.sub
 
-/- warning: ennreal.tendsto_mul -> ENNReal.tendsto_mul is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
-but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_mul ENNReal.tendsto_mulₓ'. -/
 protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) :=
   by
@@ -647,12 +389,6 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
   simp only [coe_mul.symm, tendsto_coe, tendsto_mul]
 #align ennreal.tendsto_mul ENNReal.tendsto_mul
 
-/- warning: ennreal.tendsto.mul -> ENNReal.Tendsto.mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.mul ENNReal.Tendsto.mulₓ'. -/
 protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun a => ma a * mb a) f (𝓝 (a * b)) :=
@@ -660,24 +396,12 @@ protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α
     Tendsto.comp (ENNReal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.mul ENNReal.Tendsto.mul
 
-/- warning: continuous_on.ennreal_mul -> ContinuousOn.ennreal_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace f s) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace g s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (g x)) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal f s) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal g s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (g x)) s)
-Case conversion may be inaccurate. Consider using '#align continuous_on.ennreal_mul ContinuousOn.ennreal_mulₓ'. -/
 theorem ContinuousOn.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} {s : Set α}
     (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h₁ : ∀ x ∈ s, f x ≠ 0 ∨ g x ≠ ∞)
     (h₂ : ∀ x ∈ s, g x ≠ 0 ∨ f x ≠ ∞) : ContinuousOn (fun x => f x * g x) s := fun x hx =>
   ENNReal.Tendsto.mul (hf x hx) (h₁ x hx) (hg x hx) (h₂ x hx)
 #align continuous_on.ennreal_mul ContinuousOn.ennreal_mul
 
-/- warning: continuous.ennreal_mul -> Continuous.ennreal_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal}, (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace f) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace g) -> (forall (x : α), Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (x : α), Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (g x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal}, (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal f) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal g) -> (forall (x : α), Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (x : α), Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (g x)))
-Case conversion may be inaccurate. Consider using '#align continuous.ennreal_mul Continuous.ennreal_mulₓ'. -/
 theorem Continuous.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (hf : Continuous f)
     (hg : Continuous g) (h₁ : ∀ x, f x ≠ 0 ∨ g x ≠ ∞) (h₂ : ∀ x, g x ≠ 0 ∨ f x ≠ ∞) :
     Continuous fun x => f x * g x :=
@@ -685,35 +409,17 @@ theorem Continuous.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (
     ENNReal.Tendsto.mul hf.ContinuousAt (h₁ x) hg.ContinuousAt (h₂ x)
 #align continuous.ennreal_mul Continuous.ennreal_mul
 
-/- warning: ennreal.tendsto.const_mul -> ENNReal.Tendsto.const_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (m b)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (m b)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mulₓ'. -/
 protected theorem Tendsto.const_mul {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun b => a * m b) f (𝓝 (a * b)) :=
   by_cases (fun this : a = 0 => by simp [this, tendsto_const_nhds]) fun ha : a ≠ 0 =>
     ENNReal.Tendsto.mul tendsto_const_nhds (Or.inl ha) hm hb
 #align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mul
 
-/- warning: ennreal.tendsto.mul_const -> ENNReal.Tendsto.mul_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (m x) b) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (m x) b) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_constₓ'. -/
 protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : Tendsto (fun x => m x * b) f (𝓝 (a * b)) := by
   simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha
 #align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_const
 
-/- warning: ennreal.tendsto_finset_prod_of_ne_top -> ENNReal.tendsto_finset_prod_of_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {f : ι -> α -> ENNReal} {x : Filter.{u1} α} {a : ι -> ENNReal} (s : Finset.{u2} ι), (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Filter.Tendsto.{u1, 0} α ENNReal (f i) x (nhds.{0} ENNReal ENNReal.topologicalSpace (a i)))) -> (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Ne.{1} ENNReal (a i) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => Finset.prod.{0, u2} ENNReal ι (OrderedCommMonoid.toCommMonoid.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommMonoid.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) s (fun (c : ι) => f c b)) x (nhds.{0} ENNReal ENNReal.topologicalSpace (Finset.prod.{0, u2} ENNReal ι (OrderedCommMonoid.toCommMonoid.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommMonoid.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) s (fun (c : ι) => a c))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {f : ι -> α -> ENNReal} {x : Filter.{u1} α} {a : ι -> ENNReal} (s : Finset.{u2} ι), (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Filter.Tendsto.{u1, 0} α ENNReal (f i) x (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (a i)))) -> (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Ne.{1} ENNReal (a i) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => Finset.prod.{0, u2} ENNReal ι (LinearOrderedCommMonoid.toCommMonoid.{0} ENNReal (LinearOrderedCommMonoidWithZero.toLinearOrderedCommMonoid.{0} ENNReal ENNReal.instLinearOrderedCommMonoidWithZeroENNReal)) s (fun (c : ι) => f c b)) x (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Finset.prod.{0, u2} ENNReal ι (LinearOrderedCommMonoid.toCommMonoid.{0} ENNReal (LinearOrderedCommMonoidWithZero.toLinearOrderedCommMonoid.{0} ENNReal ENNReal.instLinearOrderedCommMonoidWithZeroENNReal)) s (fun (c : ι) => a c))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_topₓ'. -/
 theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
     (s : Finset ι) (h : ∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) (h' : ∀ i ∈ s, a i ≠ ∞) :
     Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) :=
@@ -730,54 +436,24 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0
   · exact Or.inr (h' _ (Finset.mem_insert_self _ _))
 #align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_top
 
-/- warning: ennreal.continuous_at_const_mul -> ENNReal.continuousAt_const_mul is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a) b)
-but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7692 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7692 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694) a) b)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mulₓ'. -/
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt ((· * ·) a) b :=
   Tendsto.const_mul tendsto_id h.symm
 #align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mul
 
-/- warning: ennreal.continuous_at_mul_const -> ENNReal.continuousAt_mul_const is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x a) b)
-but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x a) b)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_constₓ'. -/
 protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt (fun x => x * a) b :=
   Tendsto.mul_const tendsto_id h.symm
 #align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_const
 
-/- warning: ennreal.continuous_const_mul -> ENNReal.continuous_const_mul is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a))
-but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7858 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7858 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_const_mul ENNReal.continuous_const_mulₓ'. -/
 protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_const_mul (Or.inl ha)
 #align ennreal.continuous_const_mul ENNReal.continuous_const_mul
 
-/- warning: ennreal.continuous_mul_const -> ENNReal.continuous_mul_const is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x a))
-but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x a))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_mul_const ENNReal.continuous_mul_constₓ'. -/
 protected theorem continuous_mul_const {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous fun x => x * a :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_mul_const (Or.inl ha)
 #align ennreal.continuous_mul_const ENNReal.continuous_mul_const
 
-/- warning: ennreal.continuous_div_const -> ENNReal.continuous_div_const is a dubious translation:
-lean 3 declaration is
-  forall (c : ENNReal), (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) x c))
-but is expected to have type
-  forall (c : ENNReal), (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) x c))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_div_const ENNReal.continuous_div_constₓ'. -/
 protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
     Continuous fun x : ℝ≥0∞ => x / c :=
   by
@@ -786,12 +462,6 @@ protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
   exact ENNReal.continuousAt_mul_const (Or.intro_left _ (inv_ne_top.mpr c_ne_zero))
 #align ennreal.continuous_div_const ENNReal.continuous_div_const
 
-/- warning: ennreal.continuous_pow -> ENNReal.continuous_pow is a dubious translation:
-lean 3 declaration is
-  forall (n : Nat), Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (a : ENNReal) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) a n)
-but is expected to have type
-  forall (n : Nat), Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (a : ENNReal) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) a n)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_pow ENNReal.continuous_powₓ'. -/
 @[continuity]
 theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
   by
@@ -808,12 +478,6 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
   · simp only [H, true_or_iff, Ne.def, not_false_iff]
 #align ennreal.continuous_pow ENNReal.continuous_pow
 
-/- warning: ennreal.continuous_on_sub -> ENNReal.continuousOn_sub is a dubious translation:
-lean 3 declaration is
-  ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) ENNReal.topologicalSpace (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
-but is expected to have type
-  ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) ENNReal.instTopologicalSpaceENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_sub ENNReal.continuousOn_subₓ'. -/
 theorem continuousOn_sub :
     ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) { p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩ } :=
   by
@@ -823,12 +487,6 @@ theorem continuousOn_sub :
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_distrib.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
-/- warning: ennreal.continuous_sub_left -> ENNReal.continuous_sub_left is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a x))
-but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a x))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_sub_left ENNReal.continuous_sub_leftₓ'. -/
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous fun x => a - x :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
@@ -837,22 +495,10 @@ theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous
   simp only [a_ne_top, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
 #align ennreal.continuous_sub_left ENNReal.continuous_sub_left
 
-/- warning: ennreal.continuous_nnreal_sub -> ENNReal.continuous_nnreal_sub is a dubious translation:
-lean 3 declaration is
-  forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) a) x)
-but is expected to have type
-  forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ENNReal.some a) x)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_subₓ'. -/
 theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
   continuous_sub_left coe_ne_top
 #align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_sub
 
-/- warning: ennreal.continuous_on_sub_left -> ENNReal.continuousOn_sub_left is a dubious translation:
-lean 3 declaration is
-  forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_leftₓ'. -/
 theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) { x : ℝ≥0∞ | x ≠ ∞ } :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
@@ -861,12 +507,6 @@ theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {
   exact h none_eq_top
 #align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_left
 
-/- warning: ennreal.continuous_sub_right -> ENNReal.continuous_sub_right is a dubious translation:
-lean 3 declaration is
-  forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x a)
-but is expected to have type
-  forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x a)
-Case conversion may be inaccurate. Consider using '#align ennreal.continuous_sub_right ENNReal.continuous_sub_rightₓ'. -/
 theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ => x - a :=
   by
   by_cases a_infty : a = ∞
@@ -877,23 +517,11 @@ theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ =>
     simp only [a_infty, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]
 #align ennreal.continuous_sub_right ENNReal.continuous_sub_right
 
-/- warning: ennreal.tendsto.pow -> ENNReal.Tendsto.pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {n : Nat}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (m x) n) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) a n)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {n : Nat}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (m x) n) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) a n)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.pow ENNReal.Tendsto.powₓ'. -/
 protected theorem Tendsto.pow {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} {n : ℕ}
     (hm : Tendsto m f (𝓝 a)) : Tendsto (fun x => m x ^ n) f (𝓝 (a ^ n)) :=
   ((continuous_pow n).Tendsto a).comp hm
 #align ennreal.tendsto.pow ENNReal.Tendsto.pow
 
-/- warning: ennreal.le_of_forall_lt_one_mul_le -> ENNReal.le_of_forall_lt_one_mul_le is a dubious translation:
-lean 3 declaration is
-  forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x y)
-but is expected to have type
-  forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x y)
-Case conversion may be inaccurate. Consider using '#align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_leₓ'. -/
 theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤ y) : x ≤ y :=
   by
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
@@ -903,12 +531,6 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
-/- warning: ennreal.infi_mul_left' -> ENNReal.iInf_mul_left' is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
-but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left' ENNReal.iInf_mul_left'ₓ'. -/
 theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   by
@@ -925,76 +547,34 @@ theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = 
         (ennreal.mul_left_mono.map_infi_of_continuous_at' (ENNReal.continuousAt_const_mul H)).symm
 #align ennreal.infi_mul_left' ENNReal.iInf_mul_left'
 
-/- warning: ennreal.infi_mul_left -> ENNReal.iInf_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
-but is expected to have type
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left ENNReal.iInf_mul_leftₓ'. -/
 theorem iInf_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   iInf_mul_left' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_left ENNReal.iInf_mul_left
 
-/- warning: ennreal.infi_mul_right' -> ENNReal.iInf_mul_right' is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
-but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right' ENNReal.iInf_mul_right'ₓ'. -/
 theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using infi_mul_left' h h0
 #align ennreal.infi_mul_right' ENNReal.iInf_mul_right'
 
-/- warning: ennreal.infi_mul_right -> ENNReal.iInf_mul_right is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
-but is expected to have type
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right ENNReal.iInf_mul_rightₓ'. -/
 theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
   iInf_mul_right' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_right ENNReal.iInf_mul_right
 
-/- warning: ennreal.inv_map_infi -> ENNReal.inv_map_iInf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
-but is expected to have type
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_infi ENNReal.inv_map_iInfₓ'. -/
 theorem inv_map_iInf {ι : Sort _} {x : ι → ℝ≥0∞} : (iInf x)⁻¹ = ⨆ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_iInf x
 #align ennreal.inv_map_infi ENNReal.inv_map_iInf
 
-/- warning: ennreal.inv_map_supr -> ENNReal.inv_map_iSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
-but is expected to have type
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_supr ENNReal.inv_map_iSupₓ'. -/
 theorem inv_map_iSup {ι : Sort _} {x : ι → ℝ≥0∞} : (iSup x)⁻¹ = ⨅ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_iSup x
 #align ennreal.inv_map_supr ENNReal.inv_map_iSup
 
-/- warning: ennreal.inv_limsup -> ENNReal.inv_limsup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (Filter.limsup.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) x l)) (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)) l)
-but is expected to have type
-  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (Filter.limsup.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) x l)) (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)) l)
-Case conversion may be inaccurate. Consider using '#align ennreal.inv_limsup ENNReal.inv_limsupₓ'. -/
 theorem inv_limsup {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (limsup x l)⁻¹ = liminf (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
 #align ennreal.inv_limsup ENNReal.inv_limsup
 
-/- warning: ennreal.inv_liminf -> ENNReal.inv_liminf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) x l)) (Filter.limsup.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)) l)
-but is expected to have type
-  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) x l)) (Filter.limsup.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)) l)
-Case conversion may be inaccurate. Consider using '#align ennreal.inv_liminf ENNReal.inv_liminfₓ'. -/
 theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (liminf x l)⁻¹ = limsup (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
@@ -1003,178 +583,82 @@ theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
 instance : ContinuousInv ℝ≥0∞ :=
   ⟨OrderIso.invENNReal.Continuous⟩
 
-/- warning: ennreal.tendsto_inv_iff -> ENNReal.tendsto_inv_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => Inv.inv.{0} ENNReal ENNReal.hasInv (m x)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (Inv.inv.{0} ENNReal ENNReal.hasInv a))) (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (m x)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal a))) (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_inv_iff ENNReal.tendsto_inv_iffₓ'. -/
 @[simp]
 protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} :
     Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ↔ Tendsto m f (𝓝 a) :=
   ⟨fun h => by simpa only [inv_inv] using tendsto.inv h, Tendsto.inv⟩
 #align ennreal.tendsto_inv_iff ENNReal.tendsto_inv_iff
 
-/- warning: ennreal.tendsto.div -> ENNReal.Tendsto.div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.div ENNReal.Tendsto.divₓ'. -/
 protected theorem Tendsto.div {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) := by
   apply tendsto.mul hma _ (ENNReal.tendsto_inv_iff.2 hmb) _ <;> simp [ha, hb]
 #align ennreal.tendsto.div ENNReal.Tendsto.div
 
-/- warning: ennreal.tendsto.const_div -> ENNReal.Tendsto.const_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a (m b)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a (m b)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.const_div ENNReal.Tendsto.const_divₓ'. -/
 protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) := by
   apply tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm); simp [hb]
 #align ennreal.tendsto.const_div ENNReal.Tendsto.const_div
 
-/- warning: ennreal.tendsto.div_const -> ENNReal.Tendsto.div_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (m x) b) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (m x) b) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.div_const ENNReal.Tendsto.div_constₓ'. -/
 protected theorem Tendsto.div_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : Tendsto (fun x => m x / b) f (𝓝 (a / b)) := by
   apply tendsto.mul_const hm; simp [ha]
 #align ennreal.tendsto.div_const ENNReal.Tendsto.div_const
 
-/- warning: ennreal.tendsto_inv_nat_nhds_zero -> ENNReal.tendsto_inv_nat_nhds_zero is a dubious translation:
-lean 3 declaration is
-  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Inv.inv.{0} ENNReal ENNReal.hasInv ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zeroₓ'. -/
 protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ≥0∞)⁻¹) atTop (𝓝 0) :=
   ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
 #align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
 
-/- warning: ennreal.supr_add -> ENNReal.iSup_add is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (s b) a))
-but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (s b) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add ENNReal.iSup_addₓ'. -/
 theorem iSup_add {ι : Sort _} {s : ι → ℝ≥0∞} [h : Nonempty ι] : iSup s + a = ⨆ b, s b + a :=
   Monotone.map_iSup_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
 #align ennreal.supr_add ENNReal.iSup_add
 
-/- warning: ennreal.bsupr_add' -> ENNReal.biSup_add' is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
-but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add' ENNReal.biSup_add'ₓ'. -/
 theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a := by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h; simp only [iSup_subtype', supr_add]
 #align ennreal.bsupr_add' ENNReal.biSup_add'
 
-/- warning: ennreal.add_bsupr' -> ENNReal.add_biSup' is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i)))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
-but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i)))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr' ENNReal.add_biSup'ₓ'. -/
 theorem add_biSup' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (hi : p i), f i) = ⨆ (i) (hi : p i), a + f i := by
   simp only [add_comm a, bsupr_add' h]
 #align ennreal.add_bsupr' ENNReal.add_biSup'
 
-/- warning: ennreal.bsupr_add -> ENNReal.biSup_add is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) a) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
-but is expected to have type
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i))) a) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add ENNReal.biSup_addₓ'. -/
 theorem biSup_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (⨆ i ∈ s, f i) + a = ⨆ i ∈ s, f i + a :=
   biSup_add' hs
 #align ennreal.bsupr_add ENNReal.biSup_add
 
-/- warning: ennreal.add_bsupr -> ENNReal.add_biSup is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i)))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
-but is expected to have type
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i)))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr ENNReal.add_biSupₓ'. -/
 theorem add_biSup {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (a + ⨆ i ∈ s, f i) = ⨆ i ∈ s, a + f i :=
   add_biSup' hs
 #align ennreal.add_bsupr ENNReal.add_biSup
 
-/- warning: ennreal.Sup_add -> ENNReal.sSup_add is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s) a) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (b : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) b a))))
-but is expected to have type
-  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s) a) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (b : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) b a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.Sup_add ENNReal.sSup_addₓ'. -/
 theorem sSup_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : sSup s + a = ⨆ b ∈ s, b + a := by
   rw [sSup_eq_iSup, bsupr_add hs]
 #align ennreal.Sup_add ENNReal.sSup_add
 
-/- warning: ennreal.add_supr -> ENNReal.add_iSup is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (s b)))
-but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (s b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.add_supr ENNReal.add_iSupₓ'. -/
 theorem add_iSup {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup s = ⨆ b, a + s b := by
   rw [add_comm, supr_add] <;> simp [add_comm]
 #align ennreal.add_supr ENNReal.add_iSup
 
-/- warning: ennreal.supr_add_supr_le -> ENNReal.iSup_add_iSup_le is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} [_inst_1 : Nonempty.{u1} ι] [_inst_2 : Nonempty.{u2} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' g)) a)
-but is expected to have type
-  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' g)) a)
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_leₓ'. -/
 theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
     {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : iSup f + iSup g ≤ a := by
   simpa only [add_supr, supr_add] using iSup₂_le h
 #align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_le
 
-/- warning: ennreal.bsupr_add_bsupr_le' -> ENNReal.biSup_add_biSup_le' is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (Exists.{u2} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (q j) (fun (hj : q j) => g j)))) a))
-but is expected to have type
-  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Exists.{u1} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (q j) (fun (hj : q j) => g j)))) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'ₓ'. -/
 theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ (i) (hi : p i) (j) (hj : q j), f i + g j ≤ a) :
     ((⨆ (i) (hi : p i), f i) + ⨆ (j) (hj : q j), g j) ≤ a := by
   simp_rw [bsupr_add' hp, add_bsupr' hq]; exact iSup₂_le fun i hi => iSup₂_le (h i hi)
 #align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'
 
-/- warning: ennreal.bsupr_add_bsupr_le -> ENNReal.biSup_add_biSup_le is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {ι' : Type.{u2}} {s : Set.{u1} ι} {t : Set.{u2} ι'}, (Set.Nonempty.{u1} ι s) -> (Set.Nonempty.{u2} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) -> (forall (j : ι'), (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) (fun (H : Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) => g j)))) a))
-but is expected to have type
-  forall {ι : Type.{u2}} {ι' : Type.{u1}} {s : Set.{u2} ι} {t : Set.{u1} ι'}, (Set.Nonempty.{u2} ι s) -> (Set.Nonempty.{u1} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (forall (j : ι'), (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_leₓ'. -/
 theorem biSup_add_biSup_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i ∈ s, ∀ j ∈ t, f i + g j ≤ a) :
     ((⨆ i ∈ s, f i) + ⨆ j ∈ t, g j) ≤ a :=
   biSup_add_biSup_le' hs ht h
 #align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_le
 
-/- warning: ennreal.supr_add_supr -> ENNReal.iSup_add_iSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
-but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr ENNReal.iSup_add_iSupₓ'. -/
 theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
     iSup f + iSup g = ⨆ a, f a + g a :=
   by
@@ -1186,23 +670,11 @@ theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃
     exact le_iSup_of_le k hk
 #align ennreal.supr_add_supr ENNReal.iSup_add_iSup
 
-/- warning: ennreal.supr_add_supr_of_monotone -> ENNReal.iSup_add_iSup_of_monotone is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
-but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotoneₓ'. -/
 theorem iSup_add_iSup_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
     (hg : Monotone g) : iSup f + iSup g = ⨆ a, f a + g a :=
   iSup_add_iSup fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
 #align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotone
 
-/- warning: ennreal.finset_sum_supr_nat -> ENNReal.finset_sum_iSup_nat is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : SemilatticeSup.{u2} ι] {s : Finset.{u1} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u2, 0} ι ENNReal (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (f a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (n : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a n))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {s : Finset.{u2} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (f a))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (n : ι) => Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a n))))
-Case conversion may be inaccurate. Consider using '#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_natₓ'. -/
 theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
     (hf : ∀ a, Monotone (f a)) : (∑ a in s, iSup (f a)) = ⨆ n, ∑ a in s, f a n :=
   by
@@ -1215,12 +687,6 @@ theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : 
     exact Finset.sum_le_sum fun a ha => hf a h
 #align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_nat
 
-/- warning: ennreal.mul_supr -> ENNReal.mul_iSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))
-but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.mul_supr ENNReal.mul_iSupₓ'. -/
 theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i :=
   by
   by_cases hf : ∀ i, f i = 0
@@ -1231,64 +697,28 @@ theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iS
     exact mt supr_eq_zero.1 hf
 #align ennreal.mul_supr ENNReal.mul_iSup
 
-/- warning: ennreal.mul_Sup -> ENNReal.mul_sSup is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a i)))
-but is expected to have type
-  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.mul_Sup ENNReal.mul_sSupₓ'. -/
 theorem mul_sSup {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * sSup s = ⨆ i ∈ s, a * i := by
   simp only [sSup_eq_iSup, mul_supr]
 #align ennreal.mul_Sup ENNReal.mul_sSup
 
-/- warning: ennreal.supr_mul -> ENNReal.iSup_mul is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))
-but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_mul ENNReal.iSup_mulₓ'. -/
 theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f * a = ⨆ i, f i * a := by
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.iSup_mul
 
-/- warning: ennreal.smul_supr -> ENNReal.smul_iSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_1 : SMul.{u2, 0} R ENNReal] [_inst_2 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_1 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_1] (f : ι -> ENNReal) (c : R), Eq.{1} ENNReal (SMul.smul.{u2, 0} R ENNReal _inst_1 c (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => SMul.smul.{u2, 0} R ENNReal _inst_1 c (f i)))
-but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_1 : SMul.{u1, 0} R ENNReal] [_inst_2 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_1 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1] (f : ι -> ENNReal) (c : R), Eq.{1} ENNReal (HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c (f i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.smul_supr ENNReal.smul_iSupₓ'. -/
 theorem smul_iSup {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
     (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
   simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup _), ENNReal.mul_iSup]
 #align ennreal.smul_supr ENNReal.smul_iSup
 
-/- warning: ennreal.smul_Sup -> ENNReal.smul_sSup is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : SMul.{u1, 0} R ENNReal] [_inst_2 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_1 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_1] (s : Set.{0} ENNReal) (c : R), Eq.{1} ENNReal (SMul.smul.{u1, 0} R ENNReal _inst_1 c (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) => SMul.smul.{u1, 0} R ENNReal _inst_1 c i)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : SMul.{u1, 0} R ENNReal] [_inst_2 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_1 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1] (s : Set.{0} ENNReal) (c : R), Eq.{1} ENNReal (HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) => HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.smul_Sup ENNReal.smul_sSupₓ'. -/
 theorem smul_sSup {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
     c • sSup s = ⨆ i ∈ s, c • i := by
   simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_sSup, smul_one_mul]
 #align ennreal.smul_Sup ENNReal.smul_sSup
 
-/- warning: ennreal.supr_div -> ENNReal.iSup_div is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
-but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (f i) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_div ENNReal.iSup_divₓ'. -/
 theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
   iSup_mul
 #align ennreal.supr_div ENNReal.iSup_div
 
-/- warning: ennreal.tendsto_coe_sub -> ENNReal.tendsto_coe_sub is a dubious translation:
-lean 3 declaration is
-  forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) b) (nhds.{0} ENNReal ENNReal.topologicalSpace b) (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) b))
-but is expected to have type
-  forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ENNReal.some r) b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ENNReal.some r) b))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_subₓ'. -/
 protected theorem tendsto_coe_sub :
     ∀ {b : ℝ≥0∞}, Tendsto (fun b : ℝ≥0∞ => ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
   by
@@ -1303,12 +733,6 @@ protected theorem tendsto_coe_sub :
       tendsto_const_nhds
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
-/- warning: ennreal.sub_supr -> ENNReal.sub_iSup is a dubious translation:
-lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
-but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a (b i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.sub_supr ENNReal.sub_iSupₓ'. -/
 theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
   by
@@ -1320,12 +744,6 @@ theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < 
   rw [Eq, ← this] <;> simp [sInf_image, iInf_range, -mem_range] <;> exact le_rfl
 #align ennreal.sub_supr ENNReal.sub_iSup
 
-/- warning: ennreal.exists_countable_dense_no_zero_top -> ENNReal.exists_countable_dense_no_zero_top is a dubious translation:
-lean 3 declaration is
-  Exists.{1} (Set.{0} ENNReal) (fun (s : Set.{0} ENNReal) => And (Set.Countable.{0} ENNReal s) (And (Dense.{0} ENNReal ENNReal.topologicalSpace s) (And (Not (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) s)) (Not (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)))))
-but is expected to have type
-  Exists.{1} (Set.{0} ENNReal) (fun (s : Set.{0} ENNReal) => And (Set.Countable.{0} ENNReal s) (And (Dense.{0} ENNReal ENNReal.instTopologicalSpaceENNReal s) (And (Not (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) s)) (Not (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) s)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.exists_countable_dense_no_zero_top ENNReal.exists_countable_dense_no_zero_topₓ'. -/
 theorem exists_countable_dense_no_zero_top :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
   by
@@ -1335,12 +753,6 @@ theorem exists_countable_dense_no_zero_top :
   exact ⟨s, s_count, s_dense, fun h => hs.1 0 (by simp) h, fun h => hs.2 ∞ (by simp) h⟩
 #align ennreal.exists_countable_dense_no_zero_top ENNReal.exists_countable_dense_no_zero_top
 
-/- warning: ennreal.exists_lt_add_of_lt_add -> ENNReal.exists_lt_add_of_lt_add is a dubious translation:
-lean 3 declaration is
-  forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) z' z) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y' z'))))))
-but is expected to have type
-  forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) z' z) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) y' z'))))))
-Case conversion may be inaccurate. Consider using '#align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_addₓ'. -/
 theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠ 0) (hz : z ≠ 0) :
     ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' :=
   by
@@ -1361,12 +773,6 @@ end TopologicalSpace
 
 section Liminf
 
-/- warning: ennreal.exists_frequently_lt_of_liminf_ne_top -> ENNReal.exists_frequently_lt_of_liminf_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt (x n) R) l))
-but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
-Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
@@ -1385,12 +791,6 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
   filter_upwards [h r]with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
-/- warning: ennreal.exists_frequently_lt_of_liminf_ne_top' -> ENNReal.exists_frequently_lt_of_liminf_ne_top' is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt R (x n)) l))
-but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
-Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
@@ -1409,12 +809,6 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
   filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
-/- warning: ennreal.exists_upcrossings_of_not_bounded_under -> ENNReal.exists_upcrossings_of_not_bounded_under is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14964 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14966 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14964 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14966) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
@@ -1448,12 +842,6 @@ section tsum
 
 variable {f g : α → ℝ≥0∞}
 
-/- warning: ennreal.has_sum_coe -> ENNReal.hasSum_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {r : NNReal}, Iff (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r)) (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r)
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal} {r : NNReal}, Iff (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (fun (a : α) => ENNReal.some (f a)) (ENNReal.some r)) (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r)
-Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_coe ENNReal.hasSum_coeₓ'. -/
 @[norm_cast]
 protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
     HasSum (fun a => (f a : ℝ≥0∞)) ↑r ↔ HasSum f r :=
@@ -1465,53 +853,23 @@ protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
   unfold HasSum <;> rw [this, tendsto_coe]
 #align ennreal.has_sum_coe ENNReal.hasSum_coe
 
-/- warning: ennreal.tsum_coe_eq -> ENNReal.tsum_coe_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {r : NNReal} {f : α -> NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))
-but is expected to have type
-  forall {α : Type.{u1}} {r : NNReal} {f : α -> NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))) (ENNReal.some r))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_eq ENNReal.tsum_coe_eqₓ'. -/
 protected theorem tsum_coe_eq {f : α → ℝ≥0} (h : HasSum f r) : (∑' a, (f a : ℝ≥0∞)) = r :=
   (ENNReal.hasSum_coe.2 h).tsum_eq
 #align ennreal.tsum_coe_eq ENNReal.tsum_coe_eq
 
-/- warning: ennreal.coe_tsum -> ENNReal.coe_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (Eq.{1} ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α f)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (Eq.{1} ENNReal (ENNReal.some (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α f)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.coe_tsum ENNReal.coe_tsumₓ'. -/
 protected theorem coe_tsum {f : α → ℝ≥0} : Summable f → ↑(tsum f) = ∑' a, (f a : ℝ≥0∞)
   | ⟨r, hr⟩ => by rw [hr.tsum_eq, ENNReal.tsum_coe_eq hr]
 #align ennreal.coe_tsum ENNReal.coe_tsum
 
-/- warning: ennreal.has_sum -> ENNReal.hasSum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.has_sum ENNReal.hasSumₓ'. -/
 protected theorem hasSum : HasSum f (⨆ s : Finset α, ∑ a in s, f a) :=
   tendsto_atTop_iSup fun s t => Finset.sum_le_sum_of_subset
 #align ennreal.has_sum ENNReal.hasSum
 
-/- warning: ennreal.summable -> ENNReal.summable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Summable.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Summable.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f
-Case conversion may be inaccurate. Consider using '#align ennreal.summable ENNReal.summableₓ'. -/
 @[simp]
 protected theorem summable : Summable f :=
   ⟨_, ENNReal.hasSum⟩
 #align ennreal.summable ENNReal.summable
 
-/- warning: ennreal.tsum_coe_ne_top_iff_summable -> ENNReal.tsum_coe_ne_top_iff_summable is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f b))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)
-but is expected to have type
-  forall {β : Type.{u1}} {f : β -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => ENNReal.some (f b))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summableₓ'. -/
 theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ≥0∞)) ≠ ∞ ↔ Summable f :=
   by
   refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
@@ -1521,22 +879,10 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ
   exact ennreal.summable.has_sum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
-/- warning: ennreal.tsum_eq_supr_sum -> ENNReal.tsum_eq_iSup_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sumₓ'. -/
 protected theorem tsum_eq_iSup_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
 #align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
 
-/- warning: ennreal.tsum_eq_supr_sum' -> ENNReal.tsum_eq_iSup_sum' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.hasSubset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (s i) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.instHasSubsetFinset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (s i) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'ₓ'. -/
 protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     (∑' a, f a) = ⨆ i, ∑ a in s i, f a :=
   by
@@ -1546,98 +892,44 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
   exact (Finset.sum_mono_set f).iSup_comp_eq hs
 #align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
 
-/- warning: ennreal.tsum_sigma -> ENNReal.tsum_sigma is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : forall (a : α), (β a) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f (Sigma.fst.{u1, u2} α (fun (a : α) => β a) p) (Sigma.snd.{u1, u2} α (fun (a : α) => β a) p))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (β a) (fun (b : β a) => f a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : forall (a : α), (β a) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f (Sigma.fst.{u1, u2} α (fun (a : α) => β a) p) (Sigma.snd.{u1, u2} α (fun (a : α) => β a) p))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (β a) (fun (b : β a) => f a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sigma ENNReal.tsum_sigmaₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
     (∑' p : Σa, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
 
-/- warning: ennreal.tsum_sigma' -> ENNReal.tsum_sigma' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : (Sigma.{u1, u2} α (fun (a : α) => β a)) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f p)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (β a) (fun (b : β a) => f (Sigma.mk.{u1, u2} α (fun (a : α) => β a) a b))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : (Sigma.{u1, u2} α (fun (a : α) => β a)) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f p)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (β a) (fun (b : β a) => f (Sigma.mk.{u1, u2} α (fun (a : α) => β a) a b))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sigma' ENNReal.tsum_sigma'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma' {β : α → Type _} (f : (Σa, β a) → ℝ≥0∞) :
     (∑' p : Σa, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
 
-/- warning: ennreal.tsum_prod -> ENNReal.tsum_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Prod.{u1, u2} α β) (fun (p : Prod.{u1, u2} α β) => f (Prod.fst.{u1, u2} α β p) (Prod.snd.{u1, u2} α β p))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => f a b)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u2 u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Prod.{u2, u1} α β) (fun (p : Prod.{u2, u1} α β) => f (Prod.fst.{u2, u1} α β p) (Prod.snd.{u2, u1} α β p))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => f a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_prod ENNReal.tsum_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_prod {f : α → β → ℝ≥0∞} : (∑' p : α × β, f p.1 p.2) = ∑' (a) (b), f a b :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod ENNReal.tsum_prod
 
-/- warning: ennreal.tsum_prod' -> ENNReal.tsum_prod' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : (Prod.{u1, u2} α β) -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Prod.{u1, u2} α β) (fun (p : Prod.{u1, u2} α β) => f p)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => f (Prod.mk.{u1, u2} α β a b))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : (Prod.{u2, u1} α β) -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u2 u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Prod.{u2, u1} α β) (fun (p : Prod.{u2, u1} α β) => f p)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => f (Prod.mk.{u2, u1} α β a b))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_prod' ENNReal.tsum_prod'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : (∑' p : α × β, f p) = ∑' (a) (b), f (a, b) :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod' ENNReal.tsum_prod'
 
-/- warning: ennreal.tsum_comm -> ENNReal.tsum_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => f a b))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a b)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => f a b))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_comm ENNReal.tsum_commₓ'. -/
 protected theorem tsum_comm {f : α → β → ℝ≥0∞} : (∑' a, ∑' b, f a b) = ∑' b, ∑' a, f a b :=
   tsum_comm' ENNReal.summable (fun _ => ENNReal.summable) fun _ => ENNReal.summable
 #align ennreal.tsum_comm ENNReal.tsum_comm
 
-/- warning: ennreal.tsum_add -> ENNReal.tsum_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => g a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_add ENNReal.tsum_addₓ'. -/
 protected theorem tsum_add : (∑' a, f a + g a) = (∑' a, f a) + ∑' a, g a :=
   tsum_add ENNReal.summable ENNReal.summable
 #align ennreal.tsum_add ENNReal.tsum_add
 
-/- warning: ennreal.tsum_le_tsum -> ENNReal.tsum_le_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => g a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_le_tsum ENNReal.tsum_le_tsumₓ'. -/
 protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : (∑' a, f a) ≤ ∑' a, g a :=
   tsum_le_tsum h ENNReal.summable ENNReal.summable
 #align ennreal.tsum_le_tsum ENNReal.tsum_le_tsum
 
-/- warning: ennreal.sum_le_tsum -> ENNReal.sum_le_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x))
-Case conversion may be inaccurate. Consider using '#align ennreal.sum_le_tsum ENNReal.sum_le_tsumₓ'. -/
 protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x in s, f x) ≤ ∑' x, f x :=
   sum_le_tsum s (fun x hx => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
-/- warning: ennreal.tsum_eq_supr_nat' -> ENNReal.tsum_eq_iSup_nat' is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range (N i)) (fun (a : Nat) => f a))))
-but is expected to have type
-  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range (N i)) (fun (a : Nat) => f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'ₓ'. -/
 protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
   ENNReal.tsum_eq_iSup_sum' _ fun t =>
@@ -1646,23 +938,11 @@ protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (
     ⟨k, Finset.Subset.trans hn (Finset.range_mono hk)⟩
 #align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'
 
-/- warning: ennreal.tsum_eq_supr_nat -> ENNReal.tsum_eq_iSup_nat is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range i) (fun (a : Nat) => f a)))
-but is expected to have type
-  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range i) (fun (a : Nat) => f a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_natₓ'. -/
 protected theorem tsum_eq_iSup_nat {f : ℕ → ℝ≥0∞} :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
   ENNReal.tsum_eq_iSup_sum' _ Finset.exists_nat_subset_range
 #align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_nat
 
-/- warning: ennreal.tsum_eq_liminf_sum_nat -> ENNReal.tsum_eq_liminf_sum_nat is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))
-but is expected to have type
-  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_natₓ'. -/
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   by
@@ -1675,43 +955,19 @@ protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     simp [le_refl n, le_refl ((Finset.range n).Sum f)]
 #align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_nat
 
-/- warning: ennreal.le_tsum -> ENNReal.le_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))
-Case conversion may be inaccurate. Consider using '#align ennreal.le_tsum ENNReal.le_tsumₓ'. -/
 protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
   le_tsum' ENNReal.summable a
 #align ennreal.le_tsum ENNReal.le_tsum
 
-/- warning: ennreal.tsum_eq_zero -> ENNReal.tsum_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (forall (i : α), Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (i : α), Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_zero ENNReal.tsum_eq_zeroₓ'. -/
 @[simp]
 protected theorem tsum_eq_zero : (∑' i, f i) = 0 ↔ ∀ i, f i = 0 :=
   ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ ENNReal.le_tsum i, fun h => by simp [h]⟩
 #align ennreal.tsum_eq_zero ENNReal.tsum_eq_zero
 
-/- warning: ennreal.tsum_eq_top_of_eq_top -> ENNReal.tsum_eq_top_of_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Exists.{succ u1} α (fun (a : α) => Eq.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Exists.{succ u1} α (fun (a : α) => Eq.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_topₓ'. -/
 protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞
   | ⟨a, ha⟩ => top_unique <| ha ▸ ENNReal.le_tsum a
 #align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_top
 
-/- warning: ennreal.lt_top_of_tsum_ne_top -> ENNReal.lt_top_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_topₓ'. -/
 protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞) (j : α) :
     a j < ∞ := by
   have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
@@ -1719,24 +975,12 @@ protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (
   exact lt_top_iff_ne_top.mpr (key tsum_ne_top j)
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
-/- warning: ennreal.tsum_top -> ENNReal.tsum_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Nonempty.{succ u1} α], Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Nonempty.{succ u1} α], Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_top ENNReal.tsum_topₓ'. -/
 @[simp]
 protected theorem tsum_top [Nonempty α] : (∑' a : α, ∞) = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
 
-/- warning: ennreal.tsum_const_eq_top_of_ne_zero -> ENNReal.tsum_const_eq_top_of_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Infinite.{succ u1} α] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Infinite.{succ u1} α] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zeroₓ'. -/
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
     (∑' a : α, c) = ∞ :=
   by
@@ -1752,22 +996,10 @@ theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞
   simpa [hc] using le_of_tendsto' A B
 #align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zero
 
-/- warning: ennreal.ne_top_of_tsum_ne_top -> ENNReal.ne_top_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_topₓ'. -/
 protected theorem ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
   h <| ENNReal.tsum_eq_top_of_eq_top ⟨a, ha⟩
 #align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_top
 
-/- warning: ennreal.tsum_mul_left -> ENNReal.tsum_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mul_left ENNReal.tsum_mul_leftₓ'. -/
 protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
   if h : ∀ i, f i = 0 then by simp [h]
   else
@@ -1786,33 +1018,15 @@ protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
     HasSum.tsum_eq this
 #align ennreal.tsum_mul_left ENNReal.tsum_mul_left
 
-/- warning: ennreal.tsum_mul_right -> ENNReal.tsum_mul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) a)
-but is expected to have type
-  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mul_right ENNReal.tsum_mul_rightₓ'. -/
 protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
-/- warning: ennreal.tsum_const_smul -> ENNReal.tsum_const_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {R : Type.{u2}} [_inst_1 : SMul.{u2, 0} R ENNReal] [_inst_2 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_1 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_1] (a : R), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => SMul.smul.{u2, 0} R ENNReal _inst_1 a (f i))) (SMul.smul.{u2, 0} R ENNReal _inst_1 a (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {R : Type.{u2}} [_inst_1 : SMul.{u2, 0} R ENNReal] [_inst_2 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_1 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1] (a : R), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => HSMul.hSMul.{u2, 0, 0} R ENNReal ENNReal (instHSMul.{u2, 0} R ENNReal _inst_1) a (f i))) (HSMul.hSMul.{u2, 0, 0} R ENNReal ENNReal (instHSMul.{u2, 0} R ENNReal _inst_1) a (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_const_smul ENNReal.tsum_const_smulₓ'. -/
 protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
     (∑' i, a • f i) = a • ∑' i, f i := by
   simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
 
-/- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_iSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
-but is expected to have type
-  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (b : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eqₓ'. -/
 @[simp]
 theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ h : a = b, f b) = f a :=
   le_antisymm
@@ -1833,12 +1047,6 @@ theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b :
       )
 #align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
 
-/- warning: ennreal.has_sum_iff_tendsto_nat -> ENNReal.hasSum_iff_tendsto_nat is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal} (r : ENNReal), Iff (HasSum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f r) (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace r))
-but is expected to have type
-  forall {f : Nat -> ENNReal} (r : ENNReal), Iff (HasSum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f r) (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal r))
-Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_natₓ'. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) :=
   by
@@ -1848,45 +1056,21 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
   · exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst)
 #align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_nat
 
-/- warning: ennreal.tendsto_nat_tsum -> ENNReal.tendsto_nat_tsum is a dubious translation:
-lean 3 declaration is
-  forall (f : Nat -> ENNReal), Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)))
-but is expected to have type
-  forall (f : Nat -> ENNReal), Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsumₓ'. -/
 theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
     Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' n, f n)) := by
   rw [← has_sum_iff_tendsto_nat]; exact ennreal.summable.has_sum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
-/- warning: ennreal.to_nnreal_apply_of_tsum_ne_top -> ENNReal.toNNReal_apply_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (x : α), Eq.{1} ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f x)) (f x))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (x : α), Eq.{1} ENNReal (ENNReal.some (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f x)) (f x))
-Case conversion may be inaccurate. Consider using '#align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_topₓ'. -/
 theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) (x : α) :
     (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
   coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
 #align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
 
-/- warning: ennreal.summable_to_nnreal_of_tsum_ne_top -> ENNReal.summable_toNNReal_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f))
-Case conversion may be inaccurate. Consider using '#align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_topₓ'. -/
 theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) :
     Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf
 #align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
 
-/- warning: ennreal.tendsto_cofinite_zero_of_tsum_ne_top -> ENNReal.tendsto_cofinite_zero_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{u1, 0} α ENNReal f (Filter.cofinite.{u1} α) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{u1, 0} α ENNReal f (Filter.cofinite.{u1} α) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_topₓ'. -/
 theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto f cofinite (𝓝 0) :=
   by
@@ -1897,23 +1081,11 @@ theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf :
   exact NNReal.tendsto_cofinite_zero_of_summable (summable_to_nnreal_of_tsum_ne_top hf)
 #align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_top
 
-/- warning: ennreal.tendsto_at_top_zero_of_tsum_ne_top -> ENNReal.tendsto_atTop_zero_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (x : Nat) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {f : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (x : Nat) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_topₓ'. -/
 theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto f atTop (𝓝 0) := by rw [← Nat.cofinite_eq_atTop];
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
 #align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_top
 
-/- warning: ennreal.tendsto_tsum_compl_at_top_zero -> ENNReal.tendsto_tsum_compl_atTop_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{u1, 0} (Finset.{u1} α) ENNReal (fun (s : Finset.{u1} α) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) (fun (b : Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (coeSubtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s)))))) b))) (Filter.atTop.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{u1, 0} (Finset.{u1} α) ENNReal (fun (s : Finset.{u1} α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Subtype.{succ u1} α (fun (x : α) => Not (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x s))) (fun (b : Subtype.{succ u1} α (fun (x : α) => Not (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x s))) => f (Subtype.val.{succ u1} α (fun (x : α) => Not (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x s)) b))) (Filter.atTop.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zeroₓ'. -/
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
 theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
@@ -1926,23 +1098,11 @@ theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf
   exact NNReal.summable_comp_injective (tsum_coe_ne_top_iff_summable.1 hf) Subtype.coe_injective
 #align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zero
 
-/- warning: ennreal.tsum_apply -> ENNReal.tsum_apply is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {f : ι -> α -> ENNReal} {x : α}, Eq.{1} ENNReal (tsum.{u2, u1} (α -> ENNReal) (Pi.addCommMonoid.{u2, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (Pi.topologicalSpace.{u2, 0} α (fun (ᾰ : α) => ENNReal) (fun (a : α) => ENNReal.topologicalSpace)) ι (fun (i : ι) => f i) x) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x))
-but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} {f : ι -> α -> ENNReal} {x : α}, Eq.{1} ENNReal (tsum.{u1, u2} (α -> ENNReal) (Pi.addCommMonoid.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal))) (Pi.topologicalSpace.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (a : α) => ENNReal.instTopologicalSpaceENNReal)) ι (fun (i : ι) => f i) x) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_apply ENNReal.tsum_applyₓ'. -/
 protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x : α} :
     (∑' i, f i) x = ∑' i, f i x :=
   tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
 #align ennreal.tsum_apply ENNReal.tsum_apply
 
-/- warning: ennreal.tsum_sub -> ENNReal.tsum_sub is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i))))
-but is expected to have type
-  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sub ENNReal.tsum_subₓ'. -/
 theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑' i, g i) ≠ ∞) (h₂ : g ≤ f) :
     (∑' i, f i - g i) = (∑' i, f i) - ∑' i, g i :=
   by
@@ -1952,12 +1112,6 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑'
   rw [h₄] at h₃; apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
 
-/- warning: ennreal.tsum_mono_subtype -> ENNReal.tsum_mono_subtype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
-but is expected to have type
-  forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (x : Set.Elem.{u1} α s) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) x))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α t) (fun (x : Set.Elem.{u1} α t) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtypeₓ'. -/
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
     (∑' x : s, f x) ≤ ∑' x : t, f x :=
   by
@@ -1966,12 +1120,6 @@ theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
   exact indicator_le_indicator_of_subset h fun _ => zero_le _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
-/- warning: ennreal.tsum_union_le -> ENNReal.tsum_union_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)))))) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
-but is expected to have type
-  forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (fun (x : Set.Elem.{u1} α (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (x : Set.Elem.{u1} α s) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) x))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α t) (fun (x : Set.Elem.{u1} α t) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_union_le ENNReal.tsum_union_leₓ'. -/
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     (∑' x : s ∪ t, f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
   calc
@@ -1982,12 +1130,6 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
-/- warning: ennreal.tsum_bUnion_le -> ENNReal.tsum_biUnion_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21999 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_leₓ'. -/
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
   classical
@@ -2003,12 +1145,6 @@ theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
       
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
-/- warning: ennreal.tsum_Union_le -> ENNReal.tsum_iUnion_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_Union_le ENNReal.tsum_iUnion_leₓ'. -/
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
   classical
@@ -2017,23 +1153,11 @@ theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : 
     exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 
-/- warning: ennreal.tsum_eq_add_tsum_ite -> ENNReal.tsum_eq_add_tsum_ite is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> ENNReal} (b : β), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (x : β) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f b) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (x : β) => ite.{1} ENNReal (Eq.{succ u1} β x b) (Classical.propDecidable (Eq.{succ u1} β x b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (f x))))
-but is expected to have type
-  forall {β : Type.{u1}} {f : β -> ENNReal} (b : β), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (x : β) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f b) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (x : β) => ite.{1} ENNReal (Eq.{succ u1} β x b) (Classical.propDecidable (Eq.{succ u1} β x b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (f x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_iteₓ'. -/
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
     (∑' x, f x) = f b + ∑' x, ite (x = b) 0 (f x) :=
   tsum_eq_add_tsum_ite' b ENNReal.summable
 #align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_ite
 
-/- warning: ennreal.tsum_add_one_eq_top -> ENNReal.tsum_add_one_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal}, (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {f : Nat -> ENNReal}, (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_topₓ'. -/
 theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞) (hf0 : f 0 ≠ ∞) :
     (∑' n, f (n + 1)) = ∞ :=
   by
@@ -2051,12 +1175,6 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
   simp only [tsub_add_cancel_of_le hi, coe_notMemRangeEquiv, Function.comp_apply, Subtype.coe_mk]
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 
-/- warning: ennreal.finite_const_le_of_tsum_ne_top -> ENNReal.finite_const_le_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_topₓ'. -/
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
 theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞)
@@ -2079,12 +1197,6 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
   rwa [obs] at key
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
 
-/- warning: ennreal.finset_card_const_le_le_of_tsum_le -> ENNReal.finset_card_const_le_le_of_tsum_le is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) c ε))))
-but is expected to have type
-  forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) c ε))))
-Case conversion may be inaccurate. Consider using '#align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_leₓ'. -/
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
     (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
@@ -2117,12 +1229,6 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
 
 end tsum
 
-/- warning: ennreal.tendsto_to_real_iff -> ENNReal.tendsto_toReal_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {fi : Filter.{u1} ι} {f : ι -> ENNReal}, (forall (i : ι), Ne.{1} ENNReal (f i) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} ι Real (fun (n : ι) => ENNReal.toReal (f n)) fi (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal x))) (Filter.Tendsto.{u1, 0} ι ENNReal f fi (nhds.{0} ENNReal ENNReal.topologicalSpace x))))
-but is expected to have type
-  forall {ι : Type.{u1}} {fi : Filter.{u1} ι} {f : ι -> ENNReal}, (forall (i : ι), Ne.{1} ENNReal (f i) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} ι Real (fun (n : ι) => ENNReal.toReal (f n)) fi (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal x))) (Filter.Tendsto.{u1, 0} ι ENNReal f fi (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iffₓ'. -/
 theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : ∀ i, f i ≠ ∞) {x : ℝ≥0∞}
     (hx : x ≠ ∞) : fi.Tendsto (fun n => (f n).toReal) (𝓝 x.toReal) ↔ fi.Tendsto f (𝓝 x) :=
   by
@@ -2133,12 +1239,6 @@ theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : 
   exact ENNReal.tendsto_ofReal h
 #align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iff
 
-/- warning: ennreal.tsum_coe_ne_top_iff_summable_coe -> ENNReal.tsum_coe_ne_top_iff_summable_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) (f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => NNReal.toReal (f a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coeₓ'. -/
 theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
     (∑' a, (f a : ℝ≥0∞)) ≠ ∞ ↔ Summable fun a => (f a : ℝ) :=
   by
@@ -2146,12 +1246,6 @@ theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
   exact tsum_coe_ne_top_iff_summable
 #align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coe
 
-/- warning: ennreal.tsum_coe_eq_top_iff_not_summable_coe -> ENNReal.tsum_coe_eq_top_iff_not_summable_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Not (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) (f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Not (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => NNReal.toReal (f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coeₓ'. -/
 theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
     (∑' a, (f a : ℝ≥0∞)) = ∞ ↔ ¬Summable fun a => (f a : ℝ) :=
   by
@@ -2159,12 +1253,6 @@ theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
   exact not_congr tsum_coe_ne_top_iff_summable_coe
 #align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coe
 
-/- warning: ennreal.has_sum_to_real -> ENNReal.hasSum_toReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSum.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)) (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (x : α) => ENNReal.toReal (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSum.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)) (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (x : α) => ENNReal.toReal (f x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_to_real ENNReal.hasSum_toRealₓ'. -/
 theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
     HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) :=
   by
@@ -2173,12 +1261,6 @@ theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
   exact (tsum_coe_ne_top_iff_summable.1 hsum).HasSum
 #align ennreal.has_sum_to_real ENNReal.hasSum_toReal
 
-/- warning: ennreal.summable_to_real -> ENNReal.summable_toReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)))
-Case conversion may be inaccurate. Consider using '#align ennreal.summable_to_real ENNReal.summable_toRealₓ'. -/
 theorem summable_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) : Summable fun x => (f x).toReal :=
   (hasSum_toReal hsum).Summable
 #align ennreal.summable_to_real ENNReal.summable_toReal
@@ -2189,12 +1271,6 @@ namespace NNReal
 
 open NNReal
 
-/- warning: nnreal.tsum_eq_to_nnreal_tsum -> NNReal.tsum_eq_toNNReal_tsum is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> NNReal}, Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace β (fun (b : β) => f b)) (ENNReal.toNNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f b))))
-but is expected to have type
-  forall {β : Type.{u1}} {f : β -> NNReal}, Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal β (fun (b : β) => f b)) (ENNReal.toNNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => ENNReal.some (f b))))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsumₓ'. -/
 theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
   by
   by_cases h : Summable f
@@ -2204,12 +1280,6 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f
     simp only [h, ENNReal.top_toNNReal, A]
 #align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsum
 
-/- warning: nnreal.exists_le_has_sum_of_le -> NNReal.exists_le_hasSum_of_le is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) -> (Exists.{1} NNReal (fun (p : NNReal) => Exists.{0} (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) (fun (H : LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) => HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g p)))
-but is expected to have type
-  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) -> (Exists.{1} NNReal (fun (p : NNReal) => And (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) p r) (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g p)))
-Case conversion may be inaccurate. Consider using '#align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_leₓ'. -/
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b, g b ≤ f b) (hfr : HasSum f r) :
     ∃ p ≤ r, HasSum g p :=
@@ -2221,12 +1291,6 @@ theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b
   ⟨p, hpr, ENNReal.hasSum_coe.1 <| Eq ▸ ENNReal.summable.HasSum⟩
 #align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_le
 
-/- warning: nnreal.summable_of_le -> NNReal.summable_of_le is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g)
-but is expected to have type
-  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g)
-Case conversion may be inaccurate. Consider using '#align nnreal.summable_of_le NNReal.summable_of_leₓ'. -/
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summable f → Summable g
   | ⟨r, hfr⟩ =>
@@ -2234,12 +1298,6 @@ theorem summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summa
     hp.Summable
 #align nnreal.summable_of_le NNReal.summable_of_le
 
-/- warning: nnreal.has_sum_iff_tendsto_nat -> NNReal.hasSum_iff_tendsto_nat is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> NNReal} {r : NNReal}, Iff (HasSum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} NNReal NNReal.topologicalSpace r))
-but is expected to have type
-  forall {f : Nat -> NNReal} {r : NNReal}, Iff (HasSum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal r))
-Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_iff_tendsto_nat NNReal.hasSum_iff_tendsto_natₓ'. -/
 /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
@@ -2250,12 +1308,6 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
   exact ENNReal.tendsto_coe
 #align nnreal.has_sum_iff_tendsto_nat NNReal.hasSum_iff_tendsto_nat
 
-/- warning: nnreal.not_summable_iff_tendsto_nat_at_top -> NNReal.not_summable_iff_tendsto_nat_atTop is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> NNReal}, Iff (Not (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))))
-but is expected to have type
-  forall {f : Nat -> NNReal}, Iff (Not (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))))
-Case conversion may be inaccurate. Consider using '#align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTopₓ'. -/
 theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
   by
@@ -2267,23 +1319,11 @@ theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     exact not_tendsto_nhds_of_tendsto_atTop hnat _ (has_sum_iff_tendsto_nat.1 hr)
 #align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTop
 
-/- warning: nnreal.summable_iff_not_tendsto_nat_at_top -> NNReal.summable_iff_not_tendsto_nat_atTop is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> NNReal}, Iff (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) (Not (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))))
-but is expected to have type
-  forall {f : Nat -> NNReal}, Iff (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) (Not (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))))
-Case conversion may be inaccurate. Consider using '#align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTopₓ'. -/
 theorem summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_at_top]
 #align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTop
 
-/- warning: nnreal.summable_of_sum_range_le -> NNReal.summable_of_sum_range_le is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)
-but is expected to have type
-  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)
-Case conversion may be inaccurate. Consider using '#align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_leₓ'. -/
 theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f :=
   by
@@ -2292,35 +1332,17 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
   exact lt_irrefl _ (hn.trans_le (h n))
 #align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_le
 
-/- warning: nnreal.tsum_le_of_sum_range_le -> NNReal.tsum_le_of_sum_range_le is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
-but is expected to have type
-  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal Nat (fun (n : Nat) => f n)) c)
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_leₓ'. -/
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
 #align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_le
 
-/- warning: nnreal.tsum_comp_le_tsum_of_inj -> NNReal.tsum_comp_le_tsum_of_inj is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => f x))))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_injₓ'. -/
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
     (hi : Function.Injective i) : (∑' x, f (i x)) ≤ ∑' x, f x :=
   tsum_le_tsum_of_inj i hi (fun c hc => zero_le _) (fun b => le_rfl) (summable_comp_injective hf hi)
     hf
 #align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_inj
 
-/- warning: nnreal.summable_sigma -> NNReal.summable_sigma is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> NNReal}, Iff (Summable.{0, max u1 u2} NNReal (Sigma.{u1, u2} α (fun (x : α) => β x)) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) (And (forall (x : α), Summable.{0, u2} NNReal (β x) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (fun (x : α) => tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> NNReal}, Iff (Summable.{0, max u1 u2} NNReal (Sigma.{u1, u2} α (fun (x : α) => β x)) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) (And (forall (x : α), Summable.{0, u2} NNReal (β x) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (fun (x : α) => tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y)))))
-Case conversion may be inaccurate. Consider using '#align nnreal.summable_sigma NNReal.summable_sigmaₓ'. -/
 theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ≥0} :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ :=
   by
@@ -2332,12 +1354,6 @@ theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ≥0} :
       h₁] using h₂
 #align nnreal.summable_sigma NNReal.summable_sigma
 
-/- warning: nnreal.indicator_summable -> NNReal.indicator_summable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall (s : Set.{u1} α), Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (Set.indicator.{u1, 0} α NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))) s f))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall (s : Set.{u1} α), Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (Set.indicator.{u1, 0} α NNReal instNNRealZero s f))
-Case conversion may be inaccurate. Consider using '#align nnreal.indicator_summable NNReal.indicator_summableₓ'. -/
 theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) : Summable (s.indicator f) :=
   by
   refine' NNReal.summable_of_le (fun a => le_trans (le_of_eq (s.indicator_apply f a)) _) hf
@@ -2346,12 +1362,6 @@ theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) :
   exact zero_le_coe
 #align nnreal.indicator_summable NNReal.indicator_summable
 
-/- warning: nnreal.tsum_indicator_ne_zero -> NNReal.tsum_indicator_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall {s : Set.{u1} α}, (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Ne.{1} NNReal (f a) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))))) -> (Ne.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => Set.indicator.{u1, 0} α NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))) s f x)) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall {s : Set.{u1} α}, (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (Ne.{1} NNReal (f a) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))))) -> (Ne.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => Set.indicator.{u1, 0} α NNReal instNNRealZero s f x)) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_indicator_ne_zero NNReal.tsum_indicator_ne_zeroₓ'. -/
 theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set α} (h : ∃ a ∈ s, f a ≠ 0) :
     (∑' x, (s.indicator f) x) ≠ 0 := fun h' =>
   let ⟨a, ha, hap⟩ := h
@@ -2362,12 +1372,6 @@ theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set 
 
 open Finset
 
-/- warning: nnreal.tendsto_sum_nat_add -> NNReal.tendsto_sum_nat_add is a dubious translation:
-lean 3 declaration is
-  forall (f : Nat -> NNReal), Filter.Tendsto.{0, 0} Nat NNReal (fun (i : Nat) => tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} NNReal NNReal.topologicalSpace (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))))
-but is expected to have type
-  forall (f : Nat -> NNReal), Filter.Tendsto.{0, 0} Nat NNReal (fun (i : Nat) => tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)))
-Case conversion may be inaccurate. Consider using '#align nnreal.tendsto_sum_nat_add NNReal.tendsto_sum_nat_addₓ'. -/
 /-- For `f : ℕ → ℝ≥0`, then `∑' k, f (k + i)` tends to zero. This does not require a summability
 assumption on `f`, as otherwise all sums are zero. -/
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
@@ -2377,12 +1381,6 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f
   norm_cast
 #align nnreal.tendsto_sum_nat_add NNReal.tendsto_sum_nat_add
 
-/- warning: nnreal.has_sum_lt -> NNReal.hasSum_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g sg) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) sf sg)
-Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_lt NNReal.hasSum_ltₓ'. -/
 theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
@@ -2391,12 +1389,6 @@ theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a :
   exact NNReal.coe_lt_coe.1 this
 #align nnreal.has_sum_lt NNReal.hasSum_lt
 
-/- warning: nnreal.has_sum_strict_mono -> NNReal.hasSum_strict_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toHasLt.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) sf sg)
-Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_strict_mono NNReal.hasSum_strict_monoₓ'. -/
 @[mono]
 theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum f sf) (hg : HasSum g sg)
     (h : f < g) : sf < sg :=
@@ -2404,45 +1396,21 @@ theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum
   hasSum_lt hle hi hf hg
 #align nnreal.has_sum_strict_mono NNReal.hasSum_strict_mono
 
-/- warning: nnreal.tsum_lt_tsum -> NNReal.tsum_lt_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => g n)))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsumₓ'. -/
 theorem tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hg : Summable g) : (∑' n, f n) < ∑' n, g n :=
   hasSum_lt h hi (summable_of_le h hg).HasSum hg.HasSum
 #align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsum
 
-/- warning: nnreal.tsum_strict_mono -> NNReal.tsum_strict_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toHasLt.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => g n)))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_strict_mono NNReal.tsum_strict_monoₓ'. -/
 @[mono]
 theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : (∑' n, f n) < ∑' n, g n :=
   let ⟨hle, i, hi⟩ := Pi.lt_def.mp h
   tsum_lt_tsum hle hi hg
 #align nnreal.tsum_strict_mono NNReal.tsum_strict_mono
 
-/- warning: nnreal.tsum_pos -> NNReal.tsum_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (g i)) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (b : α) => g b))))
-but is expected to have type
-  forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (g i)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (b : α) => g b))))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_pos NNReal.tsum_posₓ'. -/
 theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i) : 0 < ∑' b, g b := by
   rw [← tsum_zero]; exact tsum_lt_tsum (fun a => zero_le _) hi hg
 #align nnreal.tsum_pos NNReal.tsum_pos
 
-/- warning: nnreal.tsum_eq_add_tsum_ite -> NNReal.tsum_eq_add_tsum_ite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall (i : α), Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} NNReal NNReal NNReal (instHAdd.{0} NNReal (Distrib.toHasAdd.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))) (f i) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => ite.{1} NNReal (Eq.{succ u1} α x i) (Classical.propDecidable (Eq.{succ u1} α x i)) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (f x)))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall (i : α), Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} NNReal NNReal NNReal (instHAdd.{0} NNReal (Distrib.toAdd.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))))) (f i) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => ite.{1} NNReal (Eq.{succ u1} α x i) (Classical.propDecidable (Eq.{succ u1} α x i)) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (f x)))))
-Case conversion may be inaccurate. Consider using '#align nnreal.tsum_eq_add_tsum_ite NNReal.tsum_eq_add_tsum_iteₓ'. -/
 theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
     (∑' x, f x) = f i + ∑' x, ite (x = i) 0 (f x) :=
   by
@@ -2455,35 +1423,17 @@ end NNReal
 
 namespace ENNReal
 
-/- warning: ennreal.tsum_to_nnreal_eq -> ENNReal.tsum_toNNReal_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} NNReal (ENNReal.toNNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (a : α) => ENNReal.toNNReal (f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} NNReal (ENNReal.toNNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (a : α) => ENNReal.toNNReal (f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_to_nnreal_eq ENNReal.tsum_toNNReal_eqₓ'. -/
 theorem tsum_toNNReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toNNReal = ∑' a, (f a).toNNReal :=
   (congr_arg ENNReal.toNNReal (tsum_congr fun x => (coe_toNNReal (hf x)).symm)).trans
     NNReal.tsum_eq_toNNReal_tsum.symm
 #align ennreal.tsum_to_nnreal_eq ENNReal.tsum_toNNReal_eq
 
-/- warning: ennreal.tsum_to_real_eq -> ENNReal.tsum_toReal_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} Real (ENNReal.toReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))) (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (a : α) => ENNReal.toReal (f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} Real (ENNReal.toReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))) (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (a : α) => ENNReal.toReal (f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eqₓ'. -/
 theorem tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toReal = ∑' a, (f a).toReal := by
   simp only [ENNReal.toReal, tsum_to_nnreal_eq hf, NNReal.coe_tsum]
 #align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eq
 
-/- warning: ennreal.tendsto_sum_nat_add -> ENNReal.tendsto_sum_nat_add is a dubious translation:
-lean 3 declaration is
-  forall (f : Nat -> ENNReal), (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (i : Nat) => tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall (f : Nat -> ENNReal), (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (i : Nat) => tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_addₓ'. -/
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞) :
     Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
   by
@@ -2493,23 +1443,11 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞
   exact_mod_cast NNReal.tendsto_sum_nat_add f
 #align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
 
-/- warning: ennreal.tsum_le_of_sum_range_le -> ENNReal.tsum_le_of_sum_range_le is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
-but is expected to have type
-  forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)) c)
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_leₓ'. -/
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
   tsum_le_of_sum_range_le ENNReal.summable h
 #align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
 
-/- warning: ennreal.has_sum_lt -> ENNReal.hasSum_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f sf) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace g sg) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) sf sg)
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f sf) -> (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal g sg) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) sf sg)
-Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_lt ENNReal.hasSum_ltₓ'. -/
 theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hsf : sf ≠ ⊤) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
@@ -2525,12 +1463,6 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
     exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
-/- warning: ennreal.tsum_lt_tsum -> ENNReal.tsum_lt_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α f) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α f) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => g x)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsumₓ'. -/
 theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
     (hi : f i < g i) : (∑' x, f x) < ∑' x, g x :=
   hasSum_lt h hi hfi ENNReal.summable.HasSum ENNReal.summable.HasSum
@@ -2538,12 +1470,6 @@ theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (
 
 end ENNReal
 
-/- warning: tsum_comp_le_tsum_of_inj -> tsum_comp_le_tsum_of_inj is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> Real}, (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (forall (a : α), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f a)) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} Real Real.hasLe (tsum.{0, u2} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) β (Function.comp.{succ u2, succ u1, 1} β α Real f i)) (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α f)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> Real}, (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (forall (a : α), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f a)) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} Real Real.instLEReal (tsum.{0, u2} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) β (Function.comp.{succ u2, succ u1, 1} β α Real f i)) (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α f)))
-Case conversion may be inaccurate. Consider using '#align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_injₓ'. -/
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a)
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f :=
   by
@@ -2552,12 +1478,6 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f
   simpa only [(· ∘ ·), ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
 
-/- warning: summable_of_nonneg_of_le -> summable_of_nonneg_of_le is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> Real} {g : β -> Real}, (forall (b : β), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (g b)) -> (forall (b : β), LE.le.{0} Real Real.hasLe (g b) (f b)) -> (Summable.{0, u1} Real β Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} Real β Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g)
-but is expected to have type
-  forall {β : Type.{u1}} {f : β -> Real} {g : β -> Real}, (forall (b : β), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (g b)) -> (forall (b : β), LE.le.{0} Real Real.instLEReal (g b) (f b)) -> (Summable.{0, u1} Real β Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} Real β Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g)
-Case conversion may be inaccurate. Consider using '#align summable_of_nonneg_of_le summable_of_nonneg_of_leₓ'. -/
 /-- Comparison test of convergence of series of non-negative real numbers. -/
 theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
     (hf : Summable f) : Summable g :=
@@ -2568,12 +1488,6 @@ theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
 #align summable_of_nonneg_of_le summable_of_nonneg_of_le
 
-/- warning: summable.to_nnreal -> Summable.toNNReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> Real}, (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (fun (n : α) => Real.toNNReal (f n)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> Real}, (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (fun (n : α) => Real.toNNReal (f n)))
-Case conversion may be inaccurate. Consider using '#align summable.to_nnreal Summable.toNNRealₓ'. -/
 theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n => (f n).toNNReal :=
   by
   apply NNReal.summable_coe.1
@@ -2581,12 +1495,6 @@ theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n =>
   simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
 #align summable.to_nnreal Summable.toNNReal
 
-/- warning: has_sum_iff_tendsto_nat_of_nonneg -> hasSum_iff_tendsto_nat_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> Real}, (forall (i : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f i)) -> (forall (r : Real), Iff (HasSum.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f r) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) r)))
-but is expected to have type
-  forall {f : Nat -> Real}, (forall (i : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f i)) -> (forall (r : Real), Iff (HasSum.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f r) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) r)))
-Case conversion may be inaccurate. Consider using '#align has_sum_iff_tendsto_nat_of_nonneg hasSum_iff_tendsto_nat_of_nonnegₓ'. -/
 /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f i) (r : ℝ) :
@@ -2597,23 +1505,11 @@ theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f
   exact exists_congr fun hr => NNReal.hasSum_iff_tendsto_nat
 #align has_sum_iff_tendsto_nat_of_nonneg hasSum_iff_tendsto_nat_of_nonneg
 
-/- warning: ennreal.of_real_tsum_of_nonneg -> ENNReal.ofReal_tsum_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> Real}, (forall (n : α), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Eq.{1} ENNReal (ENNReal.ofReal (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (n : α) => f n))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (n : α) => ENNReal.ofReal (f n))))
-but is expected to have type
-  forall {α : Type.{u1}} {f : α -> Real}, (forall (n : α), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Eq.{1} ENNReal (ENNReal.ofReal (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (n : α) => f n))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (n : α) => ENNReal.ofReal (f n))))
-Case conversion may be inaccurate. Consider using '#align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonnegₓ'. -/
 theorem ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) :
     ENNReal.ofReal (∑' n, f n) = ∑' n, ENNReal.ofReal (f n) := by
   simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
 #align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonneg
 
-/- warning: not_summable_iff_tendsto_nat_at_top_of_nonneg -> not_summable_iff_tendsto_nat_atTop_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (Iff (Not (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Real Real.preorder)))
-but is expected to have type
-  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (Iff (Not (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Real Real.instPreorderReal)))
-Case conversion may be inaccurate. Consider using '#align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonnegₓ'. -/
 theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
   by
@@ -2621,46 +1517,22 @@ theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀
   exact_mod_cast NNReal.not_summable_iff_tendsto_nat_atTop
 #align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonneg
 
-/- warning: summable_iff_not_tendsto_nat_at_top_of_nonneg -> summable_iff_not_tendsto_nat_atTop_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (Iff (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (Not (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Real Real.preorder))))
-but is expected to have type
-  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (Iff (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (Not (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Real Real.instPreorderReal))))
-Case conversion may be inaccurate. Consider using '#align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonnegₓ'. -/
 theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf]
 #align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonneg
 
-/- warning: summable_sigma_of_nonneg -> summable_sigma_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> Real}, (forall (x : Sigma.{u1, u2} α (fun (x : α) => β x)), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f x)) -> (Iff (Summable.{0, max u1 u2} Real (Sigma.{u1, u2} α (fun (x : α) => β x)) Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (And (forall (x : α), Summable.{0, u2} Real (β x) Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => tsum.{0, u2} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> Real}, (forall (x : Sigma.{u1, u2} α (fun (x : α) => β x)), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f x)) -> (Iff (Summable.{0, max u1 u2} Real (Sigma.{u1, u2} α (fun (x : α) => β x)) Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (And (forall (x : α), Summable.{0, u2} Real (β x) Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => tsum.{0, u2} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))))))
-Case conversion may be inaccurate. Consider using '#align summable_sigma_of_nonneg summable_sigma_of_nonnegₓ'. -/
 theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
   lift f to (Σx, β x) → ℝ≥0 using hf; exact_mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
-/- warning: summable_of_sum_le -> summable_of_sum_le is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
-but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.27386 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
-Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
     tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
 
-/- warning: summable_of_sum_range_le -> summable_of_sum_range_le is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.hasLe (Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
-but is expected to have type
-  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
-Case conversion may be inaccurate. Consider using '#align summable_of_sum_range_le summable_of_sum_range_leₓ'. -/
 theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f :=
   by
@@ -2669,23 +1541,11 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤
   exact lt_irrefl _ (hn.trans_le (h n))
 #align summable_of_sum_range_le summable_of_sum_range_le
 
-/- warning: real.tsum_le_of_sum_range_le -> Real.tsum_le_of_sum_range_le is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.hasLe (Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} Real Real.hasLe (tsum.{0, 0} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) c)
-but is expected to have type
-  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} Real Real.instLEReal (tsum.{0, 0} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) c)
-Case conversion may be inaccurate. Consider using '#align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_leₓ'. -/
 theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
 #align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_le
 
-/- warning: tsum_lt_tsum_of_nonneg -> tsum_lt_tsum_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {i : Nat} {f : Nat -> Real} {g : Nat -> Real}, (forall (b : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f b)) -> (forall (b : Nat), LE.le.{0} Real Real.hasLe (f b) (g b)) -> (LT.lt.{0} Real Real.hasLt (f i) (g i)) -> (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g) -> (LT.lt.{0} Real Real.hasLt (tsum.{0, 0} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) (tsum.{0, 0} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => g n)))
-but is expected to have type
-  forall {i : Nat} {f : Nat -> Real} {g : Nat -> Real}, (forall (b : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f b)) -> (forall (b : Nat), LE.le.{0} Real Real.instLEReal (f b) (g b)) -> (LT.lt.{0} Real Real.instLTReal (f i) (g i)) -> (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g) -> (LT.lt.{0} Real Real.instLTReal (tsum.{0, 0} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) (tsum.{0, 0} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => g n)))
-Case conversion may be inaccurate. Consider using '#align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonnegₓ'. -/
 /-- If a sequence `f` with non-negative terms is dominated by a sequence `g` with summable
 series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
 then the series of `f` is strictly smaller than the series of `g`. -/
@@ -2700,12 +1560,6 @@ variable [EMetricSpace β]
 
 open ENNReal Filter Emetric
 
-/- warning: edist_ne_top_of_mem_ball -> edist_ne_top_of_mem_ball is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_1 : EMetricSpace.{u1} β] {a : β} {r : ENNReal} (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} β) Type.{u1} (Set.hasCoeToSort.{u1} β) (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)) (y : coeSort.{succ u1, succ (succ u1)} (Set.{u1} β) Type.{u1} (Set.hasCoeToSort.{u1} β) (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)), Ne.{1} ENNReal (EDist.edist.{u1} β (PseudoEMetricSpace.toHasEdist.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1)) (Subtype.val.{succ u1} β (fun (x : β) => Membership.Mem.{u1, u1} β (Set.{u1} β) (Set.hasMem.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)) x) (Subtype.val.{succ u1} β (fun (x : β) => Membership.Mem.{u1, u1} β (Set.{u1} β) (Set.hasMem.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)) y)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {β : Type.{u1}} [_inst_1 : EMetricSpace.{u1} β] {a : β} {r : ENNReal} (x : Set.Elem.{u1} β (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)) (y : Set.Elem.{u1} β (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)), Ne.{1} ENNReal (EDist.edist.{u1} β (PseudoEMetricSpace.toEDist.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1)) (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)) x) (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)) y)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align edist_ne_top_of_mem_ball edist_ne_top_of_mem_ballₓ'. -/
 /-- In an emetric ball, the distance between points is everywhere finite -/
 theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ :=
   lt_top_iff_ne_top.1 <|
@@ -2741,24 +1595,12 @@ variable [PseudoEMetricSpace α]
 
 open Emetric
 
-/- warning: tendsto_iff_edist_tendsto_0 -> tendsto_iff_edist_tendsto_0 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {l : Filter.{u2} β} {f : β -> α} {y : α}, Iff (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) y)) (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f x) y) l (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {l : Filter.{u2} β} {f : β -> α} {y : α}, Iff (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) y)) (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f x) y) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0ₓ'. -/
 theorem tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} :
     Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) := by
   simp only [emetric.nhds_basis_eball.tendsto_right_iff, EMetric.mem_ball,
     @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and_iff]
 #align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0
 
-/- warning: emetric.cauchy_seq_iff_le_tendsto_0 -> EMetric.cauchySeq_iff_le_tendsto_0 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))))
-Case conversion may be inaccurate. Consider using '#align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0ₓ'. -/
 /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the
 most efficient. -/
 theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s : β → α} :
@@ -2810,12 +1652,6 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
           ⟩⟩
 #align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0
 
-/- warning: continuous_of_le_add_edist -> continuous_of_le_add_edist is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) C (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.topologicalSpace f)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) C (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.instTopologicalSpaceENNReal f)
-Case conversion may be inaccurate. Consider using '#align continuous_of_le_add_edist continuous_of_le_add_edistₓ'. -/
 theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ⊤)
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f :=
   by
@@ -2848,12 +1684,6 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
           
 #align continuous_of_le_add_edist continuous_of_le_add_edist
 
-/- warning: continuous_edist -> continuous_edist is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α], Continuous.{u1, 0} (Prod.{u1, u1} α α) ENNReal (Prod.topologicalSpace.{u1, u1} α α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1))) ENNReal.topologicalSpace (fun (p : Prod.{u1, u1} α α) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α], Continuous.{u1, 0} (Prod.{u1, u1} α α) ENNReal (instTopologicalSpaceProd.{u1, u1} α α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1))) ENNReal.instTopologicalSpaceENNReal (fun (p : Prod.{u1, u1} α α) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))
-Case conversion may be inaccurate. Consider using '#align continuous_edist continuous_edistₓ'. -/
 theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
   by
   apply continuous_of_le_add_edist 2 (by norm_num)
@@ -2867,35 +1697,17 @@ theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
     
 #align continuous_edist continuous_edist
 
-/- warning: continuous.edist -> Continuous.edist is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : β -> α} {g : β -> α}, (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) f) -> (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) g) -> (Continuous.{u2, 0} β ENNReal _inst_2 ENNReal.topologicalSpace (fun (b : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f b) (g b)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : β -> α} {g : β -> α}, (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) f) -> (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) g) -> (Continuous.{u2, 0} β ENNReal _inst_2 ENNReal.instTopologicalSpaceENNReal (fun (b : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f b) (g b)))
-Case conversion may be inaccurate. Consider using '#align continuous.edist Continuous.edistₓ'. -/
 @[continuity]
 theorem Continuous.edist [TopologicalSpace β] {f g : β → α} (hf : Continuous f)
     (hg : Continuous g) : Continuous fun b => edist (f b) (g b) :=
   continuous_edist.comp (hf.prod_mk hg : _)
 #align continuous.edist Continuous.edist
 
-/- warning: filter.tendsto.edist -> Filter.Tendsto.edist is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : β -> α} {g : β -> α} {x : Filter.{u2} β} {a : α} {b : α}, (Filter.Tendsto.{u2, u1} β α f x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (Filter.Tendsto.{u2, u1} β α g x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) b)) -> (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f x) (g x)) x (nhds.{0} ENNReal ENNReal.topologicalSpace (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : β -> α} {g : β -> α} {x : Filter.{u2} β} {a : α} {b : α}, (Filter.Tendsto.{u2, u1} β α f x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (Filter.Tendsto.{u2, u1} β α g x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) b)) -> (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f x) (g x)) x (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) a b)))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.edist Filter.Tendsto.edistₓ'. -/
 theorem Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf : Tendsto f x (𝓝 a))
     (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => edist (f x) (g x)) x (𝓝 (edist a b)) :=
   (continuous_edist.Tendsto (a, b)).comp (hf.prod_mk_nhds hg)
 #align filter.tendsto.edist Filter.Tendsto.edist
 
-/- warning: cauchy_seq_of_edist_le_of_tsum_ne_top -> cauchySeq_of_edist_le_of_tsum_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat d) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid) f)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat d) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (Lattice.toSemilatticeSup.{0} Nat Nat.instLatticeNat) f)
-Case conversion may be inaccurate. Consider using '#align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_topₓ'. -/
 theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ≥0∞)
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f :=
   by
@@ -2928,12 +1740,6 @@ theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
 #align metric.diam_closure Metric.diam_closure
 -/
 
-/- warning: is_closed_set_of_lipschitz_on_with -> isClosed_setOf_lipschitzOnWith is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_2 : PseudoEMetricSpace.{u1} α] [_inst_3 : PseudoEMetricSpace.{u2} β] (K : NNReal) (s : Set.{u1} α), IsClosed.{max u1 u2} (α -> β) (Pi.topologicalSpace.{u1, u2} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u2} β (PseudoEMetricSpace.toUniformSpace.{u2} β _inst_3))) (setOf.{max u1 u2} (α -> β) (fun (f : α -> β) => LipschitzOnWith.{u1, u2} α β _inst_2 _inst_3 K f s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : PseudoEMetricSpace.{u2} α] [_inst_3 : PseudoEMetricSpace.{u1} β] (K : NNReal) (s : Set.{u2} α), IsClosed.{max u2 u1} (α -> β) (Pi.topologicalSpace.{u2, u1} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u1} β (PseudoEMetricSpace.toUniformSpace.{u1} β _inst_3))) (setOf.{max u2 u1} (α -> β) (fun (f : α -> β) => LipschitzOnWith.{u2, u1} α β _inst_2 _inst_3 K f s))
-Case conversion may be inaccurate. Consider using '#align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWithₓ'. -/
 theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0)
     (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } :=
   by
@@ -2942,12 +1748,6 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
   exacts[Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
-/- warning: is_closed_set_of_lipschitz_with -> isClosed_setOf_lipschitzWith is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_2 : PseudoEMetricSpace.{u1} α] [_inst_3 : PseudoEMetricSpace.{u2} β] (K : NNReal), IsClosed.{max u1 u2} (α -> β) (Pi.topologicalSpace.{u1, u2} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u2} β (PseudoEMetricSpace.toUniformSpace.{u2} β _inst_3))) (setOf.{max u1 u2} (α -> β) (fun (f : α -> β) => LipschitzWith.{u1, u2} α β _inst_2 _inst_3 K f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : PseudoEMetricSpace.{u2} α] [_inst_3 : PseudoEMetricSpace.{u1} β] (K : NNReal), IsClosed.{max u2 u1} (α -> β) (Pi.topologicalSpace.{u2, u1} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u1} β (PseudoEMetricSpace.toUniformSpace.{u1} β _inst_3))) (setOf.{max u2 u1} (α -> β) (fun (f : α -> β) => LipschitzWith.{u2, u1} α β _inst_2 _inst_3 K f))
-Case conversion may be inaccurate. Consider using '#align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWithₓ'. -/
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
     IsClosed { f : α → β | LipschitzWith K f } := by
   simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
@@ -2955,12 +1755,6 @@ theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMet
 
 namespace Real
 
-/- warning: real.ediam_eq -> Real.ediam_eq is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.sSup.{0} Real Real.hasSup s) (InfSet.sInf.{0} Real Real.hasInf s))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.sSup.{0} Real Real.instSupSetReal s) (InfSet.sInf.{0} Real Real.instInfSetReal s))))
-Case conversion may be inaccurate. Consider using '#align real.ediam_eq Real.ediam_eqₓ'. -/
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
 theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) :=
@@ -2979,12 +1773,6 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
       
 #align real.ediam_eq Real.ediam_eq
 
-/- warning: real.diam_eq -> Real.diam_eq is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.sSup.{0} Real Real.hasSup s) (InfSet.sInf.{0} Real Real.hasInf s)))
-but is expected to have type
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.sSup.{0} Real Real.instSupSetReal s) (InfSet.sInf.{0} Real Real.instInfSetReal s)))
-Case conversion may be inaccurate. Consider using '#align real.diam_eq Real.diam_eqₓ'. -/
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
 theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s :=
   by
@@ -2993,12 +1781,6 @@ theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s
   exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
-/- warning: real.ediam_Ioo -> Real.ediam_Ioo is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Ioo.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Ioo.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.ediam_Ioo Real.ediam_Iooₓ'. -/
 @[simp]
 theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) :=
   by
@@ -3007,12 +1789,6 @@ theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a)
   · rw [Real.ediam_eq (bounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h]
 #align real.ediam_Ioo Real.ediam_Ioo
 
-/- warning: real.ediam_Icc -> Real.ediam_Icc is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Icc.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Icc.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.ediam_Icc Real.ediam_Iccₓ'. -/
 @[simp]
 theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
   by
@@ -3021,78 +1797,36 @@ theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a)
   · simp [h, h.le]
 #align real.ediam_Icc Real.ediam_Icc
 
-/- warning: real.ediam_Ico -> Real.ediam_Ico is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Ico.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Ico.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.ediam_Ico Real.ediam_Icoₓ'. -/
 @[simp]
 theorem ediam_Ico (a b : ℝ) : EMetric.diam (Ico a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ico_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ico_self)
 #align real.ediam_Ico Real.ediam_Ico
 
-/- warning: real.ediam_Ioc -> Real.ediam_Ioc is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Ioc.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Ioc.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.ediam_Ioc Real.ediam_Iocₓ'. -/
 @[simp]
 theorem ediam_Ioc (a b : ℝ) : EMetric.diam (Ioc a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ioc_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ioc_self)
 #align real.ediam_Ioc Real.ediam_Ioc
 
-/- warning: real.diam_Icc -> Real.diam_Icc is a dubious translation:
-lean 3 declaration is
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Icc.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Icc.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.diam_Icc Real.diam_Iccₓ'. -/
 theorem diam_Icc {a b : ℝ} (h : a ≤ b) : Metric.diam (Icc a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Icc Real.diam_Icc
 
-/- warning: real.diam_Ico -> Real.diam_Ico is a dubious translation:
-lean 3 declaration is
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ico.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ico.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.diam_Ico Real.diam_Icoₓ'. -/
 theorem diam_Ico {a b : ℝ} (h : a ≤ b) : Metric.diam (Ico a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ico Real.diam_Ico
 
-/- warning: real.diam_Ioc -> Real.diam_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioc.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioc.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.diam_Ioc Real.diam_Iocₓ'. -/
 theorem diam_Ioc {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioc a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioc Real.diam_Ioc
 
-/- warning: real.diam_Ioo -> Real.diam_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioo.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
-but is expected to have type
-  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioo.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
-Case conversion may be inaccurate. Consider using '#align real.diam_Ioo Real.diam_Iooₓ'. -/
 theorem diam_Ioo {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioo a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioo Real.diam_Ioo
 
 end Real
 
-/- warning: edist_le_tsum_of_edist_le_of_tendsto -> edist_le_tsum_of_edist_le_of_tendsto is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n m)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n m)))))
-Case conversion may be inaccurate. Consider using '#align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendstoₓ'. -/
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
 then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`. -/
 theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ≥0∞)
@@ -3105,12 +1839,6 @@ theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ
   exact sum_le_tsum _ (fun _ _ => zero_le _) ENNReal.summable
 #align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendsto
 
-/- warning: edist_le_tsum_of_edist_le_of_tendsto₀ -> edist_le_tsum_of_edist_le_of_tendsto₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d m))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) a) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (m : Nat) => d m))))
-Case conversion may be inaccurate. Consider using '#align edist_le_tsum_of_edist_le_of_tendsto₀ edist_le_tsum_of_edist_le_of_tendsto₀ₓ'. -/
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
 then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`. -/
 theorem edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ℝ≥0∞)
Diff
@@ -98,10 +98,7 @@ lean 3 declaration is
 but is expected to have type
   forall {b : ENNReal}, IsOpen.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Set.Ico.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) b)
 Case conversion may be inaccurate. Consider using '#align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zeroₓ'. -/
-theorem isOpen_Ico_zero : IsOpen (Ico 0 b) :=
-  by
-  rw [ENNReal.Ico_eq_Iio]
-  exact isOpen_Iio
+theorem isOpen_Ico_zero : IsOpen (Ico 0 b) := by rw [ENNReal.Ico_eq_Iio]; exact isOpen_Iio
 #align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zero
 
 /- warning: ennreal.open_embedding_coe -> ENNReal.openEmbedding_coe is a dubious translation:
@@ -111,9 +108,7 @@ but is expected to have type
   OpenEmbedding.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
 Case conversion may be inaccurate. Consider using '#align ennreal.open_embedding_coe ENNReal.openEmbedding_coeₓ'. -/
 theorem openEmbedding_coe : OpenEmbedding (coe : ℝ≥0 → ℝ≥0∞) :=
-  ⟨embedding_coe, by
-    convert is_open_ne_top
-    ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
+  ⟨embedding_coe, by convert is_open_ne_top; ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
 #align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
 
 /- warning: ennreal.coe_range_mem_nhds -> ENNReal.coe_range_mem_nhds is a dubious translation:
@@ -464,14 +459,9 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
   rw [_root_.mem_nhds_iff]
   by_cases x0 : x = 0
   · use Iio (x + ε)
-    have : Iio (x + ε) ⊆ Icc (x - ε) (x + ε)
-    intro a
-    rw [x0]
-    simpa using le_of_lt
-    use this
-    exact ⟨isOpen_Iio, mem_Iio_self_add xt ε0⟩
-  · use Ioo (x - ε) (x + ε)
-    use Ioo_subset_Icc_self
+    have : Iio (x + ε) ⊆ Icc (x - ε) (x + ε); intro a; rw [x0]; simpa using le_of_lt
+    use this; exact ⟨isOpen_Iio, mem_Iio_self_add xt ε0⟩
+  · use Ioo (x - ε) (x + ε); use Ioo_subset_Icc_self
     exact ⟨isOpen_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0⟩
 #align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
 
@@ -496,9 +486,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     have xxb : x - (x - b) = b := sub_sub_cancel xt bx.le
     refine' iInf_le_of_le (x - b) (iInf_le_of_le xb_pos _)
     simp only [mem_principal, le_principal_iff]
-    intro y
-    rintro ⟨h₁, h₂⟩
-    rw [xxb] at h₁
+    intro y; rintro ⟨h₁, h₂⟩; rw [xxb] at h₁;
     calc
       a < b := ab
       _ ≤ y := h₁
@@ -508,9 +496,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
     have xbx : x + (b - x) = b := add_tsub_cancel_of_le xb.le
     refine' iInf_le_of_le (b - x) (iInf_le_of_le bx_pos _)
     simp only [mem_principal, le_principal_iff]
-    intro y
-    rintro ⟨h₁, h₂⟩
-    rw [xbx] at h₂
+    intro y; rintro ⟨h₁, h₂⟩; rw [xbx] at h₂;
     calc
       y ≤ b := h₂
       _ < a := ba
@@ -588,8 +574,7 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
   by
   cases a <;> cases b
-  · simp only [eq_self_iff_true, not_true, Ne.def, none_eq_top, or_self_iff] at h
-    contradiction
+  · simp only [eq_self_iff_true, not_true, Ne.def, none_eq_top, or_self_iff] at h; contradiction
   · simp only [some_eq_coe, WithTop.top_sub_coe, none_eq_top]
     apply tendsto_nhds_top_iff_nnreal.2 fun n => _
     rw [nhds_prod_eq, eventually_prod_iff]
@@ -653,8 +638,7 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     refine' this.mono fun c hc => _
     exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2)
   cases a
-  · simp [none_eq_top] at hb
-    simp [none_eq_top, ht b hb, top_mul, hb]
+  · simp [none_eq_top] at hb; simp [none_eq_top, ht b hb, top_mul, hb]
   cases b
   · simp [none_eq_top] at ha
     simp [*, nhds_swap (a : ℝ≥0∞) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (· ∘ ·),
@@ -1050,10 +1034,8 @@ but is expected to have type
   forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a (m b)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.const_div ENNReal.Tendsto.const_divₓ'. -/
 protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
-    (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) :=
-  by
-  apply tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm)
-  simp [hb]
+    (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) := by
+  apply tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm); simp [hb]
 #align ennreal.tendsto.const_div ENNReal.Tendsto.const_div
 
 /- warning: ennreal.tendsto.div_const -> ENNReal.Tendsto.div_const is a dubious translation:
@@ -1063,10 +1045,8 @@ but is expected to have type
   forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (m x) b) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.div_const ENNReal.Tendsto.div_constₓ'. -/
 protected theorem Tendsto.div_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
-    (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : Tendsto (fun x => m x / b) f (𝓝 (a / b)) :=
-  by
-  apply tendsto.mul_const hm
-  simp [ha]
+    (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : Tendsto (fun x => m x / b) f (𝓝 (a / b)) := by
+  apply tendsto.mul_const hm; simp [ha]
 #align ennreal.tendsto.div_const ENNReal.Tendsto.div_const
 
 /- warning: ennreal.tendsto_inv_nat_nhds_zero -> ENNReal.tendsto_inv_nat_nhds_zero is a dubious translation:
@@ -1097,10 +1077,8 @@ but is expected to have type
   forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
 Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add' ENNReal.biSup_add'ₓ'. -/
 theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
-    (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a :=
-  by
-  haveI : Nonempty { i // p i } := nonempty_subtype.2 h
-  simp only [iSup_subtype', supr_add]
+    (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a := by
+  haveI : Nonempty { i // p i } := nonempty_subtype.2 h; simp only [iSup_subtype', supr_add]
 #align ennreal.bsupr_add' ENNReal.biSup_add'
 
 /- warning: ennreal.add_bsupr' -> ENNReal.add_biSup' is a dubious translation:
@@ -1175,10 +1153,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'ₓ'. -/
 theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ (i) (hi : p i) (j) (hj : q j), f i + g j ≤ a) :
-    ((⨆ (i) (hi : p i), f i) + ⨆ (j) (hj : q j), g j) ≤ a :=
-  by
-  simp_rw [bsupr_add' hp, add_bsupr' hq]
-  exact iSup₂_le fun i hi => iSup₂_le (h i hi)
+    ((⨆ (i) (hi : p i), f i) + ⨆ (j) (hj : q j), g j) ≤ a := by
+  simp_rw [bsupr_add' hp, add_bsupr' hq]; exact iSup₂_le fun i hi => iSup₂_le (h i hi)
 #align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'
 
 /- warning: ennreal.bsupr_add_bsupr_le -> ENNReal.biSup_add_biSup_le is a dubious translation:
@@ -1248,8 +1224,7 @@ Case conversion may be inaccurate. Consider using '#align ennreal.mul_supr ENNRe
 theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i :=
   by
   by_cases hf : ∀ i, f i = 0
-  · obtain rfl : f = fun _ => 0
-    exact funext hf
+  · obtain rfl : f = fun _ => 0; exact funext hf
     simp only [supr_zero_eq_zero, MulZeroClass.mul_zero]
   · refine' (monotone_id.const_mul' _).map_iSup_of_continuousAt _ (MulZeroClass.mul_zero a)
     refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
@@ -1880,10 +1855,8 @@ but is expected to have type
   forall (f : Nat -> ENNReal), Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsumₓ'. -/
 theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
-    Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' n, f n)) :=
-  by
-  rw [← has_sum_iff_tendsto_nat]
-  exact ennreal.summable.has_sum
+    Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' n, f n)) := by
+  rw [← has_sum_iff_tendsto_nat]; exact ennreal.summable.has_sum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
 /- warning: ennreal.to_nnreal_apply_of_tsum_ne_top -> ENNReal.toNNReal_apply_of_tsum_ne_top is a dubious translation:
@@ -1931,8 +1904,7 @@ but is expected to have type
   forall {f : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (x : Nat) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_topₓ'. -/
 theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
-    Tendsto f atTop (𝓝 0) := by
-  rw [← Nat.cofinite_eq_atTop]
+    Tendsto f atTop (𝓝 0) := by rw [← Nat.cofinite_eq_atTop];
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
 #align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_top
 
@@ -1976,11 +1948,8 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑'
   by
   have h₃ : (∑' i, f i - g i) = (∑' i, f i - g i + g i) - ∑' i, g i := by
     rw [ENNReal.tsum_add, ENNReal.add_sub_cancel_right h₁]
-  have h₄ : (fun i => f i - g i + g i) = f := by
-    ext n
-    rw [tsub_add_cancel_of_le (h₂ n)]
-  rw [h₄] at h₃
-  apply h₃
+  have h₄ : (fun i => f i - g i + g i) = f := by ext n; rw [tsub_add_cancel_of_le (h₂ n)]
+  rw [h₄] at h₃; apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
 
 /- warning: ennreal.tsum_mono_subtype -> ENNReal.tsum_mono_subtype is a dubious translation:
@@ -2006,10 +1975,7 @@ Case conversion may be inaccurate. Consider using '#align ennreal.tsum_union_le
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     (∑' x : s ∪ t, f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
   calc
-    (∑' x : s ∪ t, f x) = ∑' x : s ∪ t \ s, f x :=
-      by
-      apply tsum_congr_subtype
-      rw [union_diff_self]
+    (∑' x : s ∪ t, f x) = ∑' x : s ∪ t \ s, f x := by apply tsum_congr_subtype; rw [union_diff_self]
     _ = (∑' x : s, f x) + ∑' x : t \ s, f x :=
       (tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable)
     _ ≤ (∑' x : s, f x) + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
@@ -2072,8 +2038,7 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
     (∑' n, f (n + 1)) = ∞ :=
   by
   rw [← tsum_eq_tsum_of_hasSum_iff_hasSum fun _ => (notMemRangeEquiv 1).hasSum_iff]
-  swap
-  · infer_instance
+  swap; · infer_instance
   have h₁ :
     ((∑' b : { n // n ∈ Finset.range 1 }, f b) + ∑' b : { n // n ∉ Finset.range 1 }, f b) =
       ∑' b, f b :=
@@ -2162,9 +2127,7 @@ theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : 
     (hx : x ≠ ∞) : fi.Tendsto (fun n => (f n).toReal) (𝓝 x.toReal) ↔ fi.Tendsto f (𝓝 x) :=
   by
   refine' ⟨fun h => _, fun h => tendsto.comp (ENNReal.tendsto_toReal hx) h⟩
-  have h_eq : f = fun n => ENNReal.ofReal (f n).toReal :=
-    by
-    ext1 n
+  have h_eq : f = fun n => ENNReal.ofReal (f n).toReal := by ext1 n;
     rw [ENNReal.ofReal_toReal (hf n)]
   rw [h_eq, ← ENNReal.ofReal_toReal hx]
   exact ENNReal.tendsto_ofReal h
@@ -2470,10 +2433,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (g i)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (b : α) => g b))))
 Case conversion may be inaccurate. Consider using '#align nnreal.tsum_pos NNReal.tsum_posₓ'. -/
-theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i) : 0 < ∑' b, g b :=
-  by
-  rw [← tsum_zero]
-  exact tsum_lt_tsum (fun a => zero_le _) hi hg
+theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i) : 0 < ∑' b, g b := by
+  rw [← tsum_zero]; exact tsum_lt_tsum (fun a => zero_le _) hi hg
 #align nnreal.tsum_pos NNReal.tsum_pos
 
 /- warning: nnreal.tsum_eq_add_tsum_ite -> NNReal.tsum_eq_add_tsum_ite is a dubious translation:
@@ -2678,10 +2639,8 @@ but is expected to have type
   forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> Real}, (forall (x : Sigma.{u1, u2} α (fun (x : α) => β x)), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f x)) -> (Iff (Summable.{0, max u1 u2} Real (Sigma.{u1, u2} α (fun (x : α) => β x)) Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (And (forall (x : α), Summable.{0, u2} Real (β x) Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => tsum.{0, u2} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))))))
 Case conversion may be inaccurate. Consider using '#align summable_sigma_of_nonneg summable_sigma_of_nonnegₓ'. -/
 theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
-    Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ :=
-  by
-  lift f to (Σx, β x) → ℝ≥0 using hf
-  exact_mod_cast NNReal.summable_sigma
+    Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
+  lift f to (Σx, β x) → ℝ≥0 using hf; exact_mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
 /- warning: summable_of_sum_le -> summable_of_sum_le is a dubious translation:
@@ -2868,8 +2827,7 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
     · have : f =ᶠ[𝓝 x] fun _ => ∞ :=
         by
         filter_upwards [EMetric.ball_mem_nhds x ENNReal.coe_lt_top]
-        refine' fun y (hy : edist y x < ⊤) => _
-        rw [edist_comm] at hy
+        refine' fun y (hy : edist y x < ⊤) => _; rw [edist_comm] at hy
         simpa [hx, ENNReal.mul_ne_top hC hy.ne] using h x y
       exact this.continuous_at
     · refine' (ENNReal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
Diff
@@ -383,8 +383,8 @@ Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe_nh
 @[simp, norm_cast]
 theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by
-  rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff] <;> [simp, infer_instance,
-    infer_instance]
+  rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff] <;>
+    [simp;infer_instance;infer_instance]
 #align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_top
 
 /- warning: ennreal.tendsto_of_real_at_top -> ENNReal.tendsto_ofReal_atTop is a dubious translation:
@@ -1540,7 +1540,7 @@ Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_ne_to
 theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ≥0∞)) ≠ ∞ ↔ Summable f :=
   by
   refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
-  lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h
+  lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h with a ha
   refine' ⟨a, ENNReal.hasSum_coe.1 _⟩
   rw [ha]
   exact ennreal.summable.has_sum
Diff
@@ -1276,11 +1276,23 @@ theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.iSup_mul
 
+/- warning: ennreal.smul_supr -> ENNReal.smul_iSup is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_1 : SMul.{u2, 0} R ENNReal] [_inst_2 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_1 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_1] (f : ι -> ENNReal) (c : R), Eq.{1} ENNReal (SMul.smul.{u2, 0} R ENNReal _inst_1 c (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => SMul.smul.{u2, 0} R ENNReal _inst_1 c (f i)))
+but is expected to have type
+  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_1 : SMul.{u1, 0} R ENNReal] [_inst_2 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_1 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1] (f : ι -> ENNReal) (c : R), Eq.{1} ENNReal (HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c (f i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.smul_supr ENNReal.smul_iSupₓ'. -/
 theorem smul_iSup {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
     (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
   simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup _), ENNReal.mul_iSup]
 #align ennreal.smul_supr ENNReal.smul_iSup
 
+/- warning: ennreal.smul_Sup -> ENNReal.smul_sSup is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : SMul.{u1, 0} R ENNReal] [_inst_2 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_1 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_1] (s : Set.{0} ENNReal) (c : R), Eq.{1} ENNReal (SMul.smul.{u1, 0} R ENNReal _inst_1 c (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) => SMul.smul.{u1, 0} R ENNReal _inst_1 c i)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : SMul.{u1, 0} R ENNReal] [_inst_2 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_1 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1] (s : Set.{0} ENNReal) (c : R), Eq.{1} ENNReal (HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) => HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_1) c i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.smul_Sup ENNReal.smul_sSupₓ'. -/
 theorem smul_sSup {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
     c • sSup s = ⨆ i ∈ s, c • i := by
   simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_sSup, smul_one_mul]
@@ -1426,7 +1438,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14964 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14966 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14964 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14966) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
@@ -1528,7 +1540,7 @@ Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_ne_to
 theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ≥0∞)) ≠ ∞ ↔ Summable f :=
   by
   refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
-  lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h with a ha
+  lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h
   refine' ⟨a, ENNReal.hasSum_coe.1 _⟩
   rw [ha]
   exact ennreal.summable.has_sum
@@ -1809,6 +1821,12 @@ protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
+/- warning: ennreal.tsum_const_smul -> ENNReal.tsum_const_smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} {R : Type.{u2}} [_inst_1 : SMul.{u2, 0} R ENNReal] [_inst_2 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_1 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_1] (a : R), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => SMul.smul.{u2, 0} R ENNReal _inst_1 a (f i))) (SMul.smul.{u2, 0} R ENNReal _inst_1 a (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} {R : Type.{u2}} [_inst_1 : SMul.{u2, 0} R ENNReal] [_inst_2 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_1 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1] (a : R), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => HSMul.hSMul.{u2, 0, 0} R ENNReal ENNReal (instHSMul.{u2, 0} R ENNReal _inst_1) a (f i))) (HSMul.hSMul.{u2, 0, 0} R ENNReal ENNReal (instHSMul.{u2, 0} R ENNReal _inst_1) a (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_const_smul ENNReal.tsum_const_smulₓ'. -/
 protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
     (∑' i, a • f i) = a • ∑' i, f i := by
   simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
@@ -2002,7 +2020,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21608 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21999 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_leₓ'. -/
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
@@ -2670,7 +2688,7 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
 lean 3 declaration is
   forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26995 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.27386 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
Diff
@@ -1378,7 +1378,7 @@ section Liminf
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt (x n) R) l))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -1402,7 +1402,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt R (x n)) l))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -1426,7 +1426,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
Diff
@@ -286,7 +286,7 @@ def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
 
 /- warning: ennreal.lt_top_homeomorph_nnreal -> ENNReal.ltTopHomeomorphNNReal is a dubious translation:
 lean 3 declaration is
-  Homeomorph.{0, 0} (coeSort.{1, 2} (Set.{0} ENNReal) Type (Set.hasCoeToSort.{0} ENNReal) (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) NNReal (Subtype.topologicalSpace.{0} ENNReal (fun (x : ENNReal) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) ENNReal.topologicalSpace) NNReal.topologicalSpace
+  Homeomorph.{0, 0} (coeSort.{1, 2} (Set.{0} ENNReal) Type (Set.hasCoeToSort.{0} ENNReal) (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) NNReal (Subtype.topologicalSpace.{0} ENNReal (fun (x : ENNReal) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) ENNReal.topologicalSpace) NNReal.topologicalSpace
 but is expected to have type
   Homeomorph.{0, 0} (Set.Elem.{0} ENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) NNReal (instTopologicalSpaceSubtype.{0} ENNReal (fun (x : ENNReal) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) ENNReal.instTopologicalSpaceENNReal) NNReal.instTopologicalSpaceNNReal
 Case conversion may be inaccurate. Consider using '#align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNRealₓ'. -/
@@ -319,7 +319,7 @@ theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
 
 /- warning: ennreal.nhds_top_basis -> ENNReal.nhds_top_basis is a dubious translation:
 lean 3 declaration is
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
 but is expected to have type
   Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a)
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top_basis ENNReal.nhds_top_basisₓ'. -/
@@ -329,7 +329,7 @@ theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :
 
 /- warning: ennreal.tendsto_nhds_top_iff_nnreal -> ENNReal.tendsto_nhds_top_iff_nnreal is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x) (m a)) f)
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x) (m a)) f)
 but is expected to have type
   forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some x) (m a)) f)
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnrealₓ'. -/
@@ -340,7 +340,7 @@ theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
 
 /- warning: ennreal.tendsto_nhds_top_iff_nat -> ENNReal.tendsto_nhds_top_iff_nat is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f)
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f)
 but is expected to have type
   forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (m a)) f)
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_natₓ'. -/
@@ -354,7 +354,7 @@ theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
 
 /- warning: ennreal.tendsto_nhds_top -> ENNReal.tendsto_nhds_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
 but is expected to have type
   forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_topₓ'. -/
@@ -410,7 +410,7 @@ theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a)
 
 /- warning: ennreal.nhds_zero_basis -> ENNReal.nhds_zero_basis is a dubious translation:
 lean 3 declaration is
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
 but is expected to have type
   Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a)
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero_basis ENNReal.nhds_zero_basisₓ'. -/
@@ -420,7 +420,7 @@ theorem nhds_zero_basis : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ =
 
 /- warning: ennreal.nhds_zero_basis_Iic -> ENNReal.nhds_zero_basis_Iic is a dubious translation:
 lean 3 declaration is
-  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
 but is expected to have type
   Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iicₓ'. -/
@@ -477,7 +477,7 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
 
 /- warning: ennreal.nhds_of_ne_top -> ENNReal.nhds_of_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
+  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
 but is expected to have type
   forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_topₓ'. -/
@@ -519,7 +519,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
 
 /- warning: ennreal.tendsto_nhds -> ENNReal.tendsto_nhds is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε))) f)))
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε))) f)))
 but is expected to have type
   forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε))) f)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds ENNReal.tendsto_nhdsₓ'. -/
@@ -532,7 +532,7 @@ protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ
 
 /- warning: ennreal.tendsto_nhds_zero -> ENNReal.tendsto_nhds_zero is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (u x) ε) f))
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (u x) ε) f))
 but is expected to have type
   forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (u x) ε) f))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zeroₓ'. -/
@@ -545,7 +545,7 @@ protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
 
 /- warning: ennreal.tendsto_at_top -> ENNReal.tendsto_atTop is a dubious translation:
 lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε)))))))
+  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toHasLe.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε)))))))
 but is expected to have type
   forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε)))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top ENNReal.tendsto_atTopₓ'. -/
@@ -566,7 +566,7 @@ instance : ContinuousAdd ℝ≥0∞ :=
 
 /- warning: ennreal.tendsto_at_top_zero -> ENNReal.tendsto_atTop_zero is a dubious translation:
 lean 3 declaration is
-  forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f n) ε))))
+  forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toHasLe.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f n) ε))))
 but is expected to have type
   forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f n) ε))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zeroₓ'. -/
@@ -906,7 +906,7 @@ protected theorem Tendsto.pow {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ
 
 /- warning: ennreal.le_of_forall_lt_one_mul_le -> ENNReal.le_of_forall_lt_one_mul_le is a dubious translation:
 lean 3 declaration is
-  forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x y)
+  forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x y)
 but is expected to have type
   forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x y)
 Case conversion may be inaccurate. Consider using '#align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_leₓ'. -/
@@ -1158,7 +1158,7 @@ theorem add_iSup {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup
 
 /- warning: ennreal.supr_add_supr_le -> ENNReal.iSup_add_iSup_le is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} [_inst_1 : Nonempty.{u1} ι] [_inst_2 : Nonempty.{u2} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' g)) a)
+  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} [_inst_1 : Nonempty.{u1} ι] [_inst_2 : Nonempty.{u2} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' g)) a)
 but is expected to have type
   forall {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' g)) a)
 Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_leₓ'. -/
@@ -1169,7 +1169,7 @@ theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι
 
 /- warning: ennreal.bsupr_add_bsupr_le' -> ENNReal.biSup_add_biSup_le' is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (Exists.{u2} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (q j) (fun (hj : q j) => g j)))) a))
+  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (Exists.{u2} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (q j) (fun (hj : q j) => g j)))) a))
 but is expected to have type
   forall {ι : Sort.{u2}} {ι' : Sort.{u1}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Exists.{u1} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (q j) (fun (hj : q j) => g j)))) a))
 Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'ₓ'. -/
@@ -1183,7 +1183,7 @@ theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp :
 
 /- warning: ennreal.bsupr_add_bsupr_le -> ENNReal.biSup_add_biSup_le is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {ι' : Type.{u2}} {s : Set.{u1} ι} {t : Set.{u2} ι'}, (Set.Nonempty.{u1} ι s) -> (Set.Nonempty.{u2} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) -> (forall (j : ι'), (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) (fun (H : Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) => g j)))) a))
+  forall {ι : Type.{u1}} {ι' : Type.{u2}} {s : Set.{u1} ι} {t : Set.{u2} ι'}, (Set.Nonempty.{u1} ι s) -> (Set.Nonempty.{u2} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) -> (forall (j : ι'), (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) (fun (H : Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) => g j)))) a))
 but is expected to have type
   forall {ι : Type.{u2}} {ι' : Type.{u1}} {s : Set.{u2} ι} {t : Set.{u1} ι'}, (Set.Nonempty.{u2} ι s) -> (Set.Nonempty.{u1} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (forall (j : ι'), (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) a))
 Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_leₓ'. -/
@@ -1195,7 +1195,7 @@ theorem biSup_add_biSup_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty)
 
 /- warning: ennreal.supr_add_supr -> ENNReal.iSup_add_iSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
 but is expected to have type
   forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
 Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr ENNReal.iSup_add_iSupₓ'. -/
@@ -1318,7 +1318,7 @@ protected theorem tendsto_coe_sub :
 
 /- warning: ennreal.sub_supr -> ENNReal.sub_iSup is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
+  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
 but is expected to have type
   forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a (b i))))
 Case conversion may be inaccurate. Consider using '#align ennreal.sub_supr ENNReal.sub_iSupₓ'. -/
@@ -1350,7 +1350,7 @@ theorem exists_countable_dense_no_zero_top :
 
 /- warning: ennreal.exists_lt_add_of_lt_add -> ENNReal.exists_lt_add_of_lt_add is a dubious translation:
 lean 3 declaration is
-  forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) z' z) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y' z'))))))
+  forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) z' z) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y' z'))))))
 but is expected to have type
   forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) z' z) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) y' z'))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_addₓ'. -/
@@ -1627,7 +1627,7 @@ protected theorem tsum_add : (∑' a, f a + g a) = (∑' a, f a) + ∑' a, g a :
 
 /- warning: ennreal.tsum_le_tsum -> ENNReal.tsum_le_tsum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => g a)))
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => g a)))
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => g a)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_le_tsum ENNReal.tsum_le_tsumₓ'. -/
@@ -1637,7 +1637,7 @@ protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : (∑' a, f a) ≤ ∑'
 
 /- warning: ennreal.sum_le_tsum -> ENNReal.sum_le_tsum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x))
+  forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x))
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x))
 Case conversion may be inaccurate. Consider using '#align ennreal.sum_le_tsum ENNReal.sum_le_tsumₓ'. -/
@@ -1690,7 +1690,7 @@ protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
 
 /- warning: ennreal.le_tsum -> ENNReal.le_tsum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))
+  forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))
 Case conversion may be inaccurate. Consider using '#align ennreal.le_tsum ENNReal.le_tsumₓ'. -/
@@ -1721,7 +1721,7 @@ protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) =
 
 /- warning: ennreal.lt_top_of_tsum_ne_top -> ENNReal.lt_top_of_tsum_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_topₓ'. -/
@@ -1949,7 +1949,7 @@ protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x
 
 /- warning: ennreal.tsum_sub -> ENNReal.tsum_sub is a dubious translation:
 lean 3 declaration is
-  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i))))
+  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i))))
 but is expected to have type
   forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sub ENNReal.tsum_subₓ'. -/
@@ -1967,7 +1967,7 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑'
 
 /- warning: ennreal.tsum_mono_subtype -> ENNReal.tsum_mono_subtype is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
+  forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
 but is expected to have type
   forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (x : Set.Elem.{u1} α s) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) x))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α t) (fun (x : Set.Elem.{u1} α t) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtypeₓ'. -/
@@ -1981,7 +1981,7 @@ theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
 
 /- warning: ennreal.tsum_union_le -> ENNReal.tsum_union_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)))))) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
+  forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)))))) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
 but is expected to have type
   forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (fun (x : Set.Elem.{u1} α (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (x : Set.Elem.{u1} α s) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) x))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α t) (fun (x : Set.Elem.{u1} α t) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_union_le ENNReal.tsum_union_leₓ'. -/
@@ -2000,7 +2000,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 
 /- warning: ennreal.tsum_bUnion_le -> ENNReal.tsum_biUnion_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21608 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_leₓ'. -/
@@ -2021,7 +2021,7 @@ theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
 
 /- warning: ennreal.tsum_Union_le -> ENNReal.tsum_iUnion_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_Union_le ENNReal.tsum_iUnion_leₓ'. -/
@@ -2070,7 +2070,7 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
 
 /- warning: ennreal.finite_const_le_of_tsum_ne_top -> ENNReal.finite_const_le_of_tsum_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))))
+  forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))))
 but is expected to have type
   forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_topₓ'. -/
@@ -2098,7 +2098,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
 
 /- warning: ennreal.finset_card_const_le_le_of_tsum_le -> ENNReal.finset_card_const_le_le_of_tsum_le is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) c ε))))
+  forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) c ε))))
 but is expected to have type
   forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) c ε))))
 Case conversion may be inaccurate. Consider using '#align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_leₓ'. -/
@@ -2225,7 +2225,7 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f
 
 /- warning: nnreal.exists_le_has_sum_of_le -> NNReal.exists_le_hasSum_of_le is a dubious translation:
 lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) -> (Exists.{1} NNReal (fun (p : NNReal) => Exists.{0} (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) (fun (H : LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) => HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g p)))
+  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) -> (Exists.{1} NNReal (fun (p : NNReal) => Exists.{0} (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) (fun (H : LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) => HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g p)))
 but is expected to have type
   forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) -> (Exists.{1} NNReal (fun (p : NNReal) => And (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) p r) (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g p)))
 Case conversion may be inaccurate. Consider using '#align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_leₓ'. -/
@@ -2242,7 +2242,7 @@ theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b
 
 /- warning: nnreal.summable_of_le -> NNReal.summable_of_le is a dubious translation:
 lean 3 declaration is
-  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g)
+  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g)
 but is expected to have type
   forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g)
 Case conversion may be inaccurate. Consider using '#align nnreal.summable_of_le NNReal.summable_of_leₓ'. -/
@@ -2299,7 +2299,7 @@ theorem summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
 
 /- warning: nnreal.summable_of_sum_range_le -> NNReal.summable_of_sum_range_le is a dubious translation:
 lean 3 declaration is
-  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)
+  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)
 but is expected to have type
   forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)
 Case conversion may be inaccurate. Consider using '#align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_leₓ'. -/
@@ -2313,7 +2313,7 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
 
 /- warning: nnreal.tsum_le_of_sum_range_le -> NNReal.tsum_le_of_sum_range_le is a dubious translation:
 lean 3 declaration is
-  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
+  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
 but is expected to have type
   forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal Nat (fun (n : Nat) => f n)) c)
 Case conversion may be inaccurate. Consider using '#align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_leₓ'. -/
@@ -2324,7 +2324,7 @@ theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
 
 /- warning: nnreal.tsum_comp_le_tsum_of_inj -> NNReal.tsum_comp_le_tsum_of_inj is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => f x))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => f x))))
 Case conversion may be inaccurate. Consider using '#align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_injₓ'. -/
@@ -2398,7 +2398,7 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f
 
 /- warning: nnreal.has_sum_lt -> NNReal.hasSum_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g sg) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) sf sg)
 Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_lt NNReal.hasSum_ltₓ'. -/
@@ -2412,7 +2412,7 @@ theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a :
 
 /- warning: nnreal.has_sum_strict_mono -> NNReal.hasSum_strict_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toHasLt.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) sf sg)
 Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_strict_mono NNReal.hasSum_strict_monoₓ'. -/
@@ -2425,7 +2425,7 @@ theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum
 
 /- warning: nnreal.tsum_lt_tsum -> NNReal.tsum_lt_tsum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => g n)))
 Case conversion may be inaccurate. Consider using '#align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsumₓ'. -/
@@ -2436,7 +2436,7 @@ theorem tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g
 
 /- warning: nnreal.tsum_strict_mono -> NNReal.tsum_strict_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toHasLt.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => g n)))
 Case conversion may be inaccurate. Consider using '#align nnreal.tsum_strict_mono NNReal.tsum_strict_monoₓ'. -/
@@ -2448,7 +2448,7 @@ theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) :
 
 /- warning: nnreal.tsum_pos -> NNReal.tsum_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (g i)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (b : α) => g b))))
+  forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (g i)) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (b : α) => g b))))
 but is expected to have type
   forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (g i)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (b : α) => g b))))
 Case conversion may be inaccurate. Consider using '#align nnreal.tsum_pos NNReal.tsum_posₓ'. -/
@@ -2516,7 +2516,7 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞
 
 /- warning: ennreal.tsum_le_of_sum_range_le -> ENNReal.tsum_le_of_sum_range_le is a dubious translation:
 lean 3 declaration is
-  forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
+  forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
 but is expected to have type
   forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)) c)
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_leₓ'. -/
@@ -2527,7 +2527,7 @@ theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
 
 /- warning: ennreal.has_sum_lt -> ENNReal.hasSum_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f sf) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace g sg) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) sf sg)
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f sf) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace g sg) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) sf sg)
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f sf) -> (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal g sg) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) sf sg)
 Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_lt ENNReal.hasSum_ltₓ'. -/
@@ -2548,7 +2548,7 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
 
 /- warning: ennreal.tsum_lt_tsum -> ENNReal.tsum_lt_tsum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α f) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => g x)))
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α f) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => g x)))
 but is expected to have type
   forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α f) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => g x)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsumₓ'. -/
@@ -2778,7 +2778,7 @@ theorem tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} :
 
 /- warning: emetric.cauchy_seq_iff_le_tendsto_0 -> EMetric.cauchySeq_iff_le_tendsto_0 is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))))
 Case conversion may be inaccurate. Consider using '#align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0ₓ'. -/
@@ -2835,7 +2835,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
 
 /- warning: continuous_of_le_add_edist -> continuous_of_le_add_edist is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) C (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.topologicalSpace f)
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) C (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.topologicalSpace f)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) C (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.instTopologicalSpaceENNReal f)
 Case conversion may be inaccurate. Consider using '#align continuous_of_le_add_edist continuous_of_le_add_edistₓ'. -/
@@ -2916,7 +2916,7 @@ theorem Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf :
 
 /- warning: cauchy_seq_of_edist_le_of_tsum_ne_top -> cauchySeq_of_edist_le_of_tsum_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat d) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid) f)
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat d) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid) f)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat d) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (Lattice.toSemilatticeSup.{0} Nat Nat.instLatticeNat) f)
 Case conversion may be inaccurate. Consider using '#align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_topₓ'. -/
@@ -3113,7 +3113,7 @@ end Real
 
 /- warning: edist_le_tsum_of_edist_le_of_tendsto -> edist_le_tsum_of_edist_le_of_tendsto is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n m)))))
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n m)))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n m)))))
 Case conversion may be inaccurate. Consider using '#align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendstoₓ'. -/
@@ -3131,7 +3131,7 @@ theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ
 
 /- warning: edist_le_tsum_of_edist_le_of_tendsto₀ -> edist_le_tsum_of_edist_le_of_tendsto₀ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d m))))
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d m))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) a) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (m : Nat) => d m))))
 Case conversion may be inaccurate. Consider using '#align edist_le_tsum_of_edist_le_of_tendsto₀ edist_le_tsum_of_edist_le_of_tendsto₀ₓ'. -/
Diff
@@ -454,7 +454,7 @@ theorem nhdsWithin_Ioi_zero_neBot : (𝓝[>] (0 : ℝ≥0∞)).ne_bot :=
 lean 3 declaration is
   forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Membership.Mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (Filter.hasMem.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε)) (nhds.{0} ENNReal ENNReal.topologicalSpace x))
 but is expected to have type
-  forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Membership.mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (instMembershipSetFilter.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x))
+  forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Membership.mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (instMembershipSetFilter.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x))
 Case conversion may be inaccurate. Consider using '#align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhdsₓ'. -/
 -- using Icc because
 -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0
@@ -479,7 +479,7 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
 lean 3 declaration is
   forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
 but is expected to have type
-  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
+  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_topₓ'. -/
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   by
@@ -521,7 +521,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
 lean 3 declaration is
   forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε))) f)))
 but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε))) f)))
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε))) f)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds ENNReal.tendsto_nhdsₓ'. -/
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
@@ -547,7 +547,7 @@ protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
 lean 3 declaration is
   forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε)))))))
 but is expected to have type
-  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε)))))))
+  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε)))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top ENNReal.tendsto_atTopₓ'. -/
 protected theorem tendsto_atTop [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} {a : ℝ≥0∞}
     (ha : a ≠ ⊤) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) := by
@@ -582,7 +582,7 @@ protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f
 lean 3 declaration is
   forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a b)))
 but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a b)))
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a b)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_sub ENNReal.tendsto_subₓ'. -/
 theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
@@ -625,7 +625,7 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
 lean 3 declaration is
   forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a b)))
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a b)))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.sub ENNReal.Tendsto.subₓ'. -/
 protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (hmb : Tendsto mb f (𝓝 b)) (h : a ≠ ∞ ∨ b ≠ ∞) :
@@ -828,7 +828,7 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
 lean 3 declaration is
   ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) ENNReal.topologicalSpace (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
 but is expected to have type
-  ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) ENNReal.instTopologicalSpaceENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
+  ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) ENNReal.instTopologicalSpaceENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_sub ENNReal.continuousOn_subₓ'. -/
 theorem continuousOn_sub :
     ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) { p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩ } :=
@@ -843,7 +843,7 @@ theorem continuousOn_sub :
 lean 3 declaration is
   forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a x))
 but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a x))
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a x))
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_sub_left ENNReal.continuous_sub_leftₓ'. -/
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous fun x => a - x :=
   by
@@ -857,7 +857,7 @@ theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous
 lean 3 declaration is
   forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) a) x)
 but is expected to have type
-  forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ENNReal.some a) x)
+  forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ENNReal.some a) x)
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_subₓ'. -/
 theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
   continuous_sub_left coe_ne_top
@@ -867,7 +867,7 @@ theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (
 lean 3 declaration is
   forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
 but is expected to have type
-  forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+  forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_leftₓ'. -/
 theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) { x : ℝ≥0∞ | x ≠ ∞ } :=
   by
@@ -881,7 +881,7 @@ theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {
 lean 3 declaration is
   forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x a)
 but is expected to have type
-  forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x a)
+  forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) x a)
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_sub_right ENNReal.continuous_sub_rightₓ'. -/
 theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ => x - a :=
   by
@@ -1300,7 +1300,7 @@ theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f
 lean 3 declaration is
   forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) b) (nhds.{0} ENNReal ENNReal.topologicalSpace b) (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) b))
 but is expected to have type
-  forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ENNReal.some r) b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ENNReal.some r) b))
+  forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ENNReal.some r) b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (ENNReal.some r) b))
 Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_subₓ'. -/
 protected theorem tendsto_coe_sub :
     ∀ {b : ℝ≥0∞}, Tendsto (fun b : ℝ≥0∞ => ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
@@ -1320,7 +1320,7 @@ protected theorem tendsto_coe_sub :
 lean 3 declaration is
   forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
 but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (b i))))
+  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) a (b i))))
 Case conversion may be inaccurate. Consider using '#align ennreal.sub_supr ENNReal.sub_iSupₓ'. -/
 theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
@@ -1951,7 +1951,7 @@ protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x
 lean 3 declaration is
   forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i))))
 but is expected to have type
-  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i))))
+  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sub ENNReal.tsum_subₓ'. -/
 theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑' i, g i) ≠ ∞) (h₂ : g ≤ f) :
     (∑' i, f i - g i) = (∑' i, f i) - ∑' i, g i :=
Diff
@@ -298,9 +298,9 @@ def ltTopHomeomorphNNReal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
 
 /- warning: ennreal.nhds_top -> ENNReal.nhds_top is a dubious translation:
 lean 3 declaration is
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
 but is expected to have type
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top ENNReal.nhds_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
@@ -309,12 +309,12 @@ theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
 
 /- warning: ennreal.nhds_top' -> ENNReal.nhds_top' is a dubious translation:
 lean 3 declaration is
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))))
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))))
 but is expected to have type
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ENNReal.some r))))
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ENNReal.some r))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top' ENNReal.nhds_top'ₓ'. -/
 theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
-  nhds_top.trans <| infᵢ_ne_top _
+  nhds_top.trans <| iInf_ne_top _
 #align ennreal.nhds_top' ENNReal.nhds_top'
 
 /- warning: ennreal.nhds_top_basis -> ENNReal.nhds_top_basis is a dubious translation:
@@ -399,9 +399,9 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
 
 /- warning: ennreal.nhds_zero -> ENNReal.nhds_zero is a dubious translation:
 lean 3 declaration is
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
 but is expected to have type
-  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero ENNReal.nhds_zeroₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
@@ -477,24 +477,24 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
 
 /- warning: ennreal.nhds_of_ne_top -> ENNReal.nhds_of_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
+  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
 but is expected to have type
-  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
+  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (iInf.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => iInf.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
 Case conversion may be inaccurate. Consider using '#align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_topₓ'. -/
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   by
   refine' le_antisymm _ _
   -- first direction
-  simp only [le_infᵢ_iff, le_principal_iff];
+  simp only [le_iInf_iff, le_principal_iff];
   intro ε ε0; exact Icc_mem_nhds xt ε0.lt.ne'
   -- second direction
   rw [nhds_generate_from];
-  refine' le_infᵢ fun s => le_infᵢ fun hs => _
+  refine' le_iInf fun s => le_iInf fun hs => _
   rcases hs with ⟨xs, ⟨a, (rfl : s = Ioi a) | (rfl : s = Iio a)⟩⟩
   · rcases exists_between xs with ⟨b, ab, bx⟩
     have xb_pos : 0 < x - b := tsub_pos_iff_lt.2 bx
     have xxb : x - (x - b) = b := sub_sub_cancel xt bx.le
-    refine' infᵢ_le_of_le (x - b) (infᵢ_le_of_le xb_pos _)
+    refine' iInf_le_of_le (x - b) (iInf_le_of_le xb_pos _)
     simp only [mem_principal, le_principal_iff]
     intro y
     rintro ⟨h₁, h₂⟩
@@ -506,7 +506,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
   · rcases exists_between xs with ⟨b, xb, ba⟩
     have bx_pos : 0 < b - x := tsub_pos_iff_lt.2 xb
     have xbx : x + (b - x) = b := add_tsub_cancel_of_le xb.le
-    refine' infᵢ_le_of_le (b - x) (infᵢ_le_of_le bx_pos _)
+    refine' iInf_le_of_le (b - x) (iInf_le_of_le bx_pos _)
     simp only [mem_principal, le_principal_iff]
     intro y
     rintro ⟨h₁, h₂⟩
@@ -919,80 +919,80 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
-/- warning: ennreal.infi_mul_left' -> ENNReal.infᵢ_mul_left' is a dubious translation:
+/- warning: ennreal.infi_mul_left' -> ENNReal.iInf_mul_left' is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
 but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left' ENNReal.infᵢ_mul_left'ₓ'. -/
-theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left' ENNReal.iInf_mul_left'ₓ'. -/
+theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   by
   by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0
   · rcases h H.1 H.2 with ⟨i, hi⟩
-    rw [H.2, MulZeroClass.mul_zero, ← bot_eq_zero, infᵢ_eq_bot]
+    rw [H.2, MulZeroClass.mul_zero, ← bot_eq_zero, iInf_eq_bot]
     exact fun b hb => ⟨i, by rwa [hi, MulZeroClass.mul_zero, ← bot_eq_zero]⟩
   · rw [not_and_or] at H
     cases isEmpty_or_nonempty ι
-    · rw [infᵢ_of_empty, infᵢ_of_empty, mul_top, if_neg]
+    · rw [iInf_of_empty, iInf_of_empty, mul_top, if_neg]
       exact mt h0 (not_nonempty_iff.2 ‹_›)
     ·
       exact
         (ennreal.mul_left_mono.map_infi_of_continuous_at' (ENNReal.continuousAt_const_mul H)).symm
-#align ennreal.infi_mul_left' ENNReal.infᵢ_mul_left'
+#align ennreal.infi_mul_left' ENNReal.iInf_mul_left'
 
-/- warning: ennreal.infi_mul_left -> ENNReal.infᵢ_mul_left is a dubious translation:
+/- warning: ennreal.infi_mul_left -> ENNReal.iInf_mul_left is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
 but is expected to have type
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left ENNReal.infᵢ_mul_leftₓ'. -/
-theorem infᵢ_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left ENNReal.iInf_mul_leftₓ'. -/
+theorem iInf_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
-  infᵢ_mul_left' h fun _ => ‹Nonempty ι›
-#align ennreal.infi_mul_left ENNReal.infᵢ_mul_left
+  iInf_mul_left' h fun _ => ‹Nonempty ι›
+#align ennreal.infi_mul_left ENNReal.iInf_mul_left
 
-/- warning: ennreal.infi_mul_right' -> ENNReal.infᵢ_mul_right' is a dubious translation:
+/- warning: ennreal.infi_mul_right' -> ENNReal.iInf_mul_right' is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
 but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right' ENNReal.infᵢ_mul_right'ₓ'. -/
-theorem infᵢ_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right' ENNReal.iInf_mul_right'ₓ'. -/
+theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using infi_mul_left' h h0
-#align ennreal.infi_mul_right' ENNReal.infᵢ_mul_right'
+#align ennreal.infi_mul_right' ENNReal.iInf_mul_right'
 
-/- warning: ennreal.infi_mul_right -> ENNReal.infᵢ_mul_right is a dubious translation:
+/- warning: ennreal.infi_mul_right -> ENNReal.iInf_mul_right is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
 but is expected to have type
-  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right ENNReal.infᵢ_mul_rightₓ'. -/
-theorem infᵢ_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right ENNReal.iInf_mul_rightₓ'. -/
+theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
-  infᵢ_mul_right' h fun _ => ‹Nonempty ι›
-#align ennreal.infi_mul_right ENNReal.infᵢ_mul_right
+  iInf_mul_right' h fun _ => ‹Nonempty ι›
+#align ennreal.infi_mul_right ENNReal.iInf_mul_right
 
-/- warning: ennreal.inv_map_infi -> ENNReal.inv_map_infᵢ is a dubious translation:
+/- warning: ennreal.inv_map_infi -> ENNReal.inv_map_iInf is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
 but is expected to have type
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_infi ENNReal.inv_map_infᵢₓ'. -/
-theorem inv_map_infᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (infᵢ x)⁻¹ = ⨆ i, (x i)⁻¹ :=
-  OrderIso.invENNReal.map_infᵢ x
-#align ennreal.inv_map_infi ENNReal.inv_map_infᵢ
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_infi ENNReal.inv_map_iInfₓ'. -/
+theorem inv_map_iInf {ι : Sort _} {x : ι → ℝ≥0∞} : (iInf x)⁻¹ = ⨆ i, (x i)⁻¹ :=
+  OrderIso.invENNReal.map_iInf x
+#align ennreal.inv_map_infi ENNReal.inv_map_iInf
 
-/- warning: ennreal.inv_map_supr -> ENNReal.inv_map_supᵢ is a dubious translation:
+/- warning: ennreal.inv_map_supr -> ENNReal.inv_map_iSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
 but is expected to have type
-  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_supr ENNReal.inv_map_supᵢₓ'. -/
-theorem inv_map_supᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (supᵢ x)⁻¹ = ⨅ i, (x i)⁻¹ :=
-  OrderIso.invENNReal.map_supᵢ x
-#align ennreal.inv_map_supr ENNReal.inv_map_supᵢ
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_supr ENNReal.inv_map_iSupₓ'. -/
+theorem inv_map_iSup {ι : Sort _} {x : ι → ℝ≥0∞} : (iSup x)⁻¹ = ⨅ i, (x i)⁻¹ :=
+  OrderIso.invENNReal.map_iSup x
+#align ennreal.inv_map_supr ENNReal.inv_map_iSup
 
 /- warning: ennreal.inv_limsup -> ENNReal.inv_limsup is a dubious translation:
 lean 3 declaration is
@@ -1079,156 +1079,156 @@ protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ
   ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
 #align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
 
-/- warning: ennreal.supr_add -> ENNReal.supᵢ_add is a dubious translation:
+/- warning: ennreal.supr_add -> ENNReal.iSup_add is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (s b) a))
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (s b) a))
 but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (s b) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add ENNReal.supᵢ_addₓ'. -/
-theorem supᵢ_add {ι : Sort _} {s : ι → ℝ≥0∞} [h : Nonempty ι] : supᵢ s + a = ⨆ b, s b + a :=
-  Monotone.map_supᵢ_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (s b) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add ENNReal.iSup_addₓ'. -/
+theorem iSup_add {ι : Sort _} {s : ι → ℝ≥0∞} [h : Nonempty ι] : iSup s + a = ⨆ b, s b + a :=
+  Monotone.map_iSup_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
-#align ennreal.supr_add ENNReal.supᵢ_add
+#align ennreal.supr_add ENNReal.iSup_add
 
-/- warning: ennreal.bsupr_add' -> ENNReal.bsupᵢ_add' is a dubious translation:
+/- warning: ennreal.bsupr_add' -> ENNReal.biSup_add' is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
 but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add' ENNReal.bsupᵢ_add'ₓ'. -/
-theorem bsupᵢ_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add' ENNReal.biSup_add'ₓ'. -/
+theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a :=
   by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h
-  simp only [supᵢ_subtype', supr_add]
-#align ennreal.bsupr_add' ENNReal.bsupᵢ_add'
+  simp only [iSup_subtype', supr_add]
+#align ennreal.bsupr_add' ENNReal.biSup_add'
 
-/- warning: ennreal.add_bsupr' -> ENNReal.add_bsupᵢ' is a dubious translation:
+/- warning: ennreal.add_bsupr' -> ENNReal.add_biSup' is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i)))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i)))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
 but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i)))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr' ENNReal.add_bsupᵢ'ₓ'. -/
-theorem add_bsupᵢ' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i)))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr' ENNReal.add_biSup'ₓ'. -/
+theorem add_biSup' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (hi : p i), f i) = ⨆ (i) (hi : p i), a + f i := by
   simp only [add_comm a, bsupr_add' h]
-#align ennreal.add_bsupr' ENNReal.add_bsupᵢ'
+#align ennreal.add_bsupr' ENNReal.add_biSup'
 
-/- warning: ennreal.bsupr_add -> ENNReal.bsupᵢ_add is a dubious translation:
+/- warning: ennreal.bsupr_add -> ENNReal.biSup_add is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) a) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) a) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
 but is expected to have type
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i))) a) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add ENNReal.bsupᵢ_addₓ'. -/
-theorem bsupᵢ_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i))) a) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add ENNReal.biSup_addₓ'. -/
+theorem biSup_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (⨆ i ∈ s, f i) + a = ⨆ i ∈ s, f i + a :=
-  bsupᵢ_add' hs
-#align ennreal.bsupr_add ENNReal.bsupᵢ_add
+  biSup_add' hs
+#align ennreal.bsupr_add ENNReal.biSup_add
 
-/- warning: ennreal.add_bsupr -> ENNReal.add_bsupᵢ is a dubious translation:
+/- warning: ennreal.add_bsupr -> ENNReal.add_biSup is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i)))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i)))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
 but is expected to have type
-  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i)))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr ENNReal.add_bsupᵢₓ'. -/
-theorem add_bsupᵢ {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i)))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr ENNReal.add_biSupₓ'. -/
+theorem add_biSup {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (a + ⨆ i ∈ s, f i) = ⨆ i ∈ s, a + f i :=
-  add_bsupᵢ' hs
-#align ennreal.add_bsupr ENNReal.add_bsupᵢ
+  add_biSup' hs
+#align ennreal.add_bsupr ENNReal.add_biSup
 
-/- warning: ennreal.Sup_add -> ENNReal.supₛ_add is a dubious translation:
+/- warning: ennreal.Sup_add -> ENNReal.sSup_add is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s) a) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (b : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) b a))))
+  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s) a) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (b : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) b a))))
 but is expected to have type
-  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s) a) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (b : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) b a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.Sup_add ENNReal.supₛ_addₓ'. -/
-theorem supₛ_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : supₛ s + a = ⨆ b ∈ s, b + a := by
-  rw [supₛ_eq_supᵢ, bsupr_add hs]
-#align ennreal.Sup_add ENNReal.supₛ_add
+  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s) a) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (b : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) b a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.Sup_add ENNReal.sSup_addₓ'. -/
+theorem sSup_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : sSup s + a = ⨆ b ∈ s, b + a := by
+  rw [sSup_eq_iSup, bsupr_add hs]
+#align ennreal.Sup_add ENNReal.sSup_add
 
-/- warning: ennreal.add_supr -> ENNReal.add_supᵢ is a dubious translation:
+/- warning: ennreal.add_supr -> ENNReal.add_iSup is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (s b)))
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (s b)))
 but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (s b)))
-Case conversion may be inaccurate. Consider using '#align ennreal.add_supr ENNReal.add_supᵢₓ'. -/
-theorem add_supᵢ {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + supᵢ s = ⨆ b, a + s b := by
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (s b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.add_supr ENNReal.add_iSupₓ'. -/
+theorem add_iSup {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup s = ⨆ b, a + s b := by
   rw [add_comm, supr_add] <;> simp [add_comm]
-#align ennreal.add_supr ENNReal.add_supᵢ
+#align ennreal.add_supr ENNReal.add_iSup
 
-/- warning: ennreal.supr_add_supr_le -> ENNReal.supᵢ_add_supᵢ_le is a dubious translation:
+/- warning: ennreal.supr_add_supr_le -> ENNReal.iSup_add_iSup_le is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} [_inst_1 : Nonempty.{u1} ι] [_inst_2 : Nonempty.{u2} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' g)) a)
+  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} [_inst_1 : Nonempty.{u1} ι] [_inst_2 : Nonempty.{u2} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' g)) a)
 but is expected to have type
-  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' g)) a)
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_le ENNReal.supᵢ_add_supᵢ_leₓ'. -/
-theorem supᵢ_add_supᵢ_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
-    {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : supᵢ f + supᵢ g ≤ a := by
-  simpa only [add_supr, supr_add] using supᵢ₂_le h
-#align ennreal.supr_add_supr_le ENNReal.supᵢ_add_supᵢ_le
+  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' g)) a)
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_leₓ'. -/
+theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
+    {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : iSup f + iSup g ≤ a := by
+  simpa only [add_supr, supr_add] using iSup₂_le h
+#align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_le
 
-/- warning: ennreal.bsupr_add_bsupr_le' -> ENNReal.bsupᵢ_add_bsupᵢ_le' is a dubious translation:
+/- warning: ennreal.bsupr_add_bsupr_le' -> ENNReal.biSup_add_biSup_le' is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (Exists.{u2} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (q j) (fun (hj : q j) => g j)))) a))
+  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (Exists.{u2} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (q j) (fun (hj : q j) => g j)))) a))
 but is expected to have type
-  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Exists.{u1} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (q j) (fun (hj : q j) => g j)))) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupᵢ_add_bsupᵢ_le'ₓ'. -/
-theorem bsupᵢ_add_bsupᵢ_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
+  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Exists.{u1} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (q j) (fun (hj : q j) => g j)))) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'ₓ'. -/
+theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ (i) (hi : p i) (j) (hj : q j), f i + g j ≤ a) :
     ((⨆ (i) (hi : p i), f i) + ⨆ (j) (hj : q j), g j) ≤ a :=
   by
   simp_rw [bsupr_add' hp, add_bsupr' hq]
-  exact supᵢ₂_le fun i hi => supᵢ₂_le (h i hi)
-#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupᵢ_add_bsupᵢ_le'
+  exact iSup₂_le fun i hi => iSup₂_le (h i hi)
+#align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'
 
-/- warning: ennreal.bsupr_add_bsupr_le -> ENNReal.bsupᵢ_add_bsupᵢ_le is a dubious translation:
+/- warning: ennreal.bsupr_add_bsupr_le -> ENNReal.biSup_add_biSup_le is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {ι' : Type.{u2}} {s : Set.{u1} ι} {t : Set.{u2} ι'}, (Set.Nonempty.{u1} ι s) -> (Set.Nonempty.{u2} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) -> (forall (j : ι'), (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) (fun (H : Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) => g j)))) a))
+  forall {ι : Type.{u1}} {ι' : Type.{u2}} {s : Set.{u1} ι} {t : Set.{u2} ι'}, (Set.Nonempty.{u1} ι s) -> (Set.Nonempty.{u2} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) -> (forall (j : ι'), (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) (fun (H : Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) => g j)))) a))
 but is expected to have type
-  forall {ι : Type.{u2}} {ι' : Type.{u1}} {s : Set.{u2} ι} {t : Set.{u1} ι'}, (Set.Nonempty.{u2} ι s) -> (Set.Nonempty.{u1} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (forall (j : ι'), (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le ENNReal.bsupᵢ_add_bsupᵢ_leₓ'. -/
-theorem bsupᵢ_add_bsupᵢ_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
+  forall {ι : Type.{u2}} {ι' : Type.{u1}} {s : Set.{u2} ι} {t : Set.{u1} ι'}, (Set.Nonempty.{u2} ι s) -> (Set.Nonempty.{u1} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (forall (j : ι'), (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_leₓ'. -/
+theorem biSup_add_biSup_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i ∈ s, ∀ j ∈ t, f i + g j ≤ a) :
     ((⨆ i ∈ s, f i) + ⨆ j ∈ t, g j) ≤ a :=
-  bsupᵢ_add_bsupᵢ_le' hs ht h
-#align ennreal.bsupr_add_bsupr_le ENNReal.bsupᵢ_add_bsupᵢ_le
+  biSup_add_biSup_le' hs ht h
+#align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_le
 
-/- warning: ennreal.supr_add_supr -> ENNReal.supᵢ_add_supᵢ is a dubious translation:
+/- warning: ennreal.supr_add_supr -> ENNReal.iSup_add_iSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
 but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr ENNReal.supᵢ_add_supᵢₓ'. -/
-theorem supᵢ_add_supᵢ {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
-    supᵢ f + supᵢ g = ⨆ a, f a + g a :=
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr ENNReal.iSup_add_iSupₓ'. -/
+theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
+    iSup f + iSup g = ⨆ a, f a + g a :=
   by
   cases isEmpty_or_nonempty ι
-  · simp only [supᵢ_of_empty, bot_eq_zero, zero_add]
-  · refine' le_antisymm _ (supᵢ_le fun a => add_le_add (le_supᵢ _ _) (le_supᵢ _ _))
+  · simp only [iSup_of_empty, bot_eq_zero, zero_add]
+  · refine' le_antisymm _ (iSup_le fun a => add_le_add (le_iSup _ _) (le_iSup _ _))
     refine' supr_add_supr_le fun i j => _
     rcases h i j with ⟨k, hk⟩
-    exact le_supᵢ_of_le k hk
-#align ennreal.supr_add_supr ENNReal.supᵢ_add_supᵢ
+    exact le_iSup_of_le k hk
+#align ennreal.supr_add_supr ENNReal.iSup_add_iSup
 
-/- warning: ennreal.supr_add_supr_of_monotone -> ENNReal.supᵢ_add_supᵢ_of_monotone is a dubious translation:
+/- warning: ennreal.supr_add_supr_of_monotone -> ENNReal.iSup_add_iSup_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
+  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
 but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_of_monotone ENNReal.supᵢ_add_supᵢ_of_monotoneₓ'. -/
-theorem supᵢ_add_supᵢ_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
-    (hg : Monotone g) : supᵢ f + supᵢ g = ⨆ a, f a + g a :=
-  supᵢ_add_supᵢ fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
-#align ennreal.supr_add_supr_of_monotone ENNReal.supᵢ_add_supᵢ_of_monotone
+  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotoneₓ'. -/
+theorem iSup_add_iSup_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
+    (hg : Monotone g) : iSup f + iSup g = ⨆ a, f a + g a :=
+  iSup_add_iSup fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
+#align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotone
 
-/- warning: ennreal.finset_sum_supr_nat -> ENNReal.finset_sum_supᵢ_nat is a dubious translation:
+/- warning: ennreal.finset_sum_supr_nat -> ENNReal.finset_sum_iSup_nat is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : SemilatticeSup.{u2} ι] {s : Finset.{u1} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u2, 0} ι ENNReal (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (f a))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (n : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a n))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : SemilatticeSup.{u2} ι] {s : Finset.{u1} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u2, 0} ι ENNReal (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (f a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (n : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a n))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {s : Finset.{u2} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (f a))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (n : ι) => Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a n))))
-Case conversion may be inaccurate. Consider using '#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_supᵢ_natₓ'. -/
-theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
-    (hf : ∀ a, Monotone (f a)) : (∑ a in s, supᵢ (f a)) = ⨆ n, ∑ a in s, f a n :=
+  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {s : Finset.{u2} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (f a))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (n : ι) => Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a n))))
+Case conversion may be inaccurate. Consider using '#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_natₓ'. -/
+theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
+    (hf : ∀ a, Monotone (f a)) : (∑ a in s, iSup (f a)) = ⨆ n, ∑ a in s, f a n :=
   by
   refine' Finset.induction_on s _ _
   · simp
@@ -1237,64 +1237,64 @@ theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f :
     rw [ih, supr_add_supr_of_monotone (hf a)]
     intro i j h
     exact Finset.sum_le_sum fun a ha => hf a h
-#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_supᵢ_nat
+#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_nat
 
-/- warning: ennreal.mul_supr -> ENNReal.mul_supᵢ is a dubious translation:
+/- warning: ennreal.mul_supr -> ENNReal.mul_iSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))
 but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.mul_supr ENNReal.mul_supᵢₓ'. -/
-theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * supᵢ f = ⨆ i, a * f i :=
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.mul_supr ENNReal.mul_iSupₓ'. -/
+theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i :=
   by
   by_cases hf : ∀ i, f i = 0
   · obtain rfl : f = fun _ => 0
     exact funext hf
     simp only [supr_zero_eq_zero, MulZeroClass.mul_zero]
-  · refine' (monotone_id.const_mul' _).map_supᵢ_of_continuousAt _ (MulZeroClass.mul_zero a)
+  · refine' (monotone_id.const_mul' _).map_iSup_of_continuousAt _ (MulZeroClass.mul_zero a)
     refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
     exact mt supr_eq_zero.1 hf
-#align ennreal.mul_supr ENNReal.mul_supᵢ
+#align ennreal.mul_supr ENNReal.mul_iSup
 
-/- warning: ennreal.mul_Sup -> ENNReal.mul_supₛ is a dubious translation:
+/- warning: ennreal.mul_Sup -> ENNReal.mul_sSup is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (i : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a i)))
+  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a i)))
 but is expected to have type
-  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (i : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a i)))
-Case conversion may be inaccurate. Consider using '#align ennreal.mul_Sup ENNReal.mul_supₛₓ'. -/
-theorem mul_supₛ {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * supₛ s = ⨆ i ∈ s, a * i := by
-  simp only [supₛ_eq_supᵢ, mul_supr]
-#align ennreal.mul_Sup ENNReal.mul_supₛ
+  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (SupSet.sSup.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (i : ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.mul_Sup ENNReal.mul_sSupₓ'. -/
+theorem mul_sSup {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * sSup s = ⨆ i ∈ s, a * i := by
+  simp only [sSup_eq_iSup, mul_supr]
+#align ennreal.mul_Sup ENNReal.mul_sSup
 
-/- warning: ennreal.supr_mul -> ENNReal.supᵢ_mul is a dubious translation:
+/- warning: ennreal.supr_mul -> ENNReal.iSup_mul is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))
 but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_mul ENNReal.supᵢ_mulₓ'. -/
-theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f * a = ⨆ i, f i * a := by
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_mul ENNReal.iSup_mulₓ'. -/
+theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f * a = ⨆ i, f i * a := by
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
-#align ennreal.supr_mul ENNReal.supᵢ_mul
+#align ennreal.supr_mul ENNReal.iSup_mul
 
-theorem smul_supᵢ {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
+theorem smul_iSup {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
     (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
-  simp only [← smul_one_mul c (f _), ← smul_one_mul c (supᵢ _), ENNReal.mul_supᵢ]
-#align ennreal.smul_supr ENNReal.smul_supᵢ
+  simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup _), ENNReal.mul_iSup]
+#align ennreal.smul_supr ENNReal.smul_iSup
 
-theorem smul_supₛ {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
-    c • supₛ s = ⨆ i ∈ s, c • i := by
-  simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_supₛ, smul_one_mul]
-#align ennreal.smul_Sup ENNReal.smul_supₛ
+theorem smul_sSup {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
+    c • sSup s = ⨆ i ∈ s, c • i := by
+  simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_sSup, smul_one_mul]
+#align ennreal.smul_Sup ENNReal.smul_sSup
 
-/- warning: ennreal.supr_div -> ENNReal.supᵢ_div is a dubious translation:
+/- warning: ennreal.supr_div -> ENNReal.iSup_div is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
 but is expected to have type
-  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (f i) a))
-Case conversion may be inaccurate. Consider using '#align ennreal.supr_div ENNReal.supᵢ_divₓ'. -/
-theorem supᵢ_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f / a = ⨆ i, f i / a :=
-  supᵢ_mul
-#align ennreal.supr_div ENNReal.supᵢ_div
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (f i) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_div ENNReal.iSup_divₓ'. -/
+theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
+  iSup_mul
+#align ennreal.supr_div ENNReal.iSup_div
 
 /- warning: ennreal.tendsto_coe_sub -> ENNReal.tendsto_coe_sub is a dubious translation:
 lean 3 declaration is
@@ -1316,22 +1316,22 @@ protected theorem tendsto_coe_sub :
       tendsto_const_nhds
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
-/- warning: ennreal.sub_supr -> ENNReal.sub_supᵢ is a dubious translation:
+/- warning: ennreal.sub_supr -> ENNReal.sub_iSup is a dubious translation:
 lean 3 declaration is
-  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
+  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
 but is expected to have type
-  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (b i))))
-Case conversion may be inaccurate. Consider using '#align ennreal.sub_supr ENNReal.sub_supᵢₓ'. -/
-theorem sub_supᵢ {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
+  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (iSup.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (iInf.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (b i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.sub_supr ENNReal.sub_iSupₓ'. -/
+theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
   by
   let ⟨r, Eq, _⟩ := lt_iff_exists_coe.mp hr
-  have : infₛ ((fun b => ↑r - b) '' range b) = ↑r - ⨆ i, b i :=
-    IsGLB.infₛ_eq <|
-      isLUB_supᵢ.isGLB_of_tendsto (fun x _ y _ => tsub_le_tsub (le_refl (r : ℝ≥0∞)))
+  have : sInf ((fun b => ↑r - b) '' range b) = ↑r - ⨆ i, b i :=
+    IsGLB.sInf_eq <|
+      isLUB_iSup.isGLB_of_tendsto (fun x _ y _ => tsub_le_tsub (le_refl (r : ℝ≥0∞)))
         (range_nonempty _) (ENNReal.tendsto_coe_sub.comp (tendsto_id'.2 inf_le_left))
-  rw [Eq, ← this] <;> simp [infₛ_image, infᵢ_range, -mem_range] <;> exact le_rfl
-#align ennreal.sub_supr ENNReal.sub_supᵢ
+  rw [Eq, ← this] <;> simp [sInf_image, iInf_range, -mem_range] <;> exact le_rfl
+#align ennreal.sub_supr ENNReal.sub_iSup
 
 /- warning: ennreal.exists_countable_dense_no_zero_top -> ENNReal.exists_countable_dense_no_zero_top is a dubious translation:
 lean 3 declaration is
@@ -1500,12 +1500,12 @@ protected theorem coe_tsum {f : α → ℝ≥0} : Summable f → ↑(tsum f) = 
 
 /- warning: ennreal.has_sum -> ENNReal.hasSum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
+  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
+  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
 Case conversion may be inaccurate. Consider using '#align ennreal.has_sum ENNReal.hasSumₓ'. -/
 protected theorem hasSum : HasSum f (⨆ s : Finset α, ∑ a in s, f a) :=
-  tendsto_atTop_supᵢ fun s t => Finset.sum_le_sum_of_subset
+  tendsto_atTop_iSup fun s t => Finset.sum_le_sum_of_subset
 #align ennreal.has_sum ENNReal.hasSum
 
 /- warning: ennreal.summable -> ENNReal.summable is a dubious translation:
@@ -1534,30 +1534,30 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ
   exact ennreal.summable.has_sum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
-/- warning: ennreal.tsum_eq_supr_sum -> ENNReal.tsum_eq_supᵢ_sum is a dubious translation:
+/- warning: ennreal.tsum_eq_supr_sum -> ENNReal.tsum_eq_iSup_sum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_supᵢ_sumₓ'. -/
-protected theorem tsum_eq_supᵢ_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sumₓ'. -/
+protected theorem tsum_eq_iSup_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
-#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_supᵢ_sum
+#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
 
-/- warning: ennreal.tsum_eq_supr_sum' -> ENNReal.tsum_eq_supᵢ_sum' is a dubious translation:
+/- warning: ennreal.tsum_eq_supr_sum' -> ENNReal.tsum_eq_iSup_sum' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.hasSubset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (s i) (fun (a : α) => f a))))
+  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.hasSubset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (s i) (fun (a : α) => f a))))
 but is expected to have type
-  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.instHasSubsetFinset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (s i) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_supᵢ_sum'ₓ'. -/
-protected theorem tsum_eq_supᵢ_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
+  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.instHasSubsetFinset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (s i) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'ₓ'. -/
+protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     (∑' a, f a) = ⨆ i, ∑ a in s i, f a :=
   by
-  rw [ENNReal.tsum_eq_supᵢ_sum]
+  rw [ENNReal.tsum_eq_iSup_sum]
   symm
   change (⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i)) = ⨆ s : Finset α, ∑ a in s, f a
-  exact (Finset.sum_mono_set f).supᵢ_comp_eq hs
-#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_supᵢ_sum'
+  exact (Finset.sum_mono_set f).iSup_comp_eq hs
+#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
 
 /- warning: ennreal.tsum_sigma -> ENNReal.tsum_sigma is a dubious translation:
 lean 3 declaration is
@@ -1645,30 +1645,30 @@ protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x i
   sum_le_tsum s (fun x hx => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
-/- warning: ennreal.tsum_eq_supr_nat' -> ENNReal.tsum_eq_supᵢ_nat' is a dubious translation:
+/- warning: ennreal.tsum_eq_supr_nat' -> ENNReal.tsum_eq_iSup_nat' is a dubious translation:
 lean 3 declaration is
-  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range (N i)) (fun (a : Nat) => f a))))
+  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range (N i)) (fun (a : Nat) => f a))))
 but is expected to have type
-  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range (N i)) (fun (a : Nat) => f a))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_supᵢ_nat'ₓ'. -/
-protected theorem tsum_eq_supᵢ_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
+  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range (N i)) (fun (a : Nat) => f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'ₓ'. -/
+protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
-  ENNReal.tsum_eq_supᵢ_sum' _ fun t =>
+  ENNReal.tsum_eq_iSup_sum' _ fun t =>
     let ⟨n, hn⟩ := t.exists_nat_subset_range
     let ⟨k, _, hk⟩ := exists_le_of_tendsto_atTop hN 0 n
     ⟨k, Finset.Subset.trans hn (Finset.range_mono hk)⟩
-#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_supᵢ_nat'
+#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'
 
-/- warning: ennreal.tsum_eq_supr_nat -> ENNReal.tsum_eq_supᵢ_nat is a dubious translation:
+/- warning: ennreal.tsum_eq_supr_nat -> ENNReal.tsum_eq_iSup_nat is a dubious translation:
 lean 3 declaration is
-  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range i) (fun (a : Nat) => f a)))
+  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range i) (fun (a : Nat) => f a)))
 but is expected to have type
-  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range i) (fun (a : Nat) => f a)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_supᵢ_natₓ'. -/
-protected theorem tsum_eq_supᵢ_nat {f : ℕ → ℝ≥0∞} :
+  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range i) (fun (a : Nat) => f a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_natₓ'. -/
+protected theorem tsum_eq_iSup_nat {f : ℕ → ℝ≥0∞} :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
-  ENNReal.tsum_eq_supᵢ_sum' _ Finset.exists_nat_subset_range
-#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_supᵢ_nat
+  ENNReal.tsum_eq_iSup_sum' _ Finset.exists_nat_subset_range
+#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_nat
 
 /- warning: ennreal.tsum_eq_liminf_sum_nat -> ENNReal.tsum_eq_liminf_sum_nat is a dubious translation:
 lean 3 declaration is
@@ -1679,12 +1679,12 @@ Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_liminf
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   by
-  rw [ENNReal.tsum_eq_supᵢ_nat, Filter.liminf_eq_supᵢ_infᵢ_of_nat]
+  rw [ENNReal.tsum_eq_iSup_nat, Filter.liminf_eq_iSup_iInf_of_nat]
   congr
   refine' funext fun n => le_antisymm _ _
-  · refine' le_infᵢ₂ fun i hi => Finset.sum_le_sum_of_subset_of_nonneg _ fun _ _ _ => zero_le _
+  · refine' le_iInf₂ fun i hi => Finset.sum_le_sum_of_subset_of_nonneg _ fun _ _ _ => zero_le _
     simpa only [Finset.range_subset, add_le_add_iff_right] using hi
-  · refine' le_trans (infᵢ_le _ n) _
+  · refine' le_trans (iInf_le _ n) _
     simp [le_refl n, le_refl ((Finset.range n).Sum f)]
 #align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_nat
 
@@ -1814,19 +1814,19 @@ protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ
   simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
 
-/- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_supᵢ_eq is a dubious translation:
+/- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_iSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
+  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
 but is expected to have type
-  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_supr_eq ENNReal.tsum_supᵢ_eqₓ'. -/
+  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (b : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eqₓ'. -/
 @[simp]
-theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ h : a = b, f b) = f a :=
+theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ h : a = b, f b) = f a :=
   le_antisymm
     (by
-      rw [ENNReal.tsum_eq_supᵢ_sum] <;>
+      rw [ENNReal.tsum_eq_iSup_sum] <;>
         exact
-          supᵢ_le fun s =>
+          iSup_le fun s =>
             calc
               (∑ b in s, ⨆ h : a = b, f b) ≤ ∑ b in {a}, ⨆ h : a = b, f b :=
                 Finset.sum_le_sum_of_ne_zero fun b _ hb =>
@@ -1835,10 +1835,10 @@ theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b
               _ = f a := by simp
               )
     (calc
-      f a ≤ ⨆ h : a = a, f a := le_supᵢ (fun h : a = a => f a) rfl
+      f a ≤ ⨆ h : a = a, f a := le_iSup (fun h : a = a => f a) rfl
       _ ≤ ∑' b : α, ⨆ h : a = b, f b := ENNReal.le_tsum _
       )
-#align ennreal.tsum_supr_eq ENNReal.tsum_supᵢ_eq
+#align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
 
 /- warning: ennreal.has_sum_iff_tendsto_nat -> ENNReal.hasSum_iff_tendsto_nat is a dubious translation:
 lean 3 declaration is
@@ -1850,7 +1850,7 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) :=
   by
   refine' ⟨HasSum.tendsto_sum_nat, fun h => _⟩
-  rw [← supᵢ_eq_of_tendsto _ h, ← ENNReal.tsum_eq_supᵢ_nat]
+  rw [← iSup_eq_of_tendsto _ h, ← ENNReal.tsum_eq_iSup_nat]
   · exact ennreal.summable.has_sum
   · exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst)
 #align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_nat
@@ -1998,13 +1998,13 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
-/- warning: ennreal.tsum_bUnion_le -> ENNReal.tsum_bunionᵢ_le is a dubious translation:
+/- warning: ennreal.tsum_bUnion_le -> ENNReal.tsum_biUnion_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21608 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_leₓ'. -/
-theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21608 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_leₓ'. -/
+theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
   classical
     induction' s using Finset.induction_on with i s hi ihs h
@@ -2017,21 +2017,21 @@ theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι)
       _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
       _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
       
-#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_le
+#align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
-/- warning: ennreal.tsum_Union_le -> ENNReal.tsum_unionᵢ_le is a dubious translation:
+/- warning: ennreal.tsum_Union_le -> ENNReal.tsum_iUnion_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_Union_le ENNReal.tsum_unionᵢ_leₓ'. -/
-theorem tsum_unionᵢ_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : Set.Elem.{u1} α (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_Union_le ENNReal.tsum_iUnion_leₓ'. -/
+theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
   classical
     have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
     rw [tsum_congr_subtype f this]
     exact tsum_bUnion_le _ _ _
-#align ennreal.tsum_Union_le ENNReal.tsum_unionᵢ_le
+#align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 
 /- warning: ennreal.tsum_eq_add_tsum_ite -> ENNReal.tsum_eq_add_tsum_ite is a dubious translation:
 lean 3 declaration is
@@ -2675,7 +2675,7 @@ Case conversion may be inaccurate. Consider using '#align summable_of_sum_le sum
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
-    tendsto_atTop_csupᵢ (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
+    tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
 
 /- warning: summable_of_sum_range_le -> summable_of_sum_range_le is a dubious translation:
@@ -2797,7 +2797,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
     --Prove that it bounds the distances of points in the Cauchy sequence
     have C : ∀ n m N, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N :=
       by
-      refine' fun m n N hm hn => le_supₛ _
+      refine' fun m n N hm hn => le_sSup _
       use Prod.mk m n
       simp only [and_true_iff, eq_self_iff_true, Set.mem_setOf_eq]
       exact ⟨hm, hn⟩
@@ -2809,7 +2809,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
       rcases hs δ δpos with ⟨N, hN⟩
       refine' Filter.mem_atTop_sets.2 ⟨N, fun n hn => _⟩
       have : b n ≤ δ :=
-        supₛ_le
+        sSup_le
           (by
             simp only [and_imp, Set.mem_image, Set.mem_setOf_eq, exists_imp, Prod.exists]
             intro d p q hp hq hd
@@ -2962,7 +2962,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
     (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } :=
   by
   simp only [LipschitzOnWith, set_of_forall]
-  refine' isClosed_binterᵢ fun x hx => isClosed_binterᵢ fun y hy => isClosed_le _ _
+  refine' isClosed_biInter fun x hx => isClosed_biInter fun y hy => isClosed_le _ _
   exacts[Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
@@ -2981,17 +2981,17 @@ namespace Real
 
 /- warning: real.ediam_eq -> Real.ediam_eq is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.supₛ.{0} Real Real.hasSup s) (InfSet.infₛ.{0} Real Real.hasInf s))))
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.sSup.{0} Real Real.hasSup s) (InfSet.sInf.{0} Real Real.hasInf s))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.supₛ.{0} Real Real.instSupSetReal s) (InfSet.infₛ.{0} Real Real.instInfSetReal s))))
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.sSup.{0} Real Real.instSupSetReal s) (InfSet.sInf.{0} Real Real.instInfSetReal s))))
 Case conversion may be inaccurate. Consider using '#align real.ediam_eq Real.ediam_eqₓ'. -/
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
-theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) :=
+theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne); · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
-  · have := Real.subset_Icc_infₛ_supₛ_of_bounded h
+  · have := Real.subset_Icc_sInf_sSup_of_bounded h
     exact Real.dist_le_of_mem_Icc (this hx) (this hy)
   · apply ENNReal.ofReal_le_of_le_toReal
     rw [← Metric.diam, ← Metric.diam_closure]
@@ -2999,22 +2999,22 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
     calc
       Sup s - Inf s ≤ dist (Sup s) (Inf s) := le_abs_self _
       _ ≤ diam (closure s) :=
-        dist_le_diam_of_mem h.closure (csupₛ_mem_closure hne h'.2) (cinfₛ_mem_closure hne h'.1)
+        dist_le_diam_of_mem h.closure (csSup_mem_closure hne h'.2) (csInf_mem_closure hne h'.1)
       
 #align real.ediam_eq Real.ediam_eq
 
 /- warning: real.diam_eq -> Real.diam_eq is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.supₛ.{0} Real Real.hasSup s) (InfSet.infₛ.{0} Real Real.hasInf s)))
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.sSup.{0} Real Real.hasSup s) (InfSet.sInf.{0} Real Real.hasInf s)))
 but is expected to have type
-  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.supₛ.{0} Real Real.instSupSetReal s) (InfSet.infₛ.{0} Real Real.instInfSetReal s)))
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.sSup.{0} Real Real.instSupSetReal s) (InfSet.sInf.{0} Real Real.instInfSetReal s)))
 Case conversion may be inaccurate. Consider using '#align real.diam_eq Real.diam_eqₓ'. -/
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
-theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = supₛ s - infₛ s :=
+theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s :=
   by
   rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
   rw [Real.bounded_iff_bddBelow_bddAbove] at h
-  exact sub_nonneg.2 (Real.infₛ_le_supₛ s h.1 h.2)
+  exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
 /- warning: real.ediam_Ioo -> Real.ediam_Ioo is a dubious translation:
@@ -3028,7 +3028,7 @@ theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a)
   by
   rcases le_or_lt b a with (h | h)
   · simp [h]
-  · rw [Real.ediam_eq (bounded_Ioo _ _), csupₛ_Ioo h, cinfₛ_Ioo h]
+  · rw [Real.ediam_eq (bounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h]
 #align real.ediam_Ioo Real.ediam_Ioo
 
 /- warning: real.ediam_Icc -> Real.ediam_Icc is a dubious translation:
@@ -3041,7 +3041,7 @@ Case conversion may be inaccurate. Consider using '#align real.ediam_Icc Real.ed
 theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
   by
   rcases le_or_lt a b with (h | h)
-  · rw [Real.ediam_eq (bounded_Icc _ _), csupₛ_Icc h, cinfₛ_Icc h]
+  · rw [Real.ediam_eq (bounded_Icc _ _), csSup_Icc h, csInf_Icc h]
   · simp [h, h.le]
 #align real.ediam_Icc Real.ediam_Icc
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
+! leanprover-community/mathlib commit ec4b2eeb50364487f80421c0b4c41328a611f30d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1276,6 +1276,16 @@ theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : sup
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.supᵢ_mul
 
+theorem smul_supᵢ {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
+    (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
+  simp only [← smul_one_mul c (f _), ← smul_one_mul c (supᵢ _), ENNReal.mul_supᵢ]
+#align ennreal.smul_supr ENNReal.smul_supᵢ
+
+theorem smul_supₛ {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
+    c • supₛ s = ⨆ i ∈ s, c • i := by
+  simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_supₛ, smul_one_mul]
+#align ennreal.smul_Sup ENNReal.smul_supₛ
+
 /- warning: ennreal.supr_div -> ENNReal.supᵢ_div is a dubious translation:
 lean 3 declaration is
   forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
@@ -1799,6 +1809,11 @@ protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
+protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
+    (∑' i, a • f i) = a • ∑' i, f i := by
+  simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
+#align ennreal.tsum_const_smul ENNReal.tsum_const_smul
+
 /- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_supᵢ_eq is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit ec4b2eeb50364487f80421c0b4c41328a611f30d
+! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1276,16 +1276,6 @@ theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : sup
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.supᵢ_mul
 
-theorem smul_supᵢ {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
-    (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
-  simp only [← smul_one_mul c (f _), ← smul_one_mul c (supᵢ _), ENNReal.mul_supᵢ]
-#align ennreal.smul_supr ENNReal.smul_supᵢ
-
-theorem smul_supₛ {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
-    c • supₛ s = ⨆ i ∈ s, c • i := by
-  simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_supₛ, smul_one_mul]
-#align ennreal.smul_Sup ENNReal.smul_supₛ
-
 /- warning: ennreal.supr_div -> ENNReal.supᵢ_div is a dubious translation:
 lean 3 declaration is
   forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
@@ -1809,11 +1799,6 @@ protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
-protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
-    (∑' i, a • f i) = a • ∑' i, f i := by
-  simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
-#align ennreal.tsum_const_smul ENNReal.tsum_const_smul
-
 /- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_supᵢ_eq is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
+! leanprover-community/mathlib commit ec4b2eeb50364487f80421c0b4c41328a611f30d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1276,6 +1276,16 @@ theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : sup
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.supᵢ_mul
 
+theorem smul_supᵢ {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
+    (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
+  simp only [← smul_one_mul c (f _), ← smul_one_mul c (supᵢ _), ENNReal.mul_supᵢ]
+#align ennreal.smul_supr ENNReal.smul_supᵢ
+
+theorem smul_supₛ {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
+    c • supₛ s = ⨆ i ∈ s, c • i := by
+  simp_rw [← smul_one_mul c (Sup _), ENNReal.mul_supₛ, smul_one_mul]
+#align ennreal.smul_Sup ENNReal.smul_supₛ
+
 /- warning: ennreal.supr_div -> ENNReal.supᵢ_div is a dubious translation:
 lean 3 declaration is
   forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
@@ -1799,6 +1809,11 @@ protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
+protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
+    (∑' i, a • f i) = a • ∑' i, f i := by
+  simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • 1) _
+#align ennreal.tsum_const_smul ENNReal.tsum_const_smul
+
 /- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_supᵢ_eq is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
Diff
@@ -1368,7 +1368,7 @@ section Liminf
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt (x n) R) l))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -1392,7 +1392,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt R (x n)) l))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -1416,7 +1416,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
Diff
@@ -750,7 +750,7 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0
 lean 3 declaration is
   forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a) b)
 but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7696 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7696) a) b)
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7692 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7692 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694) a) b)
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mulₓ'. -/
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt ((· * ·) a) b :=
@@ -772,7 +772,7 @@ protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b
 lean 3 declaration is
   forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a))
 but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7862 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7862) a))
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7858 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7858 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860) a))
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_const_mul ENNReal.continuous_const_mulₓ'. -/
 protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_const_mul (Or.inl ha)
@@ -1416,7 +1416,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14727 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14729 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14727 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14729) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14713 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14715) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
@@ -1987,7 +1987,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21622 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21608 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_leₓ'. -/
 theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
@@ -2655,7 +2655,7 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
 lean 3 declaration is
   forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.27011 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26995 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
Diff
@@ -1987,7 +1987,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21541 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21622 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_leₓ'. -/
 theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
@@ -2655,7 +2655,7 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
 lean 3 declaration is
   forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26850 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.27011 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
Diff
@@ -2655,7 +2655,7 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
 lean 3 declaration is
   forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26766 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26850 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
Diff
@@ -750,7 +750,7 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0
 lean 3 declaration is
   forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a) b)
 but is expected to have type
-  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7733 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7735 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7733 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7735) a) b)
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7696 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7694 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7696) a) b)
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mulₓ'. -/
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt ((· * ·) a) b :=
@@ -772,7 +772,7 @@ protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b
 lean 3 declaration is
   forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a))
 but is expected to have type
-  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7899 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7901 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7899 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7901) a))
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7862 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7860 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7862) a))
 Case conversion may be inaccurate. Consider using '#align ennreal.continuous_const_mul ENNReal.continuous_const_mulₓ'. -/
 protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_const_mul (Or.inl ha)
@@ -1416,7 +1416,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14766 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14768 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14766 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14768) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14727 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14729 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14727 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14729) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
@@ -1987,7 +1987,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21580 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21541 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_leₓ'. -/
 theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
@@ -2655,7 +2655,7 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
 lean 3 declaration is
   forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26805 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26766 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit 90ac7a91781abbb5f0206888d68bd095f88c4229
+! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -16,6 +16,9 @@ import Mathbin.Topology.MetricSpace.Lipschitz
 
 /-!
 # Extended non-negative reals
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
 -/
 
 
Diff
@@ -1365,7 +1365,7 @@ section Liminf
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt (x n) R) l))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -1389,7 +1389,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt R (x n)) l))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -1413,7 +1413,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 lean 3 declaration is
   forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
 but is expected to have type
-  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14763 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14765 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14763 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14765) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (RatCast.ratCast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (RatCast.ratCast.{0} Real Real.ratCast b) (x i)) l)))))
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14766 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14768 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14766 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14768) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (Rat.cast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast b) (x i)) l)))))
 Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
@@ -1984,7 +1984,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21577 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21580 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
 Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_leₓ'. -/
 theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
@@ -2652,7 +2652,7 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
 lean 3 declaration is
   forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 but is expected to have type
-  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26802 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26805 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
 Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
Diff
@@ -927,8 +927,8 @@ theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a =
   by
   by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0
   · rcases h H.1 H.2 with ⟨i, hi⟩
-    rw [H.2, mul_zero, ← bot_eq_zero, infᵢ_eq_bot]
-    exact fun b hb => ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩
+    rw [H.2, MulZeroClass.mul_zero, ← bot_eq_zero, infᵢ_eq_bot]
+    exact fun b hb => ⟨i, by rwa [hi, MulZeroClass.mul_zero, ← bot_eq_zero]⟩
   · rw [not_and_or] at H
     cases isEmpty_or_nonempty ι
     · rw [infᵢ_of_empty, infᵢ_of_empty, mul_top, if_neg]
@@ -1247,8 +1247,8 @@ theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a *
   by_cases hf : ∀ i, f i = 0
   · obtain rfl : f = fun _ => 0
     exact funext hf
-    simp only [supr_zero_eq_zero, mul_zero]
-  · refine' (monotone_id.const_mul' _).map_supᵢ_of_continuousAt _ (mul_zero a)
+    simp only [supr_zero_eq_zero, MulZeroClass.mul_zero]
+  · refine' (monotone_id.const_mul' _).map_supᵢ_of_continuousAt _ (MulZeroClass.mul_zero a)
     refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
     exact mt supr_eq_zero.1 hf
 #align ennreal.mul_supr ENNReal.mul_supᵢ
@@ -2825,7 +2825,7 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f :=
   by
   rcases eq_or_ne C 0 with (rfl | C0)
-  · simp only [zero_mul, add_zero] at h
+  · simp only [MulZeroClass.zero_mul, add_zero] at h
     exact continuous_of_const fun x y => le_antisymm (h _ _) (h _ _)
   · refine' continuous_iff_continuousAt.2 fun x => _
     by_cases hx : f x = ∞
Diff
@@ -56,6 +56,12 @@ instance : NormalSpace ℝ≥0∞ :=
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.Embedding.SecondCountableTopology
 
+/- warning: ennreal.embedding_coe -> ENNReal.embedding_coe is a dubious translation:
+lean 3 declaration is
+  Embedding.{0, 0} NNReal ENNReal NNReal.topologicalSpace ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))
+but is expected to have type
+  Embedding.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
+Case conversion may be inaccurate. Consider using '#align ennreal.embedding_coe ENNReal.embedding_coeₓ'. -/
 theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨⟨by
       refine' le_antisymm _ _
@@ -73,69 +79,153 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
         exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_eq_coe.1⟩
 #align ennreal.embedding_coe ENNReal.embedding_coe
 
+/- warning: ennreal.is_open_ne_top -> ENNReal.isOpen_ne_top is a dubious translation:
+lean 3 declaration is
+  IsOpen.{0} ENNReal ENNReal.topologicalSpace (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  IsOpen.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.is_open_ne_top ENNReal.isOpen_ne_topₓ'. -/
 theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ⊤ } :=
   isOpen_ne
 #align ennreal.is_open_ne_top ENNReal.isOpen_ne_top
 
+/- warning: ennreal.is_open_Ico_zero -> ENNReal.isOpen_Ico_zero is a dubious translation:
+lean 3 declaration is
+  forall {b : ENNReal}, IsOpen.{0} ENNReal ENNReal.topologicalSpace (Set.Ico.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) b)
+but is expected to have type
+  forall {b : ENNReal}, IsOpen.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Set.Ico.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) b)
+Case conversion may be inaccurate. Consider using '#align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zeroₓ'. -/
 theorem isOpen_Ico_zero : IsOpen (Ico 0 b) :=
   by
   rw [ENNReal.Ico_eq_Iio]
   exact isOpen_Iio
 #align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zero
 
+/- warning: ennreal.open_embedding_coe -> ENNReal.openEmbedding_coe is a dubious translation:
+lean 3 declaration is
+  OpenEmbedding.{0, 0} NNReal ENNReal NNReal.topologicalSpace ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))
+but is expected to have type
+  OpenEmbedding.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
+Case conversion may be inaccurate. Consider using '#align ennreal.open_embedding_coe ENNReal.openEmbedding_coeₓ'. -/
 theorem openEmbedding_coe : OpenEmbedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨embedding_coe, by
     convert is_open_ne_top
     ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
 #align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
 
+/- warning: ennreal.coe_range_mem_nhds -> ENNReal.coe_range_mem_nhds is a dubious translation:
+lean 3 declaration is
+  forall {r : NNReal}, Membership.Mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (Filter.hasMem.{0} ENNReal) (Set.range.{0, 1} ENNReal NNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))) (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))
+but is expected to have type
+  forall {r : NNReal}, Membership.mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (instMembershipSetFilter.{0} ENNReal) (Set.range.{0, 1} ENNReal NNReal ENNReal.some) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some r))
+Case conversion may be inaccurate. Consider using '#align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhdsₓ'. -/
 theorem coe_range_mem_nhds : range (coe : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) :=
   IsOpen.mem_nhds openEmbedding_coe.open_range <| mem_range_self _
 #align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhds
 
+/- warning: ennreal.tendsto_coe -> ENNReal.tendsto_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> NNReal} {a : NNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (m a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) a))) (Filter.Tendsto.{u1, 0} α NNReal m f (nhds.{0} NNReal NNReal.topologicalSpace a))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> NNReal} {a : NNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => ENNReal.some (m a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some a))) (Filter.Tendsto.{u1, 0} α NNReal m f (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal a))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe ENNReal.tendsto_coeₓ'. -/
 @[norm_cast]
 theorem tendsto_coe {f : Filter α} {m : α → ℝ≥0} {a : ℝ≥0} :
     Tendsto (fun a => (m a : ℝ≥0∞)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) :=
   embedding_coe.tendsto_nhds_iff.symm
 #align ennreal.tendsto_coe ENNReal.tendsto_coe
 
+/- warning: ennreal.continuous_coe -> ENNReal.continuous_coe is a dubious translation:
+lean 3 declaration is
+  Continuous.{0, 0} NNReal ENNReal NNReal.topologicalSpace ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))
+but is expected to have type
+  Continuous.{0, 0} NNReal ENNReal NNReal.instTopologicalSpaceNNReal ENNReal.instTopologicalSpaceENNReal ENNReal.some
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_coe ENNReal.continuous_coeₓ'. -/
 theorem continuous_coe : Continuous (coe : ℝ≥0 → ℝ≥0∞) :=
   embedding_coe.Continuous
 #align ennreal.continuous_coe ENNReal.continuous_coe
 
+/- warning: ennreal.continuous_coe_iff -> ENNReal.continuous_coe_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> NNReal}, Iff (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (Continuous.{u1, 0} α NNReal _inst_1 NNReal.topologicalSpace f)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> NNReal}, Iff (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal (fun (a : α) => ENNReal.some (f a))) (Continuous.{u1, 0} α NNReal _inst_1 NNReal.instTopologicalSpaceNNReal f)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_coe_iff ENNReal.continuous_coe_iffₓ'. -/
 theorem continuous_coe_iff {α} [TopologicalSpace α] {f : α → ℝ≥0} :
     (Continuous fun a => (f a : ℝ≥0∞)) ↔ Continuous f :=
   embedding_coe.continuous_iff.symm
 #align ennreal.continuous_coe_iff ENNReal.continuous_coe_iff
 
+/- warning: ennreal.nhds_coe -> ENNReal.nhds_coe is a dubious translation:
+lean 3 declaration is
+  forall {r : NNReal}, Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r)) (Filter.map.{0, 0} NNReal ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe)))) (nhds.{0} NNReal NNReal.topologicalSpace r))
+but is expected to have type
+  forall {r : NNReal}, Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some r)) (Filter.map.{0, 0} NNReal ENNReal ENNReal.some (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal r))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_coe ENNReal.nhds_coeₓ'. -/
 theorem nhds_coe {r : ℝ≥0} : 𝓝 (r : ℝ≥0∞) = (𝓝 r).map coe :=
   (openEmbedding_coe.map_nhds_eq r).symm
 #align ennreal.nhds_coe ENNReal.nhds_coe
 
+/- warning: ennreal.tendsto_nhds_coe_iff -> ENNReal.tendsto_nhds_coe_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {l : Filter.{u1} α} {x : NNReal} {f : ENNReal -> α}, Iff (Filter.Tendsto.{0, u1} ENNReal α f (nhds.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x)) l) (Filter.Tendsto.{0, u1} NNReal α (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))) (nhds.{0} NNReal NNReal.topologicalSpace x) l)
+but is expected to have type
+  forall {α : Type.{u1}} {l : Filter.{u1} α} {x : NNReal} {f : ENNReal -> α}, Iff (Filter.Tendsto.{0, u1} ENNReal α f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some x)) l) (Filter.Tendsto.{0, u1} NNReal α (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ENNReal.some) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal x) l)
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iffₓ'. -/
 theorem tendsto_nhds_coe_iff {α : Type _} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ coe : ℝ≥0 → α) (𝓝 x) l :=
   show _ ≤ _ ↔ _ ≤ _ by rw [nhds_coe, Filter.map_map]
 #align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iff
 
+/- warning: ennreal.continuous_at_coe_iff -> ENNReal.continuousAt_coe_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : NNReal} {f : ENNReal -> α}, Iff (ContinuousAt.{0, u1} ENNReal α ENNReal.topologicalSpace _inst_1 f ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x)) (ContinuousAt.{0, u1} NNReal α NNReal.topologicalSpace _inst_1 (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))))) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : NNReal} {f : ENNReal -> α}, Iff (ContinuousAt.{0, u1} ENNReal α ENNReal.instTopologicalSpaceENNReal _inst_1 f (ENNReal.some x)) (ContinuousAt.{0, u1} NNReal α NNReal.instTopologicalSpaceNNReal _inst_1 (Function.comp.{1, 1, succ u1} NNReal ENNReal α f ENNReal.some) x)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iffₓ'. -/
 theorem continuousAt_coe_iff {α : Type _} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     ContinuousAt f ↑x ↔ ContinuousAt (f ∘ coe : ℝ≥0 → α) x :=
   tendsto_nhds_coe_iff
 #align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iff
 
+/- warning: ennreal.nhds_coe_coe -> ENNReal.nhds_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall {r : NNReal} {p : NNReal}, Eq.{1} (Filter.{0} (Prod.{0, 0} ENNReal ENNReal)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) p))) (Filter.map.{0, 0} (Prod.{0, 0} NNReal NNReal) (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} NNReal NNReal) => Prod.mk.{0, 0} ENNReal ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (Prod.fst.{0, 0} NNReal NNReal p)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (Prod.snd.{0, 0} NNReal NNReal p))) (nhds.{0} (Prod.{0, 0} NNReal NNReal) (Prod.topologicalSpace.{0, 0} NNReal NNReal NNReal.topologicalSpace NNReal.topologicalSpace) (Prod.mk.{0, 0} NNReal NNReal r p)))
+but is expected to have type
+  forall {r : NNReal} {p : NNReal}, Eq.{1} (Filter.{0} (Prod.{0, 0} ENNReal ENNReal)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal (ENNReal.some r) (ENNReal.some p))) (Filter.map.{0, 0} (Prod.{0, 0} NNReal NNReal) (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} NNReal NNReal) => Prod.mk.{0, 0} ENNReal ENNReal (ENNReal.some (Prod.fst.{0, 0} NNReal NNReal p)) (ENNReal.some (Prod.snd.{0, 0} NNReal NNReal p))) (nhds.{0} (Prod.{0, 0} NNReal NNReal) (instTopologicalSpaceProd.{0, 0} NNReal NNReal NNReal.instTopologicalSpaceNNReal NNReal.instTopologicalSpaceNNReal) (Prod.mk.{0, 0} NNReal NNReal r p)))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_coe_coe ENNReal.nhds_coe_coeₓ'. -/
 theorem nhds_coe_coe {r p : ℝ≥0} :
     𝓝 ((r : ℝ≥0∞), (p : ℝ≥0∞)) = (𝓝 (r, p)).map fun p : ℝ≥0 × ℝ≥0 => (p.1, p.2) :=
   ((openEmbedding_coe.Prod openEmbedding_coe).map_nhds_eq (r, p)).symm
 #align ennreal.nhds_coe_coe ENNReal.nhds_coe_coe
 
+/- warning: ennreal.continuous_of_real -> ENNReal.continuous_ofReal is a dubious translation:
+lean 3 declaration is
+  Continuous.{0, 0} Real ENNReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) ENNReal.topologicalSpace ENNReal.ofReal
+but is expected to have type
+  Continuous.{0, 0} Real ENNReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) ENNReal.instTopologicalSpaceENNReal ENNReal.ofReal
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_of_real ENNReal.continuous_ofRealₓ'. -/
 theorem continuous_ofReal : Continuous ENNReal.ofReal :=
   (continuous_coe_iff.2 continuous_id).comp continuous_real_toNNReal
 #align ennreal.continuous_of_real ENNReal.continuous_ofReal
 
+/- warning: ennreal.tendsto_of_real -> ENNReal.tendsto_ofReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> Real} {a : Real}, (Filter.Tendsto.{u1, 0} α Real m f (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => ENNReal.ofReal (m a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (ENNReal.ofReal a)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> Real} {a : Real}, (Filter.Tendsto.{u1, 0} α Real m f (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => ENNReal.ofReal (m a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.ofReal a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_of_real ENNReal.tendsto_ofRealₓ'. -/
 theorem tendsto_ofReal {f : Filter α} {m : α → ℝ} {a : ℝ} (h : Tendsto m f (𝓝 a)) :
     Tendsto (fun a => ENNReal.ofReal (m a)) f (𝓝 (ENNReal.ofReal a)) :=
   Tendsto.comp (Continuous.tendsto continuous_ofReal _) h
 #align ennreal.tendsto_of_real ENNReal.tendsto_ofReal
 
+/- warning: ennreal.tendsto_to_nnreal -> ENNReal.tendsto_toNNReal is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} ENNReal NNReal ENNReal.toNNReal (nhds.{0} ENNReal ENNReal.topologicalSpace a) (nhds.{0} NNReal NNReal.topologicalSpace (ENNReal.toNNReal a)))
+but is expected to have type
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} ENNReal NNReal ENNReal.toNNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal (ENNReal.toNNReal a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_to_nnreal ENNReal.tendsto_toNNRealₓ'. -/
 theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 a.toNNReal) :=
   by
   lift a to ℝ≥0 using ha
@@ -143,6 +233,12 @@ theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toN
   exact tendsto_id
 #align ennreal.tendsto_to_nnreal ENNReal.tendsto_toNNReal
 
+/- warning: ennreal.eventually_eq_of_to_real_eventually_eq -> ENNReal.eventuallyEq_of_toReal_eventuallyEq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {l : Filter.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) l) -> (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) l) -> (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => ENNReal.toReal (f x)) (fun (x : α) => ENNReal.toReal (g x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal l f g)
+but is expected to have type
+  forall {α : Type.{u1}} {l : Filter.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) l) -> (Filter.Eventually.{u1} α (fun (x : α) => Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) l) -> (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => ENNReal.toReal (f x)) (fun (x : α) => ENNReal.toReal (g x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal l f g)
+Case conversion may be inaccurate. Consider using '#align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEqₓ'. -/
 theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥0∞}
     (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞)
     (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g :=
@@ -151,64 +247,136 @@ theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥
   rwa [← ENNReal.toReal_eq_toReal hfx hgx]
 #align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEq
 
+/- warning: ennreal.continuous_on_to_nnreal -> ENNReal.continuousOn_toNNReal is a dubious translation:
+lean 3 declaration is
+  ContinuousOn.{0, 0} ENNReal NNReal ENNReal.topologicalSpace NNReal.topologicalSpace ENNReal.toNNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  ContinuousOn.{0, 0} ENNReal NNReal ENNReal.instTopologicalSpaceENNReal NNReal.instTopologicalSpaceNNReal ENNReal.toNNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNRealₓ'. -/
 theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal { a | a ≠ ∞ } := fun a ha =>
   ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
 #align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNReal
 
+/- warning: ennreal.tendsto_to_real -> ENNReal.tendsto_toReal is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} ENNReal Real ENNReal.toReal (nhds.{0} ENNReal ENNReal.topologicalSpace a) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal a)))
+but is expected to have type
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} ENNReal Real ENNReal.toReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_to_real ENNReal.tendsto_toRealₓ'. -/
 theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) :=
   NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
 #align ennreal.tendsto_to_real ENNReal.tendsto_toReal
 
+/- warning: ennreal.ne_top_homeomorph_nnreal -> ENNReal.neTopHomeomorphNNReal is a dubious translation:
+lean 3 declaration is
+  Homeomorph.{0, 0} (coeSort.{1, 2} (Set.{0} ENNReal) Type (Set.hasCoeToSort.{0} ENNReal) (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) NNReal (Subtype.topologicalSpace.{0} ENNReal (fun (x : ENNReal) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) ENNReal.topologicalSpace) NNReal.topologicalSpace
+but is expected to have type
+  Homeomorph.{0, 0} (Set.Elem.{0} ENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) NNReal (instTopologicalSpaceSubtype.{0} ENNReal (fun (x : ENNReal) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) ENNReal.instTopologicalSpaceENNReal) NNReal.instTopologicalSpaceNNReal
+Case conversion may be inaccurate. Consider using '#align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNNRealₓ'. -/
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
-def neTopHomeomorphNnreal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
+def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
   {
     neTopEquivNNReal with
     continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toNNReal
     continuous_invFun := continuous_coe.subtype_mk _ }
-#align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNnreal
-
+#align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNNReal
+
+/- warning: ennreal.lt_top_homeomorph_nnreal -> ENNReal.ltTopHomeomorphNNReal is a dubious translation:
+lean 3 declaration is
+  Homeomorph.{0, 0} (coeSort.{1, 2} (Set.{0} ENNReal) Type (Set.hasCoeToSort.{0} ENNReal) (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) NNReal (Subtype.topologicalSpace.{0} ENNReal (fun (x : ENNReal) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) ENNReal.topologicalSpace) NNReal.topologicalSpace
+but is expected to have type
+  Homeomorph.{0, 0} (Set.Elem.{0} ENNReal (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) NNReal (instTopologicalSpaceSubtype.{0} ENNReal (fun (x : ENNReal) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) x (setOf.{0} ENNReal (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) ENNReal.instTopologicalSpaceENNReal) NNReal.instTopologicalSpaceNNReal
+Case conversion may be inaccurate. Consider using '#align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNRealₓ'. -/
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
-def ltTopHomeomorphNnreal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
+def ltTopHomeomorphNNReal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
   refine' (Homeomorph.setCongr <| Set.ext fun x => _).trans ne_top_homeomorph_nnreal <;>
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
-#align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNnreal
-
+#align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
+
+/- warning: ennreal.nhds_top -> ENNReal.nhds_top is a dubious translation:
+lean 3 declaration is
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
+but is expected to have type
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (H : Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top ENNReal.nhds_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
 #align ennreal.nhds_top ENNReal.nhds_top
 
+/- warning: ennreal.nhds_top' -> ENNReal.nhds_top' is a dubious translation:
+lean 3 declaration is
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))))
+but is expected to have type
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) NNReal (fun (r : NNReal) => Filter.principal.{0} ENNReal (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ENNReal.some r))))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top' ENNReal.nhds_top'ₓ'. -/
 theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
   nhds_top.trans <| infᵢ_ne_top _
 #align ennreal.nhds_top' ENNReal.nhds_top'
 
+/- warning: ennreal.nhds_top_basis -> ENNReal.nhds_top_basis is a dubious translation:
+lean 3 declaration is
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
+but is expected to have type
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (a : ENNReal) => Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a)
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_top_basis ENNReal.nhds_top_basisₓ'. -/
 theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :=
   nhds_top_basis
 #align ennreal.nhds_top_basis ENNReal.nhds_top_basis
 
-theorem tendsto_nhds_top_iff_nNReal {m : α → ℝ≥0∞} {f : Filter α} :
+/- warning: ennreal.tendsto_nhds_top_iff_nnreal -> ENNReal.tendsto_nhds_top_iff_nnreal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) x) (m a)) f)
+but is expected to have type
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (forall (x : NNReal), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some x) (m a)) f)
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnrealₓ'. -/
+theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
   simp only [nhds_top', tendsto_infi, tendsto_principal, mem_Ioi]
-#align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nNReal
-
+#align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnreal
+
+/- warning: ennreal.tendsto_nhds_top_iff_nat -> ENNReal.tendsto_nhds_top_iff_nat is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f)
+but is expected to have type
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (m a)) f)
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_natₓ'. -/
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
-  tendsto_nhds_top_iff_nNReal.trans
+  tendsto_nhds_top_iff_nnreal.trans
     ⟨fun h n => by simpa only [ENNReal.coe_nat] using h n, fun h x =>
       let ⟨n, hn⟩ := exists_nat_gt x
       (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_nat, coe_lt_coe]⟩
 #align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
 
+/- warning: ennreal.tendsto_nhds_top -> ENNReal.tendsto_nhds_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : α -> ENNReal} {f : Filter.{u1} α}, (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (m a)) f) -> (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_topₓ'. -/
 theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) :
     Tendsto m f (𝓝 ⊤) :=
   tendsto_nhds_top_iff_nat.2 h
 #align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_top
 
+/- warning: ennreal.tendsto_nat_nhds_top -> ENNReal.tendsto_nat_nhds_top is a dubious translation:
+lean 3 declaration is
+  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_topₓ'. -/
 theorem tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) :=
   tendsto_nhds_top fun n =>
     mem_atTop_sets.2 ⟨n + 1, fun m hm => mem_setOf.2 <| Nat.cast_lt.2 <| Nat.lt_of_succ_le hm⟩
 #align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_top
 
+/- warning: ennreal.tendsto_coe_nhds_top -> ENNReal.tendsto_coe_nhds_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal} {l : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) l (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Filter.Tendsto.{u1, 0} α NNReal f l (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal} {l : Filter.{u1} α}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => ENNReal.some (f x)) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Filter.Tendsto.{u1, 0} α NNReal f l (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_topₓ'. -/
 @[simp, norm_cast]
 theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by
@@ -216,33 +384,75 @@ theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     infer_instance]
 #align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_top
 
+/- warning: ennreal.tendsto_of_real_at_top -> ENNReal.tendsto_ofReal_atTop is a dubious translation:
+lean 3 declaration is
+  Filter.Tendsto.{0, 0} Real ENNReal ENNReal.ofReal (Filter.atTop.{0} Real Real.preorder) (nhds.{0} ENNReal ENNReal.topologicalSpace (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  Filter.Tendsto.{0, 0} Real ENNReal ENNReal.ofReal (Filter.atTop.{0} Real Real.instPreorderReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTopₓ'. -/
 theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 
+/- warning: ennreal.nhds_zero -> ENNReal.nhds_zero is a dubious translation:
+lean 3 declaration is
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a))))
+but is expected to have type
+  Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (a : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero ENNReal.nhds_zeroₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
 #align ennreal.nhds_zero ENNReal.nhds_zero
 
+/- warning: ennreal.nhds_zero_basis -> ENNReal.nhds_zero_basis is a dubious translation:
+lean 3 declaration is
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) a)
+but is expected to have type
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) a) (fun (a : ENNReal) => Set.Iio.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) a)
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero_basis ENNReal.nhds_zero_basisₓ'. -/
 theorem nhds_zero_basis : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) fun a => Iio a :=
   nhds_bot_basis
 #align ennreal.nhds_zero_basis ENNReal.nhds_zero_basis
 
+/- warning: ennreal.nhds_zero_basis_Iic -> ENNReal.nhds_zero_basis_Iic is a dubious translation:
+lean 3 declaration is
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  Filter.HasBasis.{0, 1} ENNReal ENNReal (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (a : ENNReal) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) a) (Set.Iic.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iicₓ'. -/
 theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) Iic :=
   nhds_bot_basis_Iic
 #align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iic
 
+/- warning: ennreal.nhds_within_Ioi_coe_ne_bot -> ENNReal.nhdsWithin_Ioi_coe_neBot is a dubious translation:
+lean 3 declaration is
+  forall {r : NNReal}, Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.topologicalSpace ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r)))
+but is expected to have type
+  forall {r : NNReal}, Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (ENNReal.some r) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ENNReal.some r)))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBotₓ'. -/
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_self_neBot' ⟨⊤, ENNReal.coe_lt_top⟩
 #align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBot
 
+/- warning: ennreal.nhds_within_Ioi_zero_ne_bot -> ENNReal.nhdsWithin_Ioi_zero_neBot is a dubious translation:
+lean 3 declaration is
+  Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  Filter.NeBot.{0} ENNReal (nhdsWithin.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (Set.Ioi.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_within_Ioi_zero_ne_bot ENNReal.nhdsWithin_Ioi_zero_neBotₓ'. -/
 @[instance]
 theorem nhdsWithin_Ioi_zero_neBot : (𝓝[>] (0 : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_coe_neBot
 #align ennreal.nhds_within_Ioi_zero_ne_bot ENNReal.nhdsWithin_Ioi_zero_neBot
 
+/- warning: ennreal.Icc_mem_nhds -> ENNReal.Icc_mem_nhds is a dubious translation:
+lean 3 declaration is
+  forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Membership.Mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (Filter.hasMem.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε)) (nhds.{0} ENNReal ENNReal.topologicalSpace x))
+but is expected to have type
+  forall {x : ENNReal} {ε : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Membership.mem.{0, 0} (Set.{0} ENNReal) (Filter.{0} ENNReal) (instMembershipSetFilter.{0} ENNReal) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x))
+Case conversion may be inaccurate. Consider using '#align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhdsₓ'. -/
 -- using Icc because
 -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0
 -- • (x - y ≤ ε ↔ x ≤ ε + y) is true, while (x - y < ε ↔ x < ε + y) is not
@@ -262,6 +472,12 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
     exact ⟨isOpen_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0⟩
 #align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
 
+/- warning: ennreal.nhds_of_ne_top -> ENNReal.nhds_of_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.topologicalSpace x) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toHasInf.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.completeLattice.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x ε))))))
+but is expected to have type
+  forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} (Filter.{0} ENNReal) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x) (infᵢ.{0, 1} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) ENNReal (fun (ε : ENNReal) => infᵢ.{0, 0} (Filter.{0} ENNReal) (ConditionallyCompleteLattice.toInfSet.{0} (Filter.{0} ENNReal) (CompleteLattice.toConditionallyCompleteLattice.{0} (Filter.{0} ENNReal) (Filter.instCompleteLatticeFilter.{0} ENNReal))) (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (fun (H : GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) => Filter.principal.{0} ENNReal (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) x ε))))))
+Case conversion may be inaccurate. Consider using '#align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_topₓ'. -/
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   by
   refine' le_antisymm _ _
@@ -298,6 +514,12 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
       
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
+/- warning: ennreal.tendsto_nhds -> ENNReal.tendsto_nhds is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε))) f)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (u x) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε))) f)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds ENNReal.tendsto_nhdsₓ'. -/
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
 protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ⊤) :
@@ -305,6 +527,12 @@ protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ
   simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc]
 #align ennreal.tendsto_nhds ENNReal.tendsto_nhds
 
+/- warning: ennreal.tendsto_nhds_zero -> ENNReal.tendsto_nhds_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (u x) ε) f))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {u : α -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal u f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (u x) ε) f))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zeroₓ'. -/
 protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
     Tendsto u f (𝓝 0) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ≤ ε :=
   by
@@ -312,6 +540,12 @@ protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
   simp only [true_and_iff, zero_tsub, zero_le, zero_add, Set.mem_Icc]
 #align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zero
 
+/- warning: ennreal.tendsto_at_top -> ENNReal.tendsto_atTop is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a ε)))))))
+but is expected to have type
+  forall {β : Type.{u1}} [_inst_1 : Nonempty.{succ u1} β] [_inst_2 : SemilatticeSup.{u1} β] {f : β -> ENNReal} {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) n N) -> (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (f n) (Set.Icc.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a ε) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a ε)))))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top ENNReal.tendsto_atTopₓ'. -/
 protected theorem tendsto_atTop [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} {a : ℝ≥0∞}
     (ha : a ≠ ⊤) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) := by
   simp only [ENNReal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, Filter.Eventually]
@@ -327,6 +561,12 @@ instance : ContinuousAdd ℝ≥0∞ :=
   simp only [ContinuousAt, some_eq_coe, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (· ∘ ·),
     tendsto_coe, tendsto_add]
 
+/- warning: ennreal.tendsto_at_top_zero -> ENNReal.tendsto_atTop_zero is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f n) ε))))
+but is expected to have type
+  forall {β : Type.{u1}} [hβ : Nonempty.{succ u1} β] [_inst_1 : SemilatticeSup.{u1} β] {f : β -> ENNReal}, Iff (Filter.Tendsto.{u1, 0} β ENNReal f (Filter.atTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) (forall (ε : ENNReal), (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} β (fun (N : β) => forall (n : β), (GE.ge.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_1))) n N) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f n) ε))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zeroₓ'. -/
 protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} :
     Filter.atTop.Tendsto f (𝓝 0) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ≤ ε :=
   by
@@ -335,6 +575,12 @@ protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f
   · exact hβ
 #align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zero
 
+/- warning: ennreal.tendsto_sub -> ENNReal.tendsto_sub is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a b)))
+but is expected to have type
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_sub ENNReal.tendsto_subₓ'. -/
 theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
   by
@@ -372,6 +618,12 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     exact Continuous.tendsto (by continuity) _
 #align ennreal.tendsto_sub ENNReal.tendsto_sub
 
+/- warning: ennreal.tendsto.sub -> ENNReal.Tendsto.sub is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.sub ENNReal.Tendsto.subₓ'. -/
 protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (hmb : Tendsto mb f (𝓝 b)) (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun a => ma a - mb a) f (𝓝 (a - b)) :=
@@ -379,6 +631,12 @@ protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α
     Tendsto.comp (ENNReal.tendsto_sub h) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.sub ENNReal.Tendsto.sub
 
+/- warning: ennreal.tendsto_mul -> ENNReal.tendsto_mul is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
+but is expected to have type
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (nhds.{0} (Prod.{0, 0} ENNReal ENNReal) (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) (Prod.mk.{0, 0} ENNReal ENNReal a b)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_mul ENNReal.tendsto_mulₓ'. -/
 protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) :=
   by
@@ -402,6 +660,12 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
   simp only [coe_mul.symm, tendsto_coe, tendsto_mul]
 #align ennreal.tendsto_mul ENNReal.tendsto_mul
 
+/- warning: ennreal.tendsto.mul -> ENNReal.Tendsto.mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.mul ENNReal.Tendsto.mulₓ'. -/
 protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun a => ma a * mb a) f (𝓝 (a * b)) :=
@@ -409,30 +673,60 @@ protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α
     Tendsto.comp (ENNReal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.mul ENNReal.Tendsto.mul
 
-theorem ContinuousOn.eNNReal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} {s : Set α}
+/- warning: continuous_on.ennreal_mul -> ContinuousOn.ennreal_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace f s) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace g s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (g x)) s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal f s) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal g s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (ContinuousOn.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (g x)) s)
+Case conversion may be inaccurate. Consider using '#align continuous_on.ennreal_mul ContinuousOn.ennreal_mulₓ'. -/
+theorem ContinuousOn.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} {s : Set α}
     (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h₁ : ∀ x ∈ s, f x ≠ 0 ∨ g x ≠ ∞)
     (h₂ : ∀ x ∈ s, g x ≠ 0 ∨ f x ≠ ∞) : ContinuousOn (fun x => f x * g x) s := fun x hx =>
   ENNReal.Tendsto.mul (hf x hx) (h₁ x hx) (hg x hx) (h₂ x hx)
-#align continuous_on.ennreal_mul ContinuousOn.eNNReal_mul
-
-theorem Continuous.eNNReal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (hf : Continuous f)
+#align continuous_on.ennreal_mul ContinuousOn.ennreal_mul
+
+/- warning: continuous.ennreal_mul -> Continuous.ennreal_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal}, (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace f) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace g) -> (forall (x : α), Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (x : α), Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (g x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {f : α -> ENNReal} {g : α -> ENNReal}, (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal f) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal g) -> (forall (x : α), Or (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (g x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (x : α), Or (Ne.{1} ENNReal (g x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Continuous.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (g x)))
+Case conversion may be inaccurate. Consider using '#align continuous.ennreal_mul Continuous.ennreal_mulₓ'. -/
+theorem Continuous.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (hf : Continuous f)
     (hg : Continuous g) (h₁ : ∀ x, f x ≠ 0 ∨ g x ≠ ∞) (h₂ : ∀ x, g x ≠ 0 ∨ f x ≠ ∞) :
     Continuous fun x => f x * g x :=
   continuous_iff_continuousAt.2 fun x =>
     ENNReal.Tendsto.mul hf.ContinuousAt (h₁ x) hg.ContinuousAt (h₂ x)
-#align continuous.ennreal_mul Continuous.eNNReal_mul
-
+#align continuous.ennreal_mul Continuous.ennreal_mul
+
+/- warning: ennreal.tendsto.const_mul -> ENNReal.Tendsto.const_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (m b)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (m b)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mulₓ'. -/
 protected theorem Tendsto.const_mul {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun b => a * m b) f (𝓝 (a * b)) :=
   by_cases (fun this : a = 0 => by simp [this, tendsto_const_nhds]) fun ha : a ≠ 0 =>
     ENNReal.Tendsto.mul tendsto_const_nhds (Or.inl ha) hm hb
 #align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mul
 
+/- warning: ennreal.tendsto.mul_const -> ENNReal.Tendsto.mul_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (m x) b) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (m x) b) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_constₓ'. -/
 protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : Tendsto (fun x => m x * b) f (𝓝 (a * b)) := by
   simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha
 #align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_const
 
+/- warning: ennreal.tendsto_finset_prod_of_ne_top -> ENNReal.tendsto_finset_prod_of_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {f : ι -> α -> ENNReal} {x : Filter.{u1} α} {a : ι -> ENNReal} (s : Finset.{u2} ι), (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Filter.Tendsto.{u1, 0} α ENNReal (f i) x (nhds.{0} ENNReal ENNReal.topologicalSpace (a i)))) -> (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Ne.{1} ENNReal (a i) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => Finset.prod.{0, u2} ENNReal ι (OrderedCommMonoid.toCommMonoid.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommMonoid.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) s (fun (c : ι) => f c b)) x (nhds.{0} ENNReal ENNReal.topologicalSpace (Finset.prod.{0, u2} ENNReal ι (OrderedCommMonoid.toCommMonoid.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommMonoid.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) s (fun (c : ι) => a c))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {f : ι -> α -> ENNReal} {x : Filter.{u1} α} {a : ι -> ENNReal} (s : Finset.{u2} ι), (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Filter.Tendsto.{u1, 0} α ENNReal (f i) x (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (a i)))) -> (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Ne.{1} ENNReal (a i) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => Finset.prod.{0, u2} ENNReal ι (LinearOrderedCommMonoid.toCommMonoid.{0} ENNReal (LinearOrderedCommMonoidWithZero.toLinearOrderedCommMonoid.{0} ENNReal ENNReal.instLinearOrderedCommMonoidWithZeroENNReal)) s (fun (c : ι) => f c b)) x (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Finset.prod.{0, u2} ENNReal ι (LinearOrderedCommMonoid.toCommMonoid.{0} ENNReal (LinearOrderedCommMonoidWithZero.toLinearOrderedCommMonoid.{0} ENNReal ENNReal.instLinearOrderedCommMonoidWithZeroENNReal)) s (fun (c : ι) => a c))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_topₓ'. -/
 theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
     (s : Finset ι) (h : ∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) (h' : ∀ i ∈ s, a i ≠ ∞) :
     Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) :=
@@ -449,24 +743,54 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0
   · exact Or.inr (h' _ (Finset.mem_insert_self _ _))
 #align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_top
 
+/- warning: ennreal.continuous_at_const_mul -> ENNReal.continuousAt_const_mul is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a) b)
+but is expected to have type
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7733 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7735 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7733 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7735) a) b)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mulₓ'. -/
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt ((· * ·) a) b :=
   Tendsto.const_mul tendsto_id h.symm
 #align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mul
 
+/- warning: ennreal.continuous_at_mul_const -> ENNReal.continuousAt_mul_const is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x a) b)
+but is expected to have type
+  forall {a : ENNReal} {b : ENNReal}, (Or (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (ContinuousAt.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x a) b)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_constₓ'. -/
 protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt (fun x => x * a) b :=
   Tendsto.mul_const tendsto_id h.symm
 #align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_const
 
+/- warning: ennreal.continuous_const_mul -> ENNReal.continuous_const_mul is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a))
+but is expected to have type
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal ((fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7899 : ENNReal) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.7901 : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x._@.Mathlib.Topology.Instances.ENNReal._hyg.7899 x._@.Mathlib.Topology.Instances.ENNReal._hyg.7901) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_const_mul ENNReal.continuous_const_mulₓ'. -/
 protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_const_mul (Or.inl ha)
 #align ennreal.continuous_const_mul ENNReal.continuous_const_mul
 
+/- warning: ennreal.continuous_mul_const -> ENNReal.continuous_mul_const is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) x a))
+but is expected to have type
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) x a))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_mul_const ENNReal.continuous_mul_constₓ'. -/
 protected theorem continuous_mul_const {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous fun x => x * a :=
   continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_mul_const (Or.inl ha)
 #align ennreal.continuous_mul_const ENNReal.continuous_mul_const
 
+/- warning: ennreal.continuous_div_const -> ENNReal.continuous_div_const is a dubious translation:
+lean 3 declaration is
+  forall (c : ENNReal), (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) x c))
+but is expected to have type
+  forall (c : ENNReal), (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) x c))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_div_const ENNReal.continuous_div_constₓ'. -/
 protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
     Continuous fun x : ℝ≥0∞ => x / c :=
   by
@@ -475,6 +799,12 @@ protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
   exact ENNReal.continuousAt_mul_const (Or.intro_left _ (inv_ne_top.mpr c_ne_zero))
 #align ennreal.continuous_div_const ENNReal.continuous_div_const
 
+/- warning: ennreal.continuous_pow -> ENNReal.continuous_pow is a dubious translation:
+lean 3 declaration is
+  forall (n : Nat), Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (a : ENNReal) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) a n)
+but is expected to have type
+  forall (n : Nat), Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (a : ENNReal) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) a n)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_pow ENNReal.continuous_powₓ'. -/
 @[continuity]
 theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
   by
@@ -491,6 +821,12 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
   · simp only [H, true_or_iff, Ne.def, not_false_iff]
 #align ennreal.continuous_pow ENNReal.continuous_pow
 
+/- warning: ennreal.continuous_on_sub -> ENNReal.continuousOn_sub is a dubious translation:
+lean 3 declaration is
+  ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (Prod.topologicalSpace.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace) ENNReal.topologicalSpace (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
+but is expected to have type
+  ContinuousOn.{0, 0} (Prod.{0, 0} ENNReal ENNReal) ENNReal (instTopologicalSpaceProd.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal) ENNReal.instTopologicalSpaceENNReal (fun (p : Prod.{0, 0} ENNReal ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (Prod.fst.{0, 0} ENNReal ENNReal p) (Prod.snd.{0, 0} ENNReal ENNReal p)) (setOf.{0} (Prod.{0, 0} ENNReal ENNReal) (fun (p : Prod.{0, 0} ENNReal ENNReal) => Ne.{1} (Prod.{0, 0} ENNReal ENNReal) p (Prod.mk.{0, 0} ENNReal ENNReal (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_sub ENNReal.continuousOn_subₓ'. -/
 theorem continuousOn_sub :
     ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) { p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩ } :=
   by
@@ -500,6 +836,12 @@ theorem continuousOn_sub :
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_distrib.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
+/- warning: ennreal.continuous_sub_left -> ENNReal.continuous_sub_left is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a x))
+but is expected to have type
+  forall {a : ENNReal}, (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a x))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_sub_left ENNReal.continuous_sub_leftₓ'. -/
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous fun x => a - x :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
@@ -508,10 +850,22 @@ theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous
   simp only [a_ne_top, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
 #align ennreal.continuous_sub_left ENNReal.continuous_sub_left
 
-theorem continuous_nNReal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
+/- warning: ennreal.continuous_nnreal_sub -> ENNReal.continuous_nnreal_sub is a dubious translation:
+lean 3 declaration is
+  forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) a) x)
+but is expected to have type
+  forall {a : NNReal}, Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ENNReal.some a) x)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_subₓ'. -/
+theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
   continuous_sub_left coe_ne_top
-#align ennreal.continuous_nnreal_sub ENNReal.continuous_nNReal_sub
-
+#align ennreal.continuous_nnreal_sub ENNReal.continuous_nnreal_sub
+
+/- warning: ennreal.continuous_on_sub_left -> ENNReal.continuousOn_sub_left is a dubious translation:
+lean 3 declaration is
+  forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  forall (a : ENNReal), ContinuousOn.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a x) (setOf.{0} ENNReal (fun (x : ENNReal) => Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_leftₓ'. -/
 theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) { x : ℝ≥0∞ | x ≠ ∞ } :=
   by
   rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl]
@@ -520,6 +874,12 @@ theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {
   exact h none_eq_top
 #align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_left
 
+/- warning: ennreal.continuous_sub_right -> ENNReal.continuous_sub_right is a dubious translation:
+lean 3 declaration is
+  forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.topologicalSpace ENNReal.topologicalSpace (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) x a)
+but is expected to have type
+  forall (a : ENNReal), Continuous.{0, 0} ENNReal ENNReal ENNReal.instTopologicalSpaceENNReal ENNReal.instTopologicalSpaceENNReal (fun (x : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) x a)
+Case conversion may be inaccurate. Consider using '#align ennreal.continuous_sub_right ENNReal.continuous_sub_rightₓ'. -/
 theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ => x - a :=
   by
   by_cases a_infty : a = ∞
@@ -530,11 +890,23 @@ theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ =>
     simp only [a_infty, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]
 #align ennreal.continuous_sub_right ENNReal.continuous_sub_right
 
+/- warning: ennreal.tendsto.pow -> ENNReal.Tendsto.pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {n : Nat}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (m x) n) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) a n)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {n : Nat}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (m x) n) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) a n)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.pow ENNReal.Tendsto.powₓ'. -/
 protected theorem Tendsto.pow {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} {n : ℕ}
     (hm : Tendsto m f (𝓝 a)) : Tendsto (fun x => m x ^ n) f (𝓝 (a ^ n)) :=
   ((continuous_pow n).Tendsto a).comp hm
 #align ennreal.tendsto.pow ENNReal.Tendsto.pow
 
+/- warning: ennreal.le_of_forall_lt_one_mul_le -> ENNReal.le_of_forall_lt_one_mul_le is a dubious translation:
+lean 3 declaration is
+  forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x y)
+but is expected to have type
+  forall {x : ENNReal} {y : ENNReal}, (forall (a : ENNReal), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a x) y)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x y)
+Case conversion may be inaccurate. Consider using '#align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_leₓ'. -/
 theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤ y) : x ≤ y :=
   by
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
@@ -544,6 +916,12 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
+/- warning: ennreal.infi_mul_left' -> ENNReal.infᵢ_mul_left' is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
+but is expected to have type
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left' ENNReal.infᵢ_mul_left'ₓ'. -/
 theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   by
@@ -560,34 +938,76 @@ theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a =
         (ennreal.mul_left_mono.map_infi_of_continuous_at' (ENNReal.continuousAt_const_mul H)).symm
 #align ennreal.infi_mul_left' ENNReal.infᵢ_mul_left'
 
+/- warning: ennreal.infi_mul_left -> ENNReal.infᵢ_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i))))
+but is expected to have type
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_left ENNReal.infᵢ_mul_leftₓ'. -/
 theorem infᵢ_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   infᵢ_mul_left' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_left ENNReal.infᵢ_mul_left
 
+/- warning: ennreal.infi_mul_right' -> ENNReal.infᵢ_mul_right' is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
+but is expected to have type
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> ((Eq.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Nonempty.{u1} ι)) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right' ENNReal.infᵢ_mul_right'ₓ'. -/
 theorem infᵢ_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using infi_mul_left' h h0
 #align ennreal.infi_mul_right' ENNReal.infᵢ_mul_right'
 
+/- warning: ennreal.infi_mul_right -> ENNReal.infᵢ_mul_right is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i)) a))
+but is expected to have type
+  forall {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {f : ι -> ENNReal} {a : ENNReal}, ((Eq.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{u1} ι (fun (i : ι) => Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))) -> (Eq.{1} ENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i)) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.infi_mul_right ENNReal.infᵢ_mul_rightₓ'. -/
 theorem infᵢ_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
   infᵢ_mul_right' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_right ENNReal.infᵢ_mul_right
 
+/- warning: ennreal.inv_map_infi -> ENNReal.inv_map_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
+but is expected to have type
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_infi ENNReal.inv_map_infᵢₓ'. -/
 theorem inv_map_infᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (infᵢ x)⁻¹ = ⨆ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_infᵢ x
 #align ennreal.inv_map_infi ENNReal.inv_map_infᵢ
 
+/- warning: ennreal.inv_map_supr -> ENNReal.inv_map_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι x)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)))
+but is expected to have type
+  forall {ι : Sort.{u1}} {x : ι -> ENNReal}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι x)) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.inv_map_supr ENNReal.inv_map_supᵢₓ'. -/
 theorem inv_map_supᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (supᵢ x)⁻¹ = ⨅ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_supᵢ x
 #align ennreal.inv_map_supr ENNReal.inv_map_supᵢ
 
+/- warning: ennreal.inv_limsup -> ENNReal.inv_limsup is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (Filter.limsup.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) x l)) (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)) l)
+but is expected to have type
+  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (Filter.limsup.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) x l)) (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)) l)
+Case conversion may be inaccurate. Consider using '#align ennreal.inv_limsup ENNReal.inv_limsupₓ'. -/
 theorem inv_limsup {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (limsup x l)⁻¹ = liminf (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
 #align ennreal.inv_limsup ENNReal.inv_limsup
 
+/- warning: ennreal.inv_liminf -> ENNReal.inv_liminf is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.hasInv (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) x l)) (Filter.limsup.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.hasInv (x i)) l)
+but is expected to have type
+  forall {ι : Type.{u1}} {x : ι -> ENNReal} {l : Filter.{u1} ι}, Eq.{1} ENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) x l)) (Filter.limsup.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (x i)) l)
+Case conversion may be inaccurate. Consider using '#align ennreal.inv_liminf ENNReal.inv_liminfₓ'. -/
 theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (liminf x l)⁻¹ = limsup (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
@@ -596,18 +1016,36 @@ theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
 instance : ContinuousInv ℝ≥0∞ :=
   ⟨OrderIso.invENNReal.Continuous⟩
 
+/- warning: ennreal.tendsto_inv_iff -> ENNReal.tendsto_inv_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => Inv.inv.{0} ENNReal ENNReal.hasInv (m x)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (Inv.inv.{0} ENNReal ENNReal.hasInv a))) (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal}, Iff (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (m x)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (Inv.inv.{0} ENNReal ENNReal.instInvENNReal a))) (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_inv_iff ENNReal.tendsto_inv_iffₓ'. -/
 @[simp]
 protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} :
     Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ↔ Tendsto m f (𝓝 a) :=
   ⟨fun h => by simpa only [inv_inv] using tendsto.inv h, Tendsto.inv⟩
 #align ennreal.tendsto_inv_iff ENNReal.tendsto_inv_iff
 
+/- warning: ennreal.tendsto.div -> ENNReal.Tendsto.div is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {ma : α -> ENNReal} {mb : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal ma f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u1, 0} α ENNReal mb f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (a : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (ma a) (mb a)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.div ENNReal.Tendsto.divₓ'. -/
 protected theorem Tendsto.div {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) := by
   apply tendsto.mul hma _ (ENNReal.tendsto_inv_iff.2 hmb) _ <;> simp [ha, hb]
 #align ennreal.tendsto.div ENNReal.Tendsto.div
 
+/- warning: ennreal.tendsto.const_div -> ENNReal.Tendsto.const_div is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a (m b)) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b)) -> (Or (Ne.{1} ENNReal b (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Ne.{1} ENNReal a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (b : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a (m b)) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.const_div ENNReal.Tendsto.const_divₓ'. -/
 protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) :=
   by
@@ -615,6 +1053,12 @@ protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b
   simp [hb]
 #align ennreal.tendsto.const_div ENNReal.Tendsto.const_div
 
+/- warning: ennreal.tendsto.div_const -> ENNReal.Tendsto.div_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.topologicalSpace a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (m x) b) f (nhds.{0} ENNReal ENNReal.topologicalSpace (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : Filter.{u1} α} {m : α -> ENNReal} {a : ENNReal} {b : ENNReal}, (Filter.Tendsto.{u1, 0} α ENNReal m f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal a)) -> (Or (Ne.{1} ENNReal a (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{1} ENNReal b (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u1, 0} α ENNReal (fun (x : α) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (m x) b) f (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto.div_const ENNReal.Tendsto.div_constₓ'. -/
 protected theorem Tendsto.div_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : Tendsto (fun x => m x / b) f (𝓝 (a / b)) :=
   by
@@ -622,64 +1066,136 @@ protected theorem Tendsto.div_const {f : Filter α} {m : α → ℝ≥0∞} {a b
   simp [ha]
 #align ennreal.tendsto.div_const ENNReal.Tendsto.div_const
 
+/- warning: ennreal.tendsto_inv_nat_nhds_zero -> ENNReal.tendsto_inv_nat_nhds_zero is a dubious translation:
+lean 3 declaration is
+  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Inv.inv.{0} ENNReal ENNReal.hasInv ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) n)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Inv.inv.{0} ENNReal ENNReal.instInvENNReal (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) n)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zeroₓ'. -/
 protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ≥0∞)⁻¹) atTop (𝓝 0) :=
   ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
 #align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
 
+/- warning: ennreal.supr_add -> ENNReal.supᵢ_add is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (s b) a))
+but is expected to have type
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [h : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (s b) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add ENNReal.supᵢ_addₓ'. -/
 theorem supᵢ_add {ι : Sort _} {s : ι → ℝ≥0∞} [h : Nonempty ι] : supᵢ s + a = ⨆ b, s b + a :=
   Monotone.map_supᵢ_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
 #align ennreal.supr_add ENNReal.supᵢ_add
 
-theorem bsupr_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+/- warning: ennreal.bsupr_add' -> ENNReal.bsupᵢ_add' is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
+but is expected to have type
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add' ENNReal.bsupᵢ_add'ₓ'. -/
+theorem bsupᵢ_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a :=
   by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h
   simp only [supᵢ_subtype', supr_add]
-#align ennreal.bsupr_add' ENNReal.bsupr_add'
-
-theorem add_bsupr' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+#align ennreal.bsupr_add' ENNReal.bsupᵢ_add'
+
+/- warning: ennreal.add_bsupr' -> ENNReal.add_bsupᵢ' is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i)))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
+but is expected to have type
+  forall {a : ENNReal} {ι : Sort.{u1}} {p : ι -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i)))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr' ENNReal.add_bsupᵢ'ₓ'. -/
+theorem add_bsupᵢ' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (hi : p i), f i) = ⨆ (i) (hi : p i), a + f i := by
   simp only [add_comm a, bsupr_add' h]
-#align ennreal.add_bsupr' ENNReal.add_bsupr'
-
-theorem bsupr_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
+#align ennreal.add_bsupr' ENNReal.add_bsupᵢ'
+
+/- warning: ennreal.bsupr_add -> ENNReal.bsupᵢ_add is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) a) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))))
+but is expected to have type
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i))) a) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add ENNReal.bsupᵢ_addₓ'. -/
+theorem bsupᵢ_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (⨆ i ∈ s, f i) + a = ⨆ i ∈ s, f i + a :=
-  bsupr_add' hs
-#align ennreal.bsupr_add ENNReal.bsupr_add
-
-theorem add_bsupr {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
+  bsupᵢ_add' hs
+#align ennreal.bsupr_add ENNReal.bsupᵢ_add
+
+/- warning: ennreal.add_bsupr -> ENNReal.add_bsupᵢ is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i)))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))))
+but is expected to have type
+  forall {a : ENNReal} {ι : Type.{u1}} {s : Set.{u1} ι}, (Set.Nonempty.{u1} ι s) -> (forall {f : ι -> ENNReal}, Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => f i)))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (f i)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.add_bsupr ENNReal.add_bsupᵢₓ'. -/
+theorem add_bsupᵢ {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (a + ⨆ i ∈ s, f i) = ⨆ i ∈ s, a + f i :=
-  add_bsupr' hs
-#align ennreal.add_bsupr ENNReal.add_bsupr
-
+  add_bsupᵢ' hs
+#align ennreal.add_bsupr ENNReal.add_bsupᵢ
+
+/- warning: ennreal.Sup_add -> ENNReal.supₛ_add is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s) a) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (b : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) b a))))
+but is expected to have type
+  forall {a : ENNReal} {s : Set.{0} ENNReal}, (Set.Nonempty.{0} ENNReal s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s) a) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (b : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) b s) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) b a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.Sup_add ENNReal.supₛ_addₓ'. -/
 theorem supₛ_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : supₛ s + a = ⨆ b ∈ s, b + a := by
   rw [supₛ_eq_supᵢ, bsupr_add hs]
 #align ennreal.Sup_add ENNReal.supₛ_add
 
+/- warning: ennreal.add_supr -> ENNReal.add_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι s)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (s b)))
+but is expected to have type
+  forall {a : ENNReal} {ι : Sort.{u1}} {s : ι -> ENNReal} [_inst_1 : Nonempty.{u1} ι], Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι s)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (b : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) a (s b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.add_supr ENNReal.add_supᵢₓ'. -/
 theorem add_supᵢ {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + supᵢ s = ⨆ b, a + s b := by
   rw [add_comm, supr_add] <;> simp [add_comm]
 #align ennreal.add_supr ENNReal.add_supᵢ
 
+/- warning: ennreal.supr_add_supr_le -> ENNReal.supᵢ_add_supᵢ_le is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} [_inst_1 : Nonempty.{u1} ι] [_inst_2 : Nonempty.{u2} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' g)) a)
+but is expected to have type
+  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι) (j : ι'), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' g)) a)
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_le ENNReal.supᵢ_add_supᵢ_leₓ'. -/
 theorem supᵢ_add_supᵢ_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
     {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : supᵢ f + supᵢ g ≤ a := by
   simpa only [add_supr, supr_add] using supᵢ₂_le h
 #align ennreal.supr_add_supr_le ENNReal.supᵢ_add_supᵢ_le
 
-theorem bsupr_add_bsupr_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
+/- warning: ennreal.bsupr_add_bsupr_le' -> ENNReal.bsupᵢ_add_bsupᵢ_le' is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {ι' : Sort.{u2}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u1} ι (fun (i : ι) => p i)) -> (Exists.{u2} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (p i) (fun (hi : p i) => f i))) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (q j) (fun (hj : q j) => g j)))) a))
+but is expected to have type
+  forall {ι : Sort.{u2}} {ι' : Sort.{u1}} {p : ι -> Prop} {q : ι' -> Prop}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Exists.{u1} ι' (fun (j : ι') => q j)) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (p i) -> (forall (j : ι'), (q j) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (p i) (fun (hi : p i) => f i))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (q j) (fun (hj : q j) => g j)))) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupᵢ_add_bsupᵢ_le'ₓ'. -/
+theorem bsupᵢ_add_bsupᵢ_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ (i) (hi : p i) (j) (hj : q j), f i + g j ≤ a) :
     ((⨆ (i) (hi : p i), f i) + ⨆ (j) (hj : q j), g j) ≤ a :=
   by
   simp_rw [bsupr_add' hp, add_bsupr' hq]
   exact supᵢ₂_le fun i hi => supᵢ₂_le (h i hi)
-#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupr_add_bsupr_le'
-
-theorem bsupr_add_bsupr_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
+#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupᵢ_add_bsupᵢ_le'
+
+/- warning: ennreal.bsupr_add_bsupr_le -> ENNReal.bsupᵢ_add_bsupᵢ_le is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {ι' : Type.{u2}} {s : Set.{u1} ι} {t : Set.{u2} ι'}, (Set.Nonempty.{u1} ι s) -> (Set.Nonempty.{u2} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) -> (forall (j : ι'), (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i s) => f i))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) (fun (H : Membership.Mem.{u2, u2} ι' (Set.{u2} ι') (Set.hasMem.{u2} ι') j t) => g j)))) a))
+but is expected to have type
+  forall {ι : Type.{u2}} {ι' : Type.{u1}} {s : Set.{u2} ι} {t : Set.{u1} ι'}, (Set.Nonempty.{u2} ι s) -> (Set.Nonempty.{u1} ι' t) -> (forall {f : ι -> ENNReal} {g : ι' -> ENNReal} {a : ENNReal}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (forall (j : ι'), (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) a))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι' (fun (j : ι') => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.bsupr_add_bsupr_le ENNReal.bsupᵢ_add_bsupᵢ_leₓ'. -/
+theorem bsupᵢ_add_bsupᵢ_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i ∈ s, ∀ j ∈ t, f i + g j ≤ a) :
     ((⨆ i ∈ s, f i) + ⨆ j ∈ t, g j) ≤ a :=
-  bsupr_add_bsupr_le' hs ht h
-#align ennreal.bsupr_add_bsupr_le ENNReal.bsupr_add_bsupr_le
-
+  bsupᵢ_add_bsupᵢ_le' hs ht h
+#align ennreal.bsupr_add_bsupr_le ENNReal.bsupᵢ_add_bsupᵢ_le
+
+/- warning: ennreal.supr_add_supr -> ENNReal.supᵢ_add_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
+but is expected to have type
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {g : ι -> ENNReal}, (forall (i : ι) (j : ι), Exists.{u1} ι (fun (k : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f i) (g j)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f k) (g k)))) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr ENNReal.supᵢ_add_supᵢₓ'. -/
 theorem supᵢ_add_supᵢ {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
     supᵢ f + supᵢ g = ⨆ a, f a + g a :=
   by
@@ -691,11 +1207,23 @@ theorem supᵢ_add_supᵢ {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j,
     exact le_supᵢ_of_le k hk
 #align ennreal.supr_add_supr ENNReal.supᵢ_add_supᵢ
 
+/- warning: ennreal.supr_add_supr_of_monotone -> ENNReal.supᵢ_add_supᵢ_of_monotone is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι g)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))))
+but is expected to have type
+  forall {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {f : ι -> ENNReal} {g : ι -> ENNReal}, (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) f) -> (Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) g) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι g)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (a : ι) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_add_supr_of_monotone ENNReal.supᵢ_add_supᵢ_of_monotoneₓ'. -/
 theorem supᵢ_add_supᵢ_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
     (hg : Monotone g) : supᵢ f + supᵢ g = ⨆ a, f a + g a :=
   supᵢ_add_supᵢ fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
 #align ennreal.supr_add_supr_of_monotone ENNReal.supᵢ_add_supᵢ_of_monotone
 
+/- warning: ennreal.finset_sum_supr_nat -> ENNReal.finset_sum_supᵢ_nat is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : SemilatticeSup.{u2} ι] {s : Finset.{u1} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u2, 0} ι ENNReal (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (f a))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (n : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a n))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} ι] {s : Finset.{u2} α} {f : α -> ι -> ENNReal}, (forall (a : α), Monotone.{u1, 0} ι ENNReal (PartialOrder.toPreorder.{u1} ι (SemilatticeSup.toPartialOrder.{u1} ι _inst_1)) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (f a)) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (f a))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (n : ι) => Finset.sum.{0, u2} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a n))))
+Case conversion may be inaccurate. Consider using '#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_supᵢ_natₓ'. -/
 theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
     (hf : ∀ a, Monotone (f a)) : (∑ a in s, supᵢ (f a)) = ⨆ n, ∑ a in s, f a n :=
   by
@@ -708,6 +1236,12 @@ theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f :
     exact Finset.sum_le_sum fun a ha => hf a h
 #align ennreal.finset_sum_supr_nat ENNReal.finset_sum_supᵢ_nat
 
+/- warning: ennreal.mul_supr -> ENNReal.mul_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i)))
+but is expected to have type
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.mul_supr ENNReal.mul_supᵢₓ'. -/
 theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * supᵢ f = ⨆ i, a * f i :=
   by
   by_cases hf : ∀ i, f i = 0
@@ -719,18 +1253,42 @@ theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a *
     exact mt supr_eq_zero.1 hf
 #align ennreal.mul_supr ENNReal.mul_supᵢ
 
+/- warning: ennreal.mul_Sup -> ENNReal.mul_supₛ is a dubious translation:
+lean 3 declaration is
+  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ENNReal (fun (i : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) (fun (H : Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a i)))
+but is expected to have type
+  forall {s : Set.{0} ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (SupSet.supₛ.{0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) s)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ENNReal (fun (i : ENNReal) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) (fun (H : Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) i s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.mul_Sup ENNReal.mul_supₛₓ'. -/
 theorem mul_supₛ {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * supₛ s = ⨆ i ∈ s, a * i := by
   simp only [supₛ_eq_supᵢ, mul_supr]
 #align ennreal.mul_Sup ENNReal.mul_supₛ
 
+/- warning: ennreal.supr_mul -> ENNReal.supᵢ_mul is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a))
+but is expected to have type
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_mul ENNReal.supᵢ_mulₓ'. -/
 theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f * a = ⨆ i, f i * a := by
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
 #align ennreal.supr_mul ENNReal.supᵢ_mul
 
+/- warning: ennreal.supr_div -> ENNReal.supᵢ_div is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (f i) a))
+but is expected to have type
+  forall {ι : Sort.{u1}} {f : ι -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι f) a) (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (f i) a))
+Case conversion may be inaccurate. Consider using '#align ennreal.supr_div ENNReal.supᵢ_divₓ'. -/
 theorem supᵢ_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f / a = ⨆ i, f i / a :=
   supᵢ_mul
 #align ennreal.supr_div ENNReal.supᵢ_div
 
+/- warning: ennreal.tendsto_coe_sub -> ENNReal.tendsto_coe_sub is a dubious translation:
+lean 3 declaration is
+  forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) b) (nhds.{0} ENNReal ENNReal.topologicalSpace b) (nhds.{0} ENNReal ENNReal.topologicalSpace (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r) b))
+but is expected to have type
+  forall {r : NNReal} {b : ENNReal}, Filter.Tendsto.{0, 0} ENNReal ENNReal (fun (b : ENNReal) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ENNReal.some r) b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal b) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (ENNReal.some r) b))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_subₓ'. -/
 protected theorem tendsto_coe_sub :
     ∀ {b : ℝ≥0∞}, Tendsto (fun b : ℝ≥0∞ => ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
   by
@@ -745,6 +1303,12 @@ protected theorem tendsto_coe_sub :
       tendsto_const_nhds
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
+/- warning: ennreal.sub_supr -> ENNReal.sub_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) a (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => b i))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) a (b i))))
+but is expected to have type
+  forall {a : ENNReal} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] {b : ι -> ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) a (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (supᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => b i))) (infᵢ.{0, u1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) a (b i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.sub_supr ENNReal.sub_supᵢₓ'. -/
 theorem sub_supᵢ {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
   by
@@ -756,6 +1320,12 @@ theorem sub_supᵢ {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a <
   rw [Eq, ← this] <;> simp [infₛ_image, infᵢ_range, -mem_range] <;> exact le_rfl
 #align ennreal.sub_supr ENNReal.sub_supᵢ
 
+/- warning: ennreal.exists_countable_dense_no_zero_top -> ENNReal.exists_countable_dense_no_zero_top is a dubious translation:
+lean 3 declaration is
+  Exists.{1} (Set.{0} ENNReal) (fun (s : Set.{0} ENNReal) => And (Set.Countable.{0} ENNReal s) (And (Dense.{0} ENNReal ENNReal.topologicalSpace s) (And (Not (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) s)) (Not (Membership.Mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.hasMem.{0} ENNReal) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) s)))))
+but is expected to have type
+  Exists.{1} (Set.{0} ENNReal) (fun (s : Set.{0} ENNReal) => And (Set.Countable.{0} ENNReal s) (And (Dense.{0} ENNReal ENNReal.instTopologicalSpaceENNReal s) (And (Not (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) s)) (Not (Membership.mem.{0, 0} ENNReal (Set.{0} ENNReal) (Set.instMembershipSet.{0} ENNReal) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) s)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.exists_countable_dense_no_zero_top ENNReal.exists_countable_dense_no_zero_topₓ'. -/
 theorem exists_countable_dense_no_zero_top :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
   by
@@ -765,6 +1335,12 @@ theorem exists_countable_dense_no_zero_top :
   exact ⟨s, s_count, s_dense, fun h => hs.1 0 (by simp) h, fun h => hs.2 ∞ (by simp) h⟩
 #align ennreal.exists_countable_dense_no_zero_top ENNReal.exists_countable_dense_no_zero_top
 
+/- warning: ennreal.exists_lt_add_of_lt_add -> ENNReal.exists_lt_add_of_lt_add is a dubious translation:
+lean 3 declaration is
+  forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) z' z) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) y' z'))))))
+but is expected to have type
+  forall {x : ENNReal} {y : ENNReal} {z : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) y z)) -> (Ne.{1} ENNReal y (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal z (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{1} ENNReal (fun (y' : ENNReal) => Exists.{1} ENNReal (fun (z' : ENNReal) => And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) y' y) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) z' z) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) x (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) y' z'))))))
+Case conversion may be inaccurate. Consider using '#align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_addₓ'. -/
 theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠ 0) (hz : z ≠ 0) :
     ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' :=
   by
@@ -785,6 +1361,12 @@ end TopologicalSpace
 
 section Liminf
 
+/- warning: ennreal.exists_frequently_lt_of_liminf_ne_top -> ENNReal.exists_frequently_lt_of_liminf_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt (x n) R) l))
+but is expected to have type
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal (x n) R) l))
+Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
@@ -803,6 +1385,12 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
   filter_upwards [h r]with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
+/- warning: ennreal.exists_frequently_lt_of_liminf_ne_top' -> ENNReal.exists_frequently_lt_of_liminf_ne_top' is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.hasLt R (x n)) l))
+but is expected to have type
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x n))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{1} Real (fun (R : Real) => Filter.Frequently.{u1} ι (fun (n : ι) => LT.lt.{0} Real Real.instLTReal R (x n)) l))
+Case conversion may be inaccurate. Consider using '#align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
@@ -821,6 +1409,12 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
   filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
+/- warning: ennreal.exists_upcrossings_of_not_bounded_under -> ENNReal.exists_upcrossings_of_not_bounded_under is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (i : ι) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) (fun (_x : MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) => Real -> NNReal) (MonoidWithZeroHom.hasCoeToFun.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.ring))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (LE.le.{0} Real Real.hasLe) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.hasLt a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt (x i) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) b) (x i)) l)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {l : Filter.{u1} ι} {x : ι -> Real}, (Ne.{1} ENNReal (Filter.liminf.{0, u1} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (i : ι) => ENNReal.some (FunLike.coe.{1, 1, 1} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real (fun (_x : Real) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Real) => NNReal) _x) (MulHomClass.toFunLike.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulOneClass.toMul.{0} Real (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))))) (MulOneClass.toMul.{0} NNReal (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))) (MonoidHomClass.toMulHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (MulZeroOneClass.toMulOneClass.{0} Real (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal)))) (MulZeroOneClass.toMulOneClass.{0} NNReal (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) (MonoidWithZeroHomClass.toMonoidHomClass.{0, 0, 0} (MonoidWithZeroHom.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))) Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)) (MonoidWithZeroHom.monoidWithZeroHomClass.{0, 0} Real NNReal (NonAssocSemiring.toMulZeroOneClass.{0} Real (NonAssocRing.toNonAssocSemiring.{0} Real (Ring.toNonAssocRing.{0} Real Real.instRingReal))) (NonAssocSemiring.toMulZeroOneClass.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring)))))) Real.nnabs (x i))) l) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Not (Filter.IsBoundedUnder.{0, u1} Real ι (fun (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14763 : Real) (x._@.Mathlib.Topology.Instances.ENNReal._hyg.14765 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Topology.Instances.ENNReal._hyg.14763 x._@.Mathlib.Topology.Instances.ENNReal._hyg.14765) l (fun (i : ι) => Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (x i)))) -> (Exists.{1} Rat (fun (a : Rat) => Exists.{1} Rat (fun (b : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 a b) (And (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (x i) (RatCast.ratCast.{0} Real Real.ratCast a)) l) (Filter.Frequently.{u1} ι (fun (i : ι) => LT.lt.{0} Real Real.instLTReal (RatCast.ratCast.{0} Real Real.ratCast b) (x i)) l)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_underₓ'. -/
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
@@ -854,6 +1448,12 @@ section tsum
 
 variable {f g : α → ℝ≥0∞}
 
+/- warning: ennreal.has_sum_coe -> ENNReal.hasSum_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal} {r : NNReal}, Iff (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r)) (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r)
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal} {r : NNReal}, Iff (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (fun (a : α) => ENNReal.some (f a)) (ENNReal.some r)) (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r)
+Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_coe ENNReal.hasSum_coeₓ'. -/
 @[norm_cast]
 protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
     HasSum (fun a => (f a : ℝ≥0∞)) ↑r ↔ HasSum f r :=
@@ -865,23 +1465,53 @@ protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
   unfold HasSum <;> rw [this, tendsto_coe]
 #align ennreal.has_sum_coe ENNReal.hasSum_coe
 
+/- warning: ennreal.tsum_coe_eq -> ENNReal.tsum_coe_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {r : NNReal} {f : α -> NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) r))
+but is expected to have type
+  forall {α : Type.{u1}} {r : NNReal} {f : α -> NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))) (ENNReal.some r))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_eq ENNReal.tsum_coe_eqₓ'. -/
 protected theorem tsum_coe_eq {f : α → ℝ≥0} (h : HasSum f r) : (∑' a, (f a : ℝ≥0∞)) = r :=
   (ENNReal.hasSum_coe.2 h).tsum_eq
 #align ennreal.tsum_coe_eq ENNReal.tsum_coe_eq
 
+/- warning: ennreal.coe_tsum -> ENNReal.coe_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (Eq.{1} ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α f)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (Eq.{1} ENNReal (ENNReal.some (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α f)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.coe_tsum ENNReal.coe_tsumₓ'. -/
 protected theorem coe_tsum {f : α → ℝ≥0} : Summable f → ↑(tsum f) = ∑' a, (f a : ℝ≥0∞)
   | ⟨r, hr⟩ => by rw [hr.tsum_eq, ENNReal.tsum_coe_eq hr]
 #align ennreal.coe_tsum ENNReal.coe_tsum
 
+/- warning: ennreal.has_sum -> ENNReal.hasSum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.has_sum ENNReal.hasSumₓ'. -/
 protected theorem hasSum : HasSum f (⨆ s : Finset α, ∑ a in s, f a) :=
   tendsto_atTop_supᵢ fun s t => Finset.sum_le_sum_of_subset
 #align ennreal.has_sum ENNReal.hasSum
 
+/- warning: ennreal.summable -> ENNReal.summable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Summable.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Summable.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f
+Case conversion may be inaccurate. Consider using '#align ennreal.summable ENNReal.summableₓ'. -/
 @[simp]
 protected theorem summable : Summable f :=
   ⟨_, ENNReal.hasSum⟩
 #align ennreal.summable ENNReal.summable
 
+/- warning: ennreal.tsum_coe_ne_top_iff_summable -> ENNReal.tsum_coe_ne_top_iff_summable is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {f : β -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f b))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)
+but is expected to have type
+  forall {β : Type.{u1}} {f : β -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => ENNReal.some (f b))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summableₓ'. -/
 theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ≥0∞)) ≠ ∞ ↔ Summable f :=
   by
   refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
@@ -891,10 +1521,22 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ
   exact ennreal.summable.has_sum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
+/- warning: ennreal.tsum_eq_supr_sum -> ENNReal.tsum_eq_supᵢ_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Finset.{u1} α) (fun (s : Finset.{u1} α) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_supᵢ_sumₓ'. -/
 protected theorem tsum_eq_supᵢ_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
 #align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_supᵢ_sum
 
+/- warning: ennreal.tsum_eq_supr_sum' -> ENNReal.tsum_eq_supᵢ_sum' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.hasSubset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (s i) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} {ι : Type.{u2}} (s : ι -> (Finset.{u1} α)), (forall (t : Finset.{u1} α), Exists.{succ u2} ι (fun (i : ι) => HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.instHasSubsetFinset.{u1} α) t (s i))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (s i) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_supᵢ_sum'ₓ'. -/
 protected theorem tsum_eq_supᵢ_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     (∑' a, f a) = ⨆ i, ∑ a in s i, f a :=
   by
@@ -904,44 +1546,98 @@ protected theorem tsum_eq_supᵢ_sum' {ι : Type _} (s : ι → Finset α) (hs :
   exact (Finset.sum_mono_set f).supᵢ_comp_eq hs
 #align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_supᵢ_sum'
 
+/- warning: ennreal.tsum_sigma -> ENNReal.tsum_sigma is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : forall (a : α), (β a) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f (Sigma.fst.{u1, u2} α (fun (a : α) => β a) p) (Sigma.snd.{u1, u2} α (fun (a : α) => β a) p))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (β a) (fun (b : β a) => f a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : forall (a : α), (β a) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f (Sigma.fst.{u1, u2} α (fun (a : α) => β a) p) (Sigma.snd.{u1, u2} α (fun (a : α) => β a) p))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (β a) (fun (b : β a) => f a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sigma ENNReal.tsum_sigmaₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
     (∑' p : Σa, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
 
+/- warning: ennreal.tsum_sigma' -> ENNReal.tsum_sigma' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : (Sigma.{u1, u2} α (fun (a : α) => β a)) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f p)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (β a) (fun (b : β a) => f (Sigma.mk.{u1, u2} α (fun (a : α) => β a) a b))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} (f : (Sigma.{u1, u2} α (fun (a : α) => β a)) -> ENNReal), Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Sigma.{u1, u2} α (fun (a : α) => β a)) (fun (p : Sigma.{u1, u2} α (fun (a : α) => β a)) => f p)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (β a) (fun (b : β a) => f (Sigma.mk.{u1, u2} α (fun (a : α) => β a) a b))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sigma' ENNReal.tsum_sigma'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma' {β : α → Type _} (f : (Σa, β a) → ℝ≥0∞) :
     (∑' p : Σa, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
 
+/- warning: ennreal.tsum_prod -> ENNReal.tsum_prod is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Prod.{u1, u2} α β) (fun (p : Prod.{u1, u2} α β) => f (Prod.fst.{u1, u2} α β p) (Prod.snd.{u1, u2} α β p))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => f a b)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u2 u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Prod.{u2, u1} α β) (fun (p : Prod.{u2, u1} α β) => f (Prod.fst.{u2, u1} α β p) (Prod.snd.{u2, u1} α β p))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => f a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_prod ENNReal.tsum_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_prod {f : α → β → ℝ≥0∞} : (∑' p : α × β, f p.1 p.2) = ∑' (a) (b), f a b :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod ENNReal.tsum_prod
 
+/- warning: ennreal.tsum_prod' -> ENNReal.tsum_prod' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : (Prod.{u1, u2} α β) -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u1 u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Prod.{u1, u2} α β) (fun (p : Prod.{u1, u2} α β) => f p)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => f (Prod.mk.{u1, u2} α β a b))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : (Prod.{u2, u1} α β) -> ENNReal}, Eq.{1} ENNReal (tsum.{0, max u2 u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Prod.{u2, u1} α β) (fun (p : Prod.{u2, u1} α β) => f p)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => f (Prod.mk.{u2, u1} α β a b))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_prod' ENNReal.tsum_prod'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : (∑' p : α × β, f p) = ∑' (a) (b), f (a, b) :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod' ENNReal.tsum_prod'
 
+/- warning: ennreal.tsum_comm -> ENNReal.tsum_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => f a b))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a b)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : α -> β -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => f a b))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a b)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_comm ENNReal.tsum_commₓ'. -/
 protected theorem tsum_comm {f : α → β → ℝ≥0∞} : (∑' a, ∑' b, f a b) = ∑' b, ∑' a, f a b :=
   tsum_comm' ENNReal.summable (fun _ => ENNReal.summable) fun _ => ENNReal.summable
 #align ennreal.tsum_comm ENNReal.tsum_comm
 
+/- warning: ennreal.tsum_add -> ENNReal.tsum_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => g a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_add ENNReal.tsum_addₓ'. -/
 protected theorem tsum_add : (∑' a, f a + g a) = (∑' a, f a) + ∑' a, g a :=
   tsum_add ENNReal.summable ENNReal.summable
 #align ennreal.tsum_add ENNReal.tsum_add
 
+/- warning: ennreal.tsum_le_tsum -> ENNReal.tsum_le_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => g a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_le_tsum ENNReal.tsum_le_tsumₓ'. -/
 protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : (∑' a, f a) ≤ ∑' a, g a :=
   tsum_le_tsum h ENNReal.summable ENNReal.summable
 #align ennreal.tsum_le_tsum ENNReal.tsum_le_tsum
 
+/- warning: ennreal.sum_le_tsum -> ENNReal.sum_le_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} (s : Finset.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x))
+Case conversion may be inaccurate. Consider using '#align ennreal.sum_le_tsum ENNReal.sum_le_tsumₓ'. -/
 protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x in s, f x) ≤ ∑' x, f x :=
   sum_le_tsum s (fun x hx => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
+/- warning: ennreal.tsum_eq_supr_nat' -> ENNReal.tsum_eq_supᵢ_nat' is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range (N i)) (fun (a : Nat) => f a))))
+but is expected to have type
+  forall {f : Nat -> ENNReal} {N : Nat -> Nat}, (Filter.Tendsto.{0, 0} Nat Nat N (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range (N i)) (fun (a : Nat) => f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_supᵢ_nat'ₓ'. -/
 protected theorem tsum_eq_supᵢ_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
   ENNReal.tsum_eq_supᵢ_sum' _ fun t =>
@@ -950,11 +1646,23 @@ protected theorem tsum_eq_supᵢ_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ}
     ⟨k, Finset.Subset.trans hn (Finset.range_mono hk)⟩
 #align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_supᵢ_nat'
 
+/- warning: ennreal.tsum_eq_supr_nat -> ENNReal.tsum_eq_supᵢ_nat is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range i) (fun (a : Nat) => f a)))
+but is expected to have type
+  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range i) (fun (a : Nat) => f a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_supᵢ_natₓ'. -/
 protected theorem tsum_eq_supᵢ_nat {f : ℕ → ℝ≥0∞} :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
   ENNReal.tsum_eq_supᵢ_sum' _ Finset.exists_nat_subset_range
 #align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_supᵢ_nat
 
+/- warning: ennreal.tsum_eq_liminf_sum_nat -> ENNReal.tsum_eq_liminf_sum_nat is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))
+but is expected to have type
+  forall {f : Nat -> ENNReal}, Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_natₓ'. -/
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   by
@@ -967,19 +1675,43 @@ protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     simp [le_refl n, le_refl ((Finset.range n).Sum f)]
 #align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_nat
 
+/- warning: ennreal.le_tsum -> ENNReal.le_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))
+Case conversion may be inaccurate. Consider using '#align ennreal.le_tsum ENNReal.le_tsumₓ'. -/
 protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
   le_tsum' ENNReal.summable a
 #align ennreal.le_tsum ENNReal.le_tsum
 
+/- warning: ennreal.tsum_eq_zero -> ENNReal.tsum_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (forall (i : α), Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (i : α), Eq.{1} ENNReal (f i) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_zero ENNReal.tsum_eq_zeroₓ'. -/
 @[simp]
 protected theorem tsum_eq_zero : (∑' i, f i) = 0 ↔ ∀ i, f i = 0 :=
   ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ ENNReal.le_tsum i, fun h => by simp [h]⟩
 #align ennreal.tsum_eq_zero ENNReal.tsum_eq_zero
 
+/- warning: ennreal.tsum_eq_top_of_eq_top -> ENNReal.tsum_eq_top_of_eq_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Exists.{succ u1} α (fun (a : α) => Eq.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Exists.{succ u1} α (fun (a : α) => Eq.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_topₓ'. -/
 protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞
   | ⟨a, ha⟩ => top_unique <| ha ▸ ENNReal.le_tsum a
 #align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_top
 
+/- warning: ennreal.lt_top_of_tsum_ne_top -> ENNReal.lt_top_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {a : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (j : α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (a j) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_topₓ'. -/
 protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞) (j : α) :
     a j < ∞ := by
   have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
@@ -987,12 +1719,24 @@ protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (
   exact lt_top_iff_ne_top.mpr (key tsum_ne_top j)
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
+/- warning: ennreal.tsum_top -> ENNReal.tsum_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Nonempty.{succ u1} α], Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Nonempty.{succ u1} α], Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_top ENNReal.tsum_topₓ'. -/
 @[simp]
 protected theorem tsum_top [Nonempty α] : (∑' a : α, ∞) = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
 
+/- warning: ennreal.tsum_const_eq_top_of_ne_zero -> ENNReal.tsum_const_eq_top_of_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Infinite.{succ u1} α] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Infinite.{succ u1} α] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zeroₓ'. -/
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
     (∑' a : α, c) = ∞ :=
   by
@@ -1008,10 +1752,22 @@ theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞
   simpa [hc] using le_of_tendsto' A B
 #align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zero
 
+/- warning: ennreal.ne_top_of_tsum_ne_top -> ENNReal.ne_top_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_topₓ'. -/
 protected theorem ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
   h <| ENNReal.tsum_eq_top_of_eq_top ⟨a, ha⟩
 #align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_top
 
+/- warning: ennreal.tsum_mul_left -> ENNReal.tsum_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)))
+but is expected to have type
+  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f i))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mul_left ENNReal.tsum_mul_leftₓ'. -/
 protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
   if h : ∀ i, f i = 0 then by simp [h]
   else
@@ -1030,10 +1786,22 @@ protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
     HasSum.tsum_eq this
 #align ennreal.tsum_mul_left ENNReal.tsum_mul_left
 
+/- warning: ennreal.tsum_mul_right -> ENNReal.tsum_mul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) a)
+but is expected to have type
+  forall {α : Type.{u1}} {a : ENNReal} {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f i) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) a)
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mul_right ENNReal.tsum_mul_rightₓ'. -/
 protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
+/- warning: ennreal.tsum_supr_eq -> ENNReal.tsum_supᵢ_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
+but is expected to have type
+  forall {α : Type.{u1}} (a : α) {f : α -> ENNReal}, Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (b : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Eq.{succ u1} α a b) (fun (h : Eq.{succ u1} α a b) => f b))) (f a)
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_supr_eq ENNReal.tsum_supᵢ_eqₓ'. -/
 @[simp]
 theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ h : a = b, f b) = f a :=
   le_antisymm
@@ -1054,6 +1822,12 @@ theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b
       )
 #align ennreal.tsum_supr_eq ENNReal.tsum_supᵢ_eq
 
+/- warning: ennreal.has_sum_iff_tendsto_nat -> ENNReal.hasSum_iff_tendsto_nat is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal} (r : ENNReal), Iff (HasSum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f r) (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace r))
+but is expected to have type
+  forall {f : Nat -> ENNReal} (r : ENNReal), Iff (HasSum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f r) (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal r))
+Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_natₓ'. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) :=
   by
@@ -1063,6 +1837,12 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
   · exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst)
 #align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_nat
 
+/- warning: ennreal.tendsto_nat_tsum -> ENNReal.tendsto_nat_tsum is a dubious translation:
+lean 3 declaration is
+  forall (f : Nat -> ENNReal), Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)))
+but is expected to have type
+  forall (f : Nat -> ENNReal), Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsumₓ'. -/
 theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
     Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' n, f n)) :=
   by
@@ -1070,16 +1850,34 @@ theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
   exact ennreal.summable.has_sum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
+/- warning: ennreal.to_nnreal_apply_of_tsum_ne_top -> ENNReal.toNNReal_apply_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (x : α), Eq.{1} ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f x)) (f x))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (x : α), Eq.{1} ENNReal (ENNReal.some (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f x)) (f x))
+Case conversion may be inaccurate. Consider using '#align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_topₓ'. -/
 theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) (x : α) :
     (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
   coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
 #align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
 
+/- warning: ennreal.summable_to_nnreal_of_tsum_ne_top -> ENNReal.summable_toNNReal_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (Function.comp.{succ u1, 1, 1} α ENNReal NNReal ENNReal.toNNReal f))
+Case conversion may be inaccurate. Consider using '#align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_topₓ'. -/
 theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) :
     Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf
 #align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
 
+/- warning: ennreal.tendsto_cofinite_zero_of_tsum_ne_top -> ENNReal.tendsto_cofinite_zero_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{u1, 0} α ENNReal f (Filter.cofinite.{u1} α) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{u1, 0} α ENNReal f (Filter.cofinite.{u1} α) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_topₓ'. -/
 theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto f cofinite (𝓝 0) :=
   by
@@ -1090,12 +1888,24 @@ theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf :
   exact NNReal.tendsto_cofinite_zero_of_summable (summable_to_nnreal_of_tsum_ne_top hf)
 #align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_top
 
+/- warning: ennreal.tendsto_at_top_zero_of_tsum_ne_top -> ENNReal.tendsto_atTop_zero_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (x : Nat) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {f : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (x : Nat) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_topₓ'. -/
 theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto f atTop (𝓝 0) := by
   rw [← Nat.cofinite_eq_atTop]
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
 #align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_top
 
+/- warning: ennreal.tendsto_tsum_compl_at_top_zero -> ENNReal.tendsto_tsum_compl_atTop_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{u1, 0} (Finset.{u1} α) ENNReal (fun (s : Finset.{u1} α) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) (fun (b : Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s))) α (coeSubtype.{succ u1} α (fun (x : α) => Not (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x s)))))) b))) (Filter.atTop.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{u1, 0} (Finset.{u1} α) ENNReal (fun (s : Finset.{u1} α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Subtype.{succ u1} α (fun (x : α) => Not (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x s))) (fun (b : Subtype.{succ u1} α (fun (x : α) => Not (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x s))) => f (Subtype.val.{succ u1} α (fun (x : α) => Not (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x s)) b))) (Filter.atTop.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zeroₓ'. -/
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
 theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
@@ -1108,11 +1918,23 @@ theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf
   exact NNReal.summable_comp_injective (tsum_coe_ne_top_iff_summable.1 hf) Subtype.coe_injective
 #align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zero
 
+/- warning: ennreal.tsum_apply -> ENNReal.tsum_apply is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {α : Type.{u2}} {f : ι -> α -> ENNReal} {x : α}, Eq.{1} ENNReal (tsum.{u2, u1} (α -> ENNReal) (Pi.addCommMonoid.{u2, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (Pi.topologicalSpace.{u2, 0} α (fun (ᾰ : α) => ENNReal) (fun (a : α) => ENNReal.topologicalSpace)) ι (fun (i : ι) => f i) x) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x))
+but is expected to have type
+  forall {ι : Type.{u2}} {α : Type.{u1}} {f : ι -> α -> ENNReal} {x : α}, Eq.{1} ENNReal (tsum.{u1, u2} (α -> ENNReal) (Pi.addCommMonoid.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal))) (Pi.topologicalSpace.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (a : α) => ENNReal.instTopologicalSpaceENNReal)) ι (fun (i : ι) => f i) x) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_apply ENNReal.tsum_applyₓ'. -/
 protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x : α} :
     (∑' i, f i) x = ∑' i, f i x :=
   tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
 #align ennreal.tsum_apply ENNReal.tsum_apply
 
+/- warning: ennreal.tsum_sub -> ENNReal.tsum_sub is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => g i))))
+but is expected to have type
+  forall {f : Nat -> ENNReal} {g : Nat -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} (Nat -> ENNReal) (Pi.hasLe.{0, 0} Nat (fun (ᾰ : Nat) => ENNReal) (fun (i : Nat) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (f i) (g i))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => g i))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_sub ENNReal.tsum_subₓ'. -/
 theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑' i, g i) ≠ ∞) (h₂ : g ≤ f) :
     (∑' i, f i - g i) = (∑' i, f i) - ∑' i, g i :=
   by
@@ -1125,6 +1947,12 @@ theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑'
   apply h₃
 #align ennreal.tsum_sub ENNReal.tsum_sub
 
+/- warning: ennreal.tsum_mono_subtype -> ENNReal.tsum_mono_subtype is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
+but is expected to have type
+  forall {α : Type.{u1}} (f : α -> ENNReal) {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (x : Set.Elem.{u1} α s) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) x))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α t) (fun (x : Set.Elem.{u1} α t) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtypeₓ'. -/
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
     (∑' x : s, f x) ≤ ∑' x : t, f x :=
   by
@@ -1133,6 +1961,12 @@ theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
   exact indicator_le_indicator_of_subset h fun _ => zero_le _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
+/- warning: ennreal.tsum_union_le -> ENNReal.tsum_union_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)))))) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))))) x))))
+but is expected to have type
+  forall {α : Type.{u1}} (f : α -> ENNReal) (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (fun (x : Set.Elem.{u1} α (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (x : Set.Elem.{u1} α s) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) x))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α t) (fun (x : Set.Elem.{u1} α t) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_union_le ENNReal.tsum_union_leₓ'. -/
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     (∑' x : s ∪ t, f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
   calc
@@ -1146,7 +1980,13 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
-theorem tsum_bUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
+/- warning: ennreal.tsum_bUnion_le -> ENNReal.tsum_bunionᵢ_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => t i)))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} (f : α -> ENNReal) (s : Finset.{u2} ι) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) (fun (h._@.Mathlib.Topology.Instances.ENNReal._hyg.21577 : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) => t i)))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_leₓ'. -/
+theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
   classical
     induction' s using Finset.induction_on with i s hi ihs h
@@ -1159,8 +1999,14 @@ theorem tsum_bUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
       _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
       _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
       
-#align ennreal.tsum_bUnion_le ENNReal.tsum_bUnion_le
-
+#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_le
+
+/- warning: ennreal.tsum_Union_le -> ENNReal.tsum_unionᵢ_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))))))) x))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (t i)) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (t i)))))) x))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Fintype.{u2} ι] (f : α -> ENNReal) (t : ι -> (Set.{u1} α)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) (fun (x : Set.Elem.{u1} α (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) x))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u2} ι _inst_1) (fun (i : ι) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α (t i)) (fun (x : Set.Elem.{u1} α (t i)) => f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (t i)) x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_Union_le ENNReal.tsum_unionᵢ_leₓ'. -/
 theorem tsum_unionᵢ_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
   classical
@@ -1169,11 +2015,23 @@ theorem tsum_unionᵢ_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t :
     exact tsum_bUnion_le _ _ _
 #align ennreal.tsum_Union_le ENNReal.tsum_unionᵢ_le
 
+/- warning: ennreal.tsum_eq_add_tsum_ite -> ENNReal.tsum_eq_add_tsum_ite is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {f : β -> ENNReal} (b : β), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (x : β) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f b) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (x : β) => ite.{1} ENNReal (Eq.{succ u1} β x b) (Classical.propDecidable (Eq.{succ u1} β x b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (f x))))
+but is expected to have type
+  forall {β : Type.{u1}} {f : β -> ENNReal} (b : β), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (x : β) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f b) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (x : β) => ite.{1} ENNReal (Eq.{succ u1} β x b) (Classical.propDecidable (Eq.{succ u1} β x b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (f x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_iteₓ'. -/
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
     (∑' x, f x) = f b + ∑' x, ite (x = b) 0 (f x) :=
   tsum_eq_add_tsum_ite' b ENNReal.summable
 #align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_ite
 
+/- warning: ennreal.tsum_add_one_eq_top -> ENNReal.tsum_add_one_eq_top is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal}, (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {f : Nat -> ENNReal}, (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_topₓ'. -/
 theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞) (hf0 : f 0 ≠ ∞) :
     (∑' n, f (n + 1)) = ∞ :=
   by
@@ -1192,6 +2050,12 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
   simp only [tsub_add_cancel_of_le hi, coe_notMemRangeEquiv, Function.comp_apply, Subtype.coe_mk]
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 
+/- warning: ennreal.finite_const_le_of_tsum_ne_top -> ENNReal.finite_const_le_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {a : ι -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => a i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_topₓ'. -/
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
 theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞)
@@ -1214,6 +2078,12 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
   rwa [obs] at key
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
 
+/- warning: ennreal.finset_card_const_le_le_of_tsum_le -> ENNReal.finset_card_const_le_le_of_tsum_le is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat ENNReal (HasLiftT.mk.{1, 1} Nat ENNReal (CoeTCₓ.coe.{1, 1} Nat ENNReal (Nat.castCoe.{0} ENNReal (AddMonoidWithOne.toNatCast.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) c ε))))
+but is expected to have type
+  forall {ι : Type.{u1}} {a : ι -> ENNReal} {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{0} (Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) (fun (hf : Set.Finite.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Nat.cast.{0} ENNReal (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (Finset.card.{u1} ι (Set.Finite.toFinset.{u1} ι (setOf.{u1} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i))) hf))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) c ε))))
+Case conversion may be inaccurate. Consider using '#align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_leₓ'. -/
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
     (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
@@ -1246,6 +2116,12 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
 
 end tsum
 
+/- warning: ennreal.tendsto_to_real_iff -> ENNReal.tendsto_toReal_iff is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {fi : Filter.{u1} ι} {f : ι -> ENNReal}, (forall (i : ι), Ne.{1} ENNReal (f i) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Iff (Filter.Tendsto.{u1, 0} ι Real (fun (n : ι) => ENNReal.toReal (f n)) fi (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal x))) (Filter.Tendsto.{u1, 0} ι ENNReal f fi (nhds.{0} ENNReal ENNReal.topologicalSpace x))))
+but is expected to have type
+  forall {ι : Type.{u1}} {fi : Filter.{u1} ι} {f : ι -> ENNReal}, (forall (i : ι), Ne.{1} ENNReal (f i) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {x : ENNReal}, (Ne.{1} ENNReal x (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Iff (Filter.Tendsto.{u1, 0} ι Real (fun (n : ι) => ENNReal.toReal (f n)) fi (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (ENNReal.toReal x))) (Filter.Tendsto.{u1, 0} ι ENNReal f fi (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iffₓ'. -/
 theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : ∀ i, f i ≠ ∞) {x : ℝ≥0∞}
     (hx : x ≠ ∞) : fi.Tendsto (fun n => (f n).toReal) (𝓝 x.toReal) ↔ fi.Tendsto f (𝓝 x) :=
   by
@@ -1258,6 +2134,12 @@ theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : 
   exact ENNReal.tendsto_ofReal h
 #align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iff
 
+/- warning: ennreal.tsum_coe_ne_top_iff_summable_coe -> ENNReal.tsum_coe_ne_top_iff_summable_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) (f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => NNReal.toReal (f a)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coeₓ'. -/
 theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
     (∑' a, (f a : ℝ≥0∞)) ≠ ∞ ↔ Summable fun a => (f a : ℝ) :=
   by
@@ -1265,6 +2147,12 @@ theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
   exact tsum_coe_ne_top_iff_summable
 #align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coe
 
+/- warning: ennreal.tsum_coe_eq_top_iff_not_summable_coe -> ENNReal.tsum_coe_eq_top_iff_not_summable_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Not (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) (f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal}, Iff (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => ENNReal.some (f a))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Not (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (a : α) => NNReal.toReal (f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coeₓ'. -/
 theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
     (∑' a, (f a : ℝ≥0∞)) = ∞ ↔ ¬Summable fun a => (f a : ℝ) :=
   by
@@ -1272,6 +2160,12 @@ theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
   exact not_congr tsum_coe_ne_top_iff_summable_coe
 #align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coe
 
+/- warning: ennreal.has_sum_to_real -> ENNReal.hasSum_toReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSum.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)) (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (x : α) => ENNReal.toReal (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSum.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)) (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (x : α) => ENNReal.toReal (f x))))
+Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_to_real ENNReal.hasSum_toRealₓ'. -/
 theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
     HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) :=
   by
@@ -1280,6 +2174,12 @@ theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
   exact (tsum_coe_ne_top_iff_summable.1 hsum).HasSum
 #align ennreal.has_sum_to_real ENNReal.hasSum_toReal
 
+/- warning: ennreal.summable_to_real -> ENNReal.summable_toReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => ENNReal.toReal (f x)))
+Case conversion may be inaccurate. Consider using '#align ennreal.summable_to_real ENNReal.summable_toRealₓ'. -/
 theorem summable_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) : Summable fun x => (f x).toReal :=
   (hasSum_toReal hsum).Summable
 #align ennreal.summable_to_real ENNReal.summable_toReal
@@ -1290,6 +2190,12 @@ namespace NNReal
 
 open NNReal
 
+/- warning: nnreal.tsum_eq_to_nnreal_tsum -> NNReal.tsum_eq_toNNReal_tsum is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {f : β -> NNReal}, Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace β (fun (b : β) => f b)) (ENNReal.toNNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (b : β) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f b))))
+but is expected to have type
+  forall {β : Type.{u1}} {f : β -> NNReal}, Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal β (fun (b : β) => f b)) (ENNReal.toNNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (b : β) => ENNReal.some (f b))))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsumₓ'. -/
 theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
   by
   by_cases h : Summable f
@@ -1299,6 +2205,12 @@ theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f
     simp only [h, ENNReal.top_toNNReal, A]
 #align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsum
 
+/- warning: nnreal.exists_le_has_sum_of_le -> NNReal.exists_le_hasSum_of_le is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) -> (Exists.{1} NNReal (fun (p : NNReal) => Exists.{0} (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) (fun (H : LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p r) => HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g p)))
+but is expected to have type
+  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal} {r : NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (g b) (f b)) -> (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) -> (Exists.{1} NNReal (fun (p : NNReal) => And (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) p r) (HasSum.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g p)))
+Case conversion may be inaccurate. Consider using '#align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_leₓ'. -/
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b, g b ≤ f b) (hfr : HasSum f r) :
     ∃ p ≤ r, HasSum g p :=
@@ -1310,6 +2222,12 @@ theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b
   ⟨p, hpr, ENNReal.hasSum_coe.1 <| Eq ▸ ENNReal.summable.HasSum⟩
 #align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_le
 
+/- warning: nnreal.summable_of_le -> NNReal.summable_of_le is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g)
+but is expected to have type
+  forall {β : Type.{u1}} {f : β -> NNReal} {g : β -> NNReal}, (forall (b : β), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (g b) (f b)) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (Summable.{0, u1} NNReal β (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g)
+Case conversion may be inaccurate. Consider using '#align nnreal.summable_of_le NNReal.summable_of_leₓ'. -/
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summable f → Summable g
   | ⟨r, hfr⟩ =>
@@ -1317,6 +2235,12 @@ theorem summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summa
     hp.Summable
 #align nnreal.summable_of_le NNReal.summable_of_le
 
+/- warning: nnreal.has_sum_iff_tendsto_nat -> NNReal.hasSum_iff_tendsto_nat is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> NNReal} {r : NNReal}, Iff (HasSum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f r) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} NNReal NNReal.topologicalSpace r))
+but is expected to have type
+  forall {f : Nat -> NNReal} {r : NNReal}, Iff (HasSum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f r) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal r))
+Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_iff_tendsto_nat NNReal.hasSum_iff_tendsto_natₓ'. -/
 /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
@@ -1327,6 +2251,12 @@ theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
   exact ENNReal.tendsto_coe
 #align nnreal.has_sum_iff_tendsto_nat NNReal.hasSum_iff_tendsto_nat
 
+/- warning: nnreal.not_summable_iff_tendsto_nat_at_top -> NNReal.not_summable_iff_tendsto_nat_atTop is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> NNReal}, Iff (Not (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))))
+but is expected to have type
+  forall {f : Nat -> NNReal}, Iff (Not (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)) (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))))
+Case conversion may be inaccurate. Consider using '#align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTopₓ'. -/
 theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
   by
@@ -1338,11 +2268,23 @@ theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     exact not_tendsto_nhds_of_tendsto_atTop hnat _ (has_sum_iff_tendsto_nat.1 hr)
 #align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTop
 
+/- warning: nnreal.summable_iff_not_tendsto_nat_at_top -> NNReal.summable_iff_not_tendsto_nat_atTop is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> NNReal}, Iff (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) (Not (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))))
+but is expected to have type
+  forall {f : Nat -> NNReal}, Iff (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) (Not (Filter.Tendsto.{0, 0} Nat NNReal (fun (n : Nat) => Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))))
+Case conversion may be inaccurate. Consider using '#align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTopₓ'. -/
 theorem summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
     Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_at_top]
 #align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTop
 
+/- warning: nnreal.summable_of_sum_range_le -> NNReal.summable_of_sum_range_le is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f)
+but is expected to have type
+  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f)
+Case conversion may be inaccurate. Consider using '#align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_leₓ'. -/
 theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f :=
   by
@@ -1351,17 +2293,35 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
   exact lt_irrefl _ (hn.trans_le (h n))
 #align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_le
 
+/- warning: nnreal.tsum_le_of_sum_range_le -> NNReal.tsum_le_of_sum_range_le is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
+but is expected to have type
+  forall {f : Nat -> NNReal} {c : NNReal}, (forall (n : Nat), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (Finset.sum.{0, 0} NNReal Nat (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal Nat (fun (n : Nat) => f n)) c)
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_leₓ'. -/
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
 #align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_le
 
+/- warning: nnreal.tsum_comp_le_tsum_of_inj -> NNReal.tsum_comp_le_tsum_of_inj is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal β (fun (x : β) => f (i x))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => f x))))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_injₓ'. -/
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
     (hi : Function.Injective i) : (∑' x, f (i x)) ≤ ∑' x, f x :=
   tsum_le_tsum_of_inj i hi (fun c hc => zero_le _) (fun b => le_rfl) (summable_comp_injective hf hi)
     hf
 #align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_inj
 
+/- warning: nnreal.summable_sigma -> NNReal.summable_sigma is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> NNReal}, Iff (Summable.{0, max u1 u2} NNReal (Sigma.{u1, u2} α (fun (x : α) => β x)) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) (And (forall (x : α), Summable.{0, u2} NNReal (β x) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (fun (x : α) => tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> NNReal}, Iff (Summable.{0, max u1 u2} NNReal (Sigma.{u1, u2} α (fun (x : α) => β x)) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) (And (forall (x : α), Summable.{0, u2} NNReal (β x) (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (fun (x : α) => tsum.{0, u2} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y)))))
+Case conversion may be inaccurate. Consider using '#align nnreal.summable_sigma NNReal.summable_sigmaₓ'. -/
 theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ≥0} :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ :=
   by
@@ -1373,6 +2333,12 @@ theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ≥0} :
       h₁] using h₂
 #align nnreal.summable_sigma NNReal.summable_sigma
 
+/- warning: nnreal.indicator_summable -> NNReal.indicator_summable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall (s : Set.{u1} α), Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (Set.indicator.{u1, 0} α NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))) s f))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall (s : Set.{u1} α), Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (Set.indicator.{u1, 0} α NNReal instNNRealZero s f))
+Case conversion may be inaccurate. Consider using '#align nnreal.indicator_summable NNReal.indicator_summableₓ'. -/
 theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) : Summable (s.indicator f) :=
   by
   refine' NNReal.summable_of_le (fun a => le_trans (le_of_eq (s.indicator_apply f a)) _) hf
@@ -1381,6 +2347,12 @@ theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) :
   exact zero_le_coe
 #align nnreal.indicator_summable NNReal.indicator_summable
 
+/- warning: nnreal.tsum_indicator_ne_zero -> NNReal.tsum_indicator_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall {s : Set.{u1} α}, (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Ne.{1} NNReal (f a) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))))) -> (Ne.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => Set.indicator.{u1, 0} α NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))) s f x)) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall {s : Set.{u1} α}, (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (Ne.{1} NNReal (f a) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))))) -> (Ne.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => Set.indicator.{u1, 0} α NNReal instNNRealZero s f x)) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_indicator_ne_zero NNReal.tsum_indicator_ne_zeroₓ'. -/
 theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set α} (h : ∃ a ∈ s, f a ≠ 0) :
     (∑' x, (s.indicator f) x) ≠ 0 := fun h' =>
   let ⟨a, ha, hap⟩ := h
@@ -1391,6 +2363,12 @@ theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set 
 
 open Finset
 
+/- warning: nnreal.tendsto_sum_nat_add -> NNReal.tendsto_sum_nat_add is a dubious translation:
+lean 3 declaration is
+  forall (f : Nat -> NNReal), Filter.Tendsto.{0, 0} Nat NNReal (fun (i : Nat) => tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} NNReal NNReal.topologicalSpace (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))))
+but is expected to have type
+  forall (f : Nat -> NNReal), Filter.Tendsto.{0, 0} Nat NNReal (fun (i : Nat) => tsum.{0, 0} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} NNReal NNReal.instTopologicalSpaceNNReal (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)))
+Case conversion may be inaccurate. Consider using '#align nnreal.tendsto_sum_nat_add NNReal.tendsto_sum_nat_addₓ'. -/
 /-- For `f : ℕ → ℝ≥0`, then `∑' k, f (k + i)` tends to zero. This does not require a summability
 assumption on `f`, as otherwise all sums are zero. -/
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
@@ -1400,6 +2378,12 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f
   norm_cast
 #align nnreal.tendsto_sum_nat_add NNReal.tendsto_sum_nat_add
 
+/- warning: nnreal.has_sum_lt -> NNReal.hasSum_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f i) (g i)) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g sg) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) sf sg)
+Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_lt NNReal.hasSum_ltₓ'. -/
 theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
@@ -1408,6 +2392,12 @@ theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a :
   exact NNReal.coe_lt_coe.1 this
 #align nnreal.has_sum_lt NNReal.hasSum_lt
 
+/- warning: nnreal.has_sum_strict_mono -> NNReal.hasSum_strict_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) sf sg)
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {sf : NNReal} {sg : NNReal}, (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f sf) -> (HasSum.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g sg) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) sf sg)
+Case conversion may be inaccurate. Consider using '#align nnreal.has_sum_strict_mono NNReal.hasSum_strict_monoₓ'. -/
 @[mono]
 theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum f sf) (hg : HasSum g sg)
     (h : f < g) : sf < sg :=
@@ -1415,23 +2405,47 @@ theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum
   hasSum_lt hle hi hf hg
 #align nnreal.has_sum_strict_mono NNReal.hasSum_strict_mono
 
+/- warning: nnreal.tsum_lt_tsum -> NNReal.tsum_lt_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal} {i : α}, (forall (a : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f a) (g a)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (f i) (g i)) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => g n)))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsumₓ'. -/
 theorem tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hg : Summable g) : (∑' n, f n) < ∑' n, g n :=
   hasSum_lt h hi (summable_of_le h hg).HasSum hg.HasSum
 #align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsum
 
+/- warning: nnreal.tsum_strict_mono -> NNReal.tsum_strict_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (n : α) => g n)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (LT.lt.{u1} (α -> NNReal) (Preorder.toLT.{u1} (α -> NNReal) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => f n)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (n : α) => g n)))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_strict_mono NNReal.tsum_strict_monoₓ'. -/
 @[mono]
 theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : (∑' n, f n) < ∑' n, g n :=
   let ⟨hle, i, hi⟩ := Pi.lt_def.mp h
   tsum_lt_tsum hle hi hg
 #align nnreal.tsum_strict_mono NNReal.tsum_strict_mono
 
+/- warning: nnreal.tsum_pos -> NNReal.tsum_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (g i)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (b : α) => g b))))
+but is expected to have type
+  forall {α : Type.{u1}} {g : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal g) -> (forall (i : α), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (g i)) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (b : α) => g b))))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_pos NNReal.tsum_posₓ'. -/
 theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i) : 0 < ∑' b, g b :=
   by
   rw [← tsum_zero]
   exact tsum_lt_tsum (fun a => zero_le _) hi hg
 #align nnreal.tsum_pos NNReal.tsum_pos
 
+/- warning: nnreal.tsum_eq_add_tsum_ite -> NNReal.tsum_eq_add_tsum_ite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace f) -> (forall (i : α), Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} NNReal NNReal NNReal (instHAdd.{0} NNReal (Distrib.toHasAdd.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))) (f i) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (x : α) => ite.{1} NNReal (Eq.{succ u1} α x i) (Classical.propDecidable (Eq.{succ u1} α x i)) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (f x)))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> NNReal}, (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal f) -> (forall (i : α), Eq.{1} NNReal (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} NNReal NNReal NNReal (instHAdd.{0} NNReal (Distrib.toAdd.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal instNNRealSemiring))))) (f i) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (x : α) => ite.{1} NNReal (Eq.{succ u1} α x i) (Classical.propDecidable (Eq.{succ u1} α x i)) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (f x)))))
+Case conversion may be inaccurate. Consider using '#align nnreal.tsum_eq_add_tsum_ite NNReal.tsum_eq_add_tsum_iteₓ'. -/
 theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
     (∑' x, f x) = f i + ∑' x, ite (x = i) 0 (f x) :=
   by
@@ -1444,17 +2458,35 @@ end NNReal
 
 namespace ENNReal
 
+/- warning: ennreal.tsum_to_nnreal_eq -> ENNReal.tsum_toNNReal_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} NNReal (ENNReal.toNNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (a : α) => ENNReal.toNNReal (f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} NNReal (ENNReal.toNNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (a : α) => ENNReal.toNNReal (f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_to_nnreal_eq ENNReal.tsum_toNNReal_eqₓ'. -/
 theorem tsum_toNNReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toNNReal = ∑' a, (f a).toNNReal :=
   (congr_arg ENNReal.toNNReal (tsum_congr fun x => (coe_toNNReal (hf x)).symm)).trans
     NNReal.tsum_eq_toNNReal_tsum.symm
 #align ennreal.tsum_to_nnreal_eq ENNReal.tsum_toNNReal_eq
 
+/- warning: ennreal.tsum_to_real_eq -> ENNReal.tsum_toReal_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} Real (ENNReal.toReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))) (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (a : α) => ENNReal.toReal (f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal}, (forall (a : α), Ne.{1} ENNReal (f a) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} Real (ENNReal.toReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))) (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (a : α) => ENNReal.toReal (f a))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eqₓ'. -/
 theorem tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toReal = ∑' a, (f a).toReal := by
   simp only [ENNReal.toReal, tsum_to_nnreal_eq hf, NNReal.coe_tsum]
 #align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eq
 
+/- warning: ennreal.tendsto_sum_nat_add -> ENNReal.tendsto_sum_nat_add is a dubious translation:
+lean 3 declaration is
+  forall (f : Nat -> ENNReal), (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (i : Nat) => tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall (f : Nat -> ENNReal), (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => f i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (i : Nat) => tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (k : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) k i))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_addₓ'. -/
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞) :
     Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
   by
@@ -1464,11 +2496,23 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞
   exact_mod_cast NNReal.tendsto_sum_nat_add f
 #align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
 
+/- warning: ennreal.tsum_le_of_sum_range_le -> ENNReal.tsum_le_of_sum_range_le is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, 0} ENNReal Nat (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (n : Nat) => f n)) c)
+but is expected to have type
+  forall {f : Nat -> ENNReal} {c : ENNReal}, (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, 0} ENNReal Nat (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (n : Nat) => f n)) c)
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_leₓ'. -/
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
   tsum_le_of_sum_range_le ENNReal.summable h
 #align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
 
+/- warning: ennreal.has_sum_lt -> ENNReal.hasSum_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace f sf) -> (HasSum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace g sg) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) sf sg)
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {sf : ENNReal} {sg : ENNReal} {i : α}, (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f i) (g i)) -> (Ne.{1} ENNReal sf (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal f sf) -> (HasSum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal g sg) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) sf sg)
+Case conversion may be inaccurate. Consider using '#align ennreal.has_sum_lt ENNReal.hasSum_ltₓ'. -/
 theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hsf : sf ≠ ⊤) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
@@ -1484,6 +2528,12 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
     exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
+/- warning: ennreal.tsum_lt_tsum -> ENNReal.tsum_lt_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α f) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => g x)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> ENNReal} {g : α -> ENNReal} {i : α}, (Ne.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α f) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (a : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f i) (g i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => f x)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => g x)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsumₓ'. -/
 theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
     (hi : f i < g i) : (∑' x, f x) < ∑' x, g x :=
   hasSum_lt h hi hfi ENNReal.summable.HasSum ENNReal.summable.HasSum
@@ -1491,6 +2541,12 @@ theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (
 
 end ENNReal
 
+/- warning: tsum_comp_le_tsum_of_inj -> tsum_comp_le_tsum_of_inj is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> Real}, (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (forall (a : α), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f a)) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} Real Real.hasLe (tsum.{0, u2} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) β (Function.comp.{succ u2, succ u1, 1} β α Real f i)) (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α f)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : α -> Real}, (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (forall (a : α), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f a)) -> (forall {i : β -> α}, (Function.Injective.{succ u2, succ u1} β α i) -> (LE.le.{0} Real Real.instLEReal (tsum.{0, u2} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) β (Function.comp.{succ u2, succ u1, 1} β α Real f i)) (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α f)))
+Case conversion may be inaccurate. Consider using '#align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_injₓ'. -/
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a)
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f :=
   by
@@ -1499,6 +2555,12 @@ theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f
   simpa only [(· ∘ ·), ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
 
+/- warning: summable_of_nonneg_of_le -> summable_of_nonneg_of_le is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {f : β -> Real} {g : β -> Real}, (forall (b : β), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (g b)) -> (forall (b : β), LE.le.{0} Real Real.hasLe (g b) (f b)) -> (Summable.{0, u1} Real β Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} Real β Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g)
+but is expected to have type
+  forall {β : Type.{u1}} {f : β -> Real} {g : β -> Real}, (forall (b : β), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (g b)) -> (forall (b : β), LE.le.{0} Real Real.instLEReal (g b) (f b)) -> (Summable.{0, u1} Real β Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} Real β Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g)
+Case conversion may be inaccurate. Consider using '#align summable_of_nonneg_of_le summable_of_nonneg_of_leₓ'. -/
 /-- Comparison test of convergence of series of non-negative real numbers. -/
 theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
     (hf : Summable f) : Summable g :=
@@ -1509,6 +2571,12 @@ theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
 #align summable_of_nonneg_of_le summable_of_nonneg_of_le
 
+/- warning: summable.to_nnreal -> Summable.toNNReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> Real}, (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace (fun (n : α) => Real.toNNReal (f n)))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> Real}, (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal (fun (n : α) => Real.toNNReal (f n)))
+Case conversion may be inaccurate. Consider using '#align summable.to_nnreal Summable.toNNRealₓ'. -/
 theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n => (f n).toNNReal :=
   by
   apply NNReal.summable_coe.1
@@ -1516,6 +2584,12 @@ theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n =>
   simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
 #align summable.to_nnreal Summable.toNNReal
 
+/- warning: has_sum_iff_tendsto_nat_of_nonneg -> hasSum_iff_tendsto_nat_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> Real}, (forall (i : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f i)) -> (forall (r : Real), Iff (HasSum.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f r) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) r)))
+but is expected to have type
+  forall {f : Nat -> Real}, (forall (i : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f i)) -> (forall (r : Real), Iff (HasSum.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f r) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) r)))
+Case conversion may be inaccurate. Consider using '#align has_sum_iff_tendsto_nat_of_nonneg hasSum_iff_tendsto_nat_of_nonnegₓ'. -/
 /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f i) (r : ℝ) :
@@ -1526,11 +2600,23 @@ theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f
   exact exists_congr fun hr => NNReal.hasSum_iff_tendsto_nat
 #align has_sum_iff_tendsto_nat_of_nonneg hasSum_iff_tendsto_nat_of_nonneg
 
+/- warning: ennreal.of_real_tsum_of_nonneg -> ENNReal.ofReal_tsum_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {f : α -> Real}, (forall (n : α), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Eq.{1} ENNReal (ENNReal.ofReal (tsum.{0, u1} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (n : α) => f n))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (n : α) => ENNReal.ofReal (f n))))
+but is expected to have type
+  forall {α : Type.{u1}} {f : α -> Real}, (forall (n : α), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) -> (Eq.{1} ENNReal (ENNReal.ofReal (tsum.{0, u1} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) α (fun (n : α) => f n))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (n : α) => ENNReal.ofReal (f n))))
+Case conversion may be inaccurate. Consider using '#align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonnegₓ'. -/
 theorem ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) :
     ENNReal.ofReal (∑' n, f n) = ∑' n, ENNReal.ofReal (f n) := by
   simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
 #align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonneg
 
+/- warning: not_summable_iff_tendsto_nat_at_top_of_nonneg -> not_summable_iff_tendsto_nat_atTop_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (Iff (Not (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Real Real.preorder)))
+but is expected to have type
+  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (Iff (Not (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)) (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Real Real.instPreorderReal)))
+Case conversion may be inaccurate. Consider using '#align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonnegₓ'. -/
 theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
   by
@@ -1538,11 +2624,23 @@ theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀
   exact_mod_cast NNReal.not_summable_iff_tendsto_nat_atTop
 #align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonneg
 
+/- warning: summable_iff_not_tendsto_nat_at_top_of_nonneg -> summable_iff_not_tendsto_nat_atTop_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (Iff (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (Not (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (Filter.atTop.{0} Real Real.preorder))))
+but is expected to have type
+  forall {f : Nat -> Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (Iff (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (Not (Filter.Tendsto.{0, 0} Nat Real (fun (n : Nat) => Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (Filter.atTop.{0} Real Real.instPreorderReal))))
+Case conversion may be inaccurate. Consider using '#align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonnegₓ'. -/
 theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf]
 #align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonneg
 
+/- warning: summable_sigma_of_nonneg -> summable_sigma_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> Real}, (forall (x : Sigma.{u1, u2} α (fun (x : α) => β x)), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f x)) -> (Iff (Summable.{0, max u1 u2} Real (Sigma.{u1, u2} α (fun (x : α) => β x)) Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (And (forall (x : α), Summable.{0, u2} Real (β x) Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} Real α Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => tsum.{0, u2} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} {f : (Sigma.{u1, u2} α (fun (x : α) => β x)) -> Real}, (forall (x : Sigma.{u1, u2} α (fun (x : α) => β x)), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f x)) -> (Iff (Summable.{0, max u1 u2} Real (Sigma.{u1, u2} α (fun (x : α) => β x)) Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f) (And (forall (x : α), Summable.{0, u2} Real (β x) Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))) (Summable.{0, u1} Real α Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : α) => tsum.{0, u2} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (β x) (fun (y : β x) => f (Sigma.mk.{u1, u2} α (fun (x : α) => β x) x y))))))
+Case conversion may be inaccurate. Consider using '#align summable_sigma_of_nonneg summable_sigma_of_nonnegₓ'. -/
 theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ :=
   by
@@ -1550,12 +2648,24 @@ theorem summable_sigma_of_nonneg {β : ∀ x : α, Type _} {f : (Σx, β x) →
   exact_mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
+/- warning: summable_of_sum_le -> summable_of_sum_le is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (OfNat.ofNat.{u1} (ι -> Real) 0 (OfNat.mk.{u1} (ι -> Real) 0 (Zero.zero.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasZero))))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.hasLe (Finset.sum.{0, u1} Real ι Real.addCommMonoid u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+but is expected to have type
+  forall {ι : Type.{u1}} {f : ι -> Real} {c : Real}, (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (OfNat.ofNat.{u1} (ι -> Real) 0 (Zero.toOfNat0.{u1} (ι -> Real) (Pi.instZero.{u1, 0} ι (fun (a._@.Mathlib.Topology.Instances.ENNReal._hyg.26802 : ι) => Real) (fun (i : ι) => Real.instZeroReal)))) f) -> (forall (u : Finset.{u1} ι), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, u1} Real ι Real.instAddCommMonoidReal u (fun (x : ι) => f x)) c) -> (Summable.{0, u1} Real ι Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+Case conversion may be inaccurate. Consider using '#align summable_of_sum_le summable_of_sum_leₓ'. -/
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
-    tendsto_atTop_csupr (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
+    tendsto_atTop_csupᵢ (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun y ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
 
+/- warning: summable_of_sum_range_le -> summable_of_sum_range_le is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.hasLe (Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+but is expected to have type
+  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) c) -> (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) f)
+Case conversion may be inaccurate. Consider using '#align summable_of_sum_range_le summable_of_sum_range_leₓ'. -/
 theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f :=
   by
@@ -1564,11 +2674,23 @@ theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤
   exact lt_irrefl _ (hn.trans_le (h n))
 #align summable_of_sum_range_le summable_of_sum_range_le
 
+/- warning: real.tsum_le_of_sum_range_le -> Real.tsum_le_of_sum_range_le is a dubious translation:
+lean 3 declaration is
+  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.hasLe (Finset.sum.{0, 0} Real Nat Real.addCommMonoid (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} Real Real.hasLe (tsum.{0, 0} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) c)
+but is expected to have type
+  forall {f : Nat -> Real} {c : Real}, (forall (n : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f n)) -> (forall (n : Nat), LE.le.{0} Real Real.instLEReal (Finset.sum.{0, 0} Real Nat Real.instAddCommMonoidReal (Finset.range n) (fun (i : Nat) => f i)) c) -> (LE.le.{0} Real Real.instLEReal (tsum.{0, 0} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) c)
+Case conversion may be inaccurate. Consider using '#align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_leₓ'. -/
 theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
   tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
 #align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_le
 
+/- warning: tsum_lt_tsum_of_nonneg -> tsum_lt_tsum_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {i : Nat} {f : Nat -> Real} {g : Nat -> Real}, (forall (b : Nat), LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (f b)) -> (forall (b : Nat), LE.le.{0} Real Real.hasLe (f b) (g b)) -> (LT.lt.{0} Real Real.hasLt (f i) (g i)) -> (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g) -> (LT.lt.{0} Real Real.hasLt (tsum.{0, 0} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) (tsum.{0, 0} Real Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => g n)))
+but is expected to have type
+  forall {i : Nat} {f : Nat -> Real} {g : Nat -> Real}, (forall (b : Nat), LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (f b)) -> (forall (b : Nat), LE.le.{0} Real Real.instLEReal (f b) (g b)) -> (LT.lt.{0} Real Real.instLTReal (f i) (g i)) -> (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) g) -> (LT.lt.{0} Real Real.instLTReal (tsum.{0, 0} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => f n)) (tsum.{0, 0} Real Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Nat (fun (n : Nat) => g n)))
+Case conversion may be inaccurate. Consider using '#align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonnegₓ'. -/
 /-- If a sequence `f` with non-negative terms is dominated by a sequence `g` with summable
 series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
 then the series of `f` is strictly smaller than the series of `g`. -/
@@ -1583,6 +2705,12 @@ variable [EMetricSpace β]
 
 open ENNReal Filter Emetric
 
+/- warning: edist_ne_top_of_mem_ball -> edist_ne_top_of_mem_ball is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} [_inst_1 : EMetricSpace.{u1} β] {a : β} {r : ENNReal} (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} β) Type.{u1} (Set.hasCoeToSort.{u1} β) (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)) (y : coeSort.{succ u1, succ (succ u1)} (Set.{u1} β) Type.{u1} (Set.hasCoeToSort.{u1} β) (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)), Ne.{1} ENNReal (EDist.edist.{u1} β (PseudoEMetricSpace.toHasEdist.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1)) (Subtype.val.{succ u1} β (fun (x : β) => Membership.Mem.{u1, u1} β (Set.{u1} β) (Set.hasMem.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)) x) (Subtype.val.{succ u1} β (fun (x : β) => Membership.Mem.{u1, u1} β (Set.{u1} β) (Set.hasMem.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEmetricSpace.{u1} β _inst_1) a r)) y)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {β : Type.{u1}} [_inst_1 : EMetricSpace.{u1} β] {a : β} {r : ENNReal} (x : Set.Elem.{u1} β (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)) (y : Set.Elem.{u1} β (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)), Ne.{1} ENNReal (EDist.edist.{u1} β (PseudoEMetricSpace.toEDist.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1)) (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)) x) (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EMetric.ball.{u1} β (EMetricSpace.toPseudoEMetricSpace.{u1} β _inst_1) a r)) y)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align edist_ne_top_of_mem_ball edist_ne_top_of_mem_ballₓ'. -/
 /-- In an emetric ball, the distance between points is everywhere finite -/
 theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ :=
   lt_top_iff_ne_top.1 <|
@@ -1593,18 +2721,22 @@ theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : ed
       
 #align edist_ne_top_of_mem_ball edist_ne_top_of_mem_ball
 
+#print metricSpaceEMetricBall /-
 /-- Each ball in an extended metric space gives us a metric space, as the edist
 is everywhere finite. -/
-def metricSpaceEmetricBall (a : β) (r : ℝ≥0∞) : MetricSpace (ball a r) :=
+def metricSpaceEMetricBall (a : β) (r : ℝ≥0∞) : MetricSpace (ball a r) :=
   EMetricSpace.toMetricSpace edist_ne_top_of_mem_ball
-#align metric_space_emetric_ball metricSpaceEmetricBall
+#align metric_space_emetric_ball metricSpaceEMetricBall
+-/
 
-attribute [local instance] metricSpaceEmetricBall
+attribute [local instance] metricSpaceEMetricBall
 
+#print nhds_eq_nhds_emetric_ball /-
 theorem nhds_eq_nhds_emetric_ball (a x : β) (r : ℝ≥0∞) (h : x ∈ ball a r) :
     𝓝 x = map (coe : ball a r → β) (𝓝 ⟨x, h⟩) :=
   (map_nhds_subtype_coe_eq_nhds _ <| IsOpen.mem_nhds EMetric.isOpen_ball h).symm
 #align nhds_eq_nhds_emetric_ball nhds_eq_nhds_emetric_ball
+-/
 
 end
 
@@ -1614,15 +2746,27 @@ variable [PseudoEMetricSpace α]
 
 open Emetric
 
+/- warning: tendsto_iff_edist_tendsto_0 -> tendsto_iff_edist_tendsto_0 is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {l : Filter.{u2} β} {f : β -> α} {y : α}, Iff (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) y)) (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f x) y) l (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {l : Filter.{u2} β} {f : β -> α} {y : α}, Iff (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) y)) (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f x) y) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0ₓ'. -/
 theorem tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} :
     Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) := by
   simp only [emetric.nhds_basis_eball.tendsto_right_iff, EMetric.mem_ball,
     @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and_iff]
 #align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0
 
+/- warning: emetric.cauchy_seq_iff_le_tendsto_0 -> EMetric.cauchySeq_iff_le_tendsto_0 is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : Nonempty.{succ u2} β] [_inst_3 : SemilatticeSup.{u2} β] {s : β -> α}, Iff (CauchySeq.{u1, u2} α β (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) _inst_3 s) (Exists.{succ u2} (β -> ENNReal) (fun (b : β -> ENNReal) => And (forall (n : β) (m : β) (N : β), (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N n) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) N m) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (s n) (s m)) (b N))) (Filter.Tendsto.{u2, 0} β ENNReal b (Filter.atTop.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))))
+Case conversion may be inaccurate. Consider using '#align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0ₓ'. -/
 /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the
 most efficient. -/
-theorem Emetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s : β → α} :
+theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s : β → α} :
     CauchySeq s ↔
       ∃ b : β → ℝ≥0∞,
         (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) :=
@@ -1669,8 +2813,14 @@ theorem Emetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
           edist (s m) (s n) ≤ b N := b_bound m n N hm hn
           _ < ε := hN _ (le_refl N)
           ⟩⟩
-#align emetric.cauchy_seq_iff_le_tendsto_0 Emetric.cauchySeq_iff_le_tendsto_0
-
+#align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0
+
+/- warning: continuous_of_le_add_edist -> continuous_of_le_add_edist is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) C (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.topologicalSpace f)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : α -> ENNReal} (C : ENNReal), (Ne.{1} ENNReal C (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (x : α) (y : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f y) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) C (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) x y)))) -> (Continuous.{u1, 0} α ENNReal (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) ENNReal.instTopologicalSpaceENNReal f)
+Case conversion may be inaccurate. Consider using '#align continuous_of_le_add_edist continuous_of_le_add_edistₓ'. -/
 theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ⊤)
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f :=
   by
@@ -1704,6 +2854,12 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
           
 #align continuous_of_le_add_edist continuous_of_le_add_edist
 
+/- warning: continuous_edist -> continuous_edist is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α], Continuous.{u1, 0} (Prod.{u1, u1} α α) ENNReal (Prod.topologicalSpace.{u1, u1} α α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1))) ENNReal.topologicalSpace (fun (p : Prod.{u1, u1} α α) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α], Continuous.{u1, 0} (Prod.{u1, u1} α α) ENNReal (instTopologicalSpaceProd.{u1, u1} α α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1))) ENNReal.instTopologicalSpaceENNReal (fun (p : Prod.{u1, u1} α α) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))
+Case conversion may be inaccurate. Consider using '#align continuous_edist continuous_edistₓ'. -/
 theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
   by
   apply continuous_of_le_add_edist 2 (by norm_num)
@@ -1717,17 +2873,35 @@ theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
     
 #align continuous_edist continuous_edist
 
+/- warning: continuous.edist -> Continuous.edist is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : β -> α} {g : β -> α}, (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) f) -> (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) g) -> (Continuous.{u2, 0} β ENNReal _inst_2 ENNReal.topologicalSpace (fun (b : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f b) (g b)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : β -> α} {g : β -> α}, (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) f) -> (Continuous.{u2, u1} β α _inst_2 (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) g) -> (Continuous.{u2, 0} β ENNReal _inst_2 ENNReal.instTopologicalSpaceENNReal (fun (b : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f b) (g b)))
+Case conversion may be inaccurate. Consider using '#align continuous.edist Continuous.edistₓ'. -/
 @[continuity]
 theorem Continuous.edist [TopologicalSpace β] {f g : β → α} (hf : Continuous f)
     (hg : Continuous g) : Continuous fun b => edist (f b) (g b) :=
   continuous_edist.comp (hf.prod_mk hg : _)
 #align continuous.edist Continuous.edist
 
+/- warning: filter.tendsto.edist -> Filter.Tendsto.edist is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : β -> α} {g : β -> α} {x : Filter.{u2} β} {a : α} {b : α}, (Filter.Tendsto.{u2, u1} β α f x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (Filter.Tendsto.{u2, u1} β α g x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) b)) -> (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f x) (g x)) x (nhds.{0} ENNReal ENNReal.topologicalSpace (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : β -> α} {g : β -> α} {x : Filter.{u2} β} {a : α} {b : α}, (Filter.Tendsto.{u2, u1} β α f x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (Filter.Tendsto.{u2, u1} β α g x (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) b)) -> (Filter.Tendsto.{u2, 0} β ENNReal (fun (x : β) => EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f x) (g x)) x (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) a b)))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.edist Filter.Tendsto.edistₓ'. -/
 theorem Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf : Tendsto f x (𝓝 a))
     (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => edist (f x) (g x)) x (𝓝 (edist a b)) :=
   (continuous_edist.Tendsto (a, b)).comp (hf.prod_mk_nhds hg)
 #align filter.tendsto.edist Filter.Tendsto.edist
 
+/- warning: cauchy_seq_of_edist_le_of_tsum_ne_top -> cauchySeq_of_edist_le_of_tsum_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat d) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid) f)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat d) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (CauchySeq.{u1, 0} α Nat (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1) (Lattice.toSemilatticeSup.{0} Nat Nat.instLatticeNat) f)
+Case conversion may be inaccurate. Consider using '#align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_topₓ'. -/
 theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ≥0∞)
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f :=
   by
@@ -1736,24 +2910,36 @@ theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ
   exact cauchySeq_of_edist_le_of_summable d hf hd
 #align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_top
 
-theorem Emetric.isClosed_ball {a : α} {r : ℝ≥0∞} : IsClosed (closedBall a r) :=
+#print EMetric.isClosed_ball /-
+theorem EMetric.isClosed_ball {a : α} {r : ℝ≥0∞} : IsClosed (closedBall a r) :=
   isClosed_le (continuous_id.edist continuous_const) continuous_const
-#align emetric.is_closed_ball Emetric.isClosed_ball
+#align emetric.is_closed_ball EMetric.isClosed_ball
+-/
 
+#print EMetric.diam_closure /-
 @[simp]
-theorem Emetric.diam_closure (s : Set α) : diam (closure s) = diam s :=
+theorem EMetric.diam_closure (s : Set α) : diam (closure s) = diam s :=
   by
   refine' le_antisymm (diam_le fun x hx y hy => _) (diam_mono subset_closure)
   have : edist x y ∈ closure (Iic (diam s)) :=
     map_mem_closure₂ continuous_edist hx hy fun x hx y hy => edist_le_diam_of_mem hx hy
   rwa [closure_Iic] at this
-#align emetric.diam_closure Emetric.diam_closure
+#align emetric.diam_closure EMetric.diam_closure
+-/
 
+#print Metric.diam_closure /-
 @[simp]
 theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
-    Metric.diam (closure s) = diam s := by simp only [Metric.diam, Emetric.diam_closure]
+    Metric.diam (closure s) = diam s := by simp only [Metric.diam, EMetric.diam_closure]
 #align metric.diam_closure Metric.diam_closure
+-/
 
+/- warning: is_closed_set_of_lipschitz_on_with -> isClosed_setOf_lipschitzOnWith is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_2 : PseudoEMetricSpace.{u1} α] [_inst_3 : PseudoEMetricSpace.{u2} β] (K : NNReal) (s : Set.{u1} α), IsClosed.{max u1 u2} (α -> β) (Pi.topologicalSpace.{u1, u2} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u2} β (PseudoEMetricSpace.toUniformSpace.{u2} β _inst_3))) (setOf.{max u1 u2} (α -> β) (fun (f : α -> β) => LipschitzOnWith.{u1, u2} α β _inst_2 _inst_3 K f s))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : PseudoEMetricSpace.{u2} α] [_inst_3 : PseudoEMetricSpace.{u1} β] (K : NNReal) (s : Set.{u2} α), IsClosed.{max u2 u1} (α -> β) (Pi.topologicalSpace.{u2, u1} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u1} β (PseudoEMetricSpace.toUniformSpace.{u1} β _inst_3))) (setOf.{max u2 u1} (α -> β) (fun (f : α -> β) => LipschitzOnWith.{u2, u1} α β _inst_2 _inst_3 K f s))
+Case conversion may be inaccurate. Consider using '#align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWithₓ'. -/
 theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0)
     (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } :=
   by
@@ -1762,6 +2948,12 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
   exacts[Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
+/- warning: is_closed_set_of_lipschitz_with -> isClosed_setOf_lipschitzWith is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_2 : PseudoEMetricSpace.{u1} α] [_inst_3 : PseudoEMetricSpace.{u2} β] (K : NNReal), IsClosed.{max u1 u2} (α -> β) (Pi.topologicalSpace.{u1, u2} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u2} β (PseudoEMetricSpace.toUniformSpace.{u2} β _inst_3))) (setOf.{max u1 u2} (α -> β) (fun (f : α -> β) => LipschitzWith.{u1, u2} α β _inst_2 _inst_3 K f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : PseudoEMetricSpace.{u2} α] [_inst_3 : PseudoEMetricSpace.{u1} β] (K : NNReal), IsClosed.{max u2 u1} (α -> β) (Pi.topologicalSpace.{u2, u1} α (fun (ᾰ : α) => β) (fun (a : α) => UniformSpace.toTopologicalSpace.{u1} β (PseudoEMetricSpace.toUniformSpace.{u1} β _inst_3))) (setOf.{max u2 u1} (α -> β) (fun (f : α -> β) => LipschitzWith.{u2, u1} α β _inst_2 _inst_3 K f))
+Case conversion may be inaccurate. Consider using '#align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWithₓ'. -/
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
     IsClosed { f : α → β | LipschitzWith K f } := by
   simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
@@ -1769,6 +2961,12 @@ theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMet
 
 namespace Real
 
+/- warning: real.ediam_eq -> Real.ediam_eq is a dubious translation:
+lean 3 declaration is
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.supₛ.{0} Real Real.hasSup s) (InfSet.infₛ.{0} Real Real.hasInf s))))
+but is expected to have type
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) s) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.supₛ.{0} Real Real.instSupSetReal s) (InfSet.infₛ.{0} Real Real.instInfSetReal s))))
+Case conversion may be inaccurate. Consider using '#align real.ediam_eq Real.ediam_eqₓ'. -/
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
 theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) :=
@@ -1787,6 +2985,12 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal
       
 #align real.ediam_eq Real.ediam_eq
 
+/- warning: real.diam_eq -> Real.diam_eq is a dubious translation:
+lean 3 declaration is
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (SupSet.supₛ.{0} Real Real.hasSup s) (InfSet.infₛ.{0} Real Real.hasInf s)))
+but is expected to have type
+  forall {s : Set.{0} Real}, (Metric.Bounded.{0} Real Real.pseudoMetricSpace s) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace s) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (SupSet.supₛ.{0} Real Real.instSupSetReal s) (InfSet.infₛ.{0} Real Real.instInfSetReal s)))
+Case conversion may be inaccurate. Consider using '#align real.diam_eq Real.diam_eqₓ'. -/
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
 theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = supₛ s - infₛ s :=
   by
@@ -1795,6 +2999,12 @@ theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = supₛ s - inf
   exact sub_nonneg.2 (Real.infₛ_le_supₛ s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
+/- warning: real.ediam_Ioo -> Real.ediam_Ioo is a dubious translation:
+lean 3 declaration is
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Ioo.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Ioo.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.ediam_Ioo Real.ediam_Iooₓ'. -/
 @[simp]
 theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) :=
   by
@@ -1803,6 +3013,12 @@ theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a)
   · rw [Real.ediam_eq (bounded_Ioo _ _), csupₛ_Ioo h, cinfₛ_Ioo h]
 #align real.ediam_Ioo Real.ediam_Ioo
 
+/- warning: real.ediam_Icc -> Real.ediam_Icc is a dubious translation:
+lean 3 declaration is
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Icc.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Icc.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.ediam_Icc Real.ediam_Iccₓ'. -/
 @[simp]
 theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
   by
@@ -1811,36 +3027,78 @@ theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a)
   · simp [h, h.le]
 #align real.ediam_Icc Real.ediam_Icc
 
+/- warning: real.ediam_Ico -> Real.ediam_Ico is a dubious translation:
+lean 3 declaration is
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Ico.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Ico.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.ediam_Ico Real.ediam_Icoₓ'. -/
 @[simp]
 theorem ediam_Ico (a b : ℝ) : EMetric.diam (Ico a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ico_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ico_self)
 #align real.ediam_Ico Real.ediam_Ico
 
+/- warning: real.ediam_Ioc -> Real.ediam_Ioc is a dubious translation:
+lean 3 declaration is
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (PseudoMetricSpace.toPseudoEMetricSpace.{0} Real Real.pseudoMetricSpace) (Set.Ioc.{0} Real Real.preorder a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall (a : Real) (b : Real), Eq.{1} ENNReal (EMetric.diam.{0} Real (EMetricSpace.toPseudoEMetricSpace.{0} Real (MetricSpace.toEMetricSpace.{0} Real Real.metricSpace)) (Set.Ioc.{0} Real Real.instPreorderReal a b)) (ENNReal.ofReal (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.ediam_Ioc Real.ediam_Iocₓ'. -/
 @[simp]
 theorem ediam_Ioc (a b : ℝ) : EMetric.diam (Ioc a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ioc_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ioc_self)
 #align real.ediam_Ioc Real.ediam_Ioc
 
+/- warning: real.diam_Icc -> Real.diam_Icc is a dubious translation:
+lean 3 declaration is
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Icc.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Icc.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.diam_Icc Real.diam_Iccₓ'. -/
 theorem diam_Icc {a b : ℝ} (h : a ≤ b) : Metric.diam (Icc a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Icc Real.diam_Icc
 
+/- warning: real.diam_Ico -> Real.diam_Ico is a dubious translation:
+lean 3 declaration is
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ico.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ico.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.diam_Ico Real.diam_Icoₓ'. -/
 theorem diam_Ico {a b : ℝ} (h : a ≤ b) : Metric.diam (Ico a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ico Real.diam_Ico
 
+/- warning: real.diam_Ioc -> Real.diam_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioc.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioc.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.diam_Ioc Real.diam_Iocₓ'. -/
 theorem diam_Ioc {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioc a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioc Real.diam_Ioc
 
+/- warning: real.diam_Ioo -> Real.diam_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.hasLe a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioo.{0} Real Real.preorder a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) b a))
+but is expected to have type
+  forall {a : Real} {b : Real}, (LE.le.{0} Real Real.instLEReal a b) -> (Eq.{1} Real (Metric.diam.{0} Real Real.pseudoMetricSpace (Set.Ioo.{0} Real Real.instPreorderReal a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) b a))
+Case conversion may be inaccurate. Consider using '#align real.diam_Ioo Real.diam_Iooₓ'. -/
 theorem diam_Ioo {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioo a b) = b - a := by
   simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioo Real.diam_Ioo
 
 end Real
 
+/- warning: edist_le_tsum_of_edist_le_of_tendsto -> edist_le_tsum_of_edist_le_of_tendsto is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n m)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) a) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (m : Nat) => d (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n m)))))
+Case conversion may be inaccurate. Consider using '#align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendstoₓ'. -/
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
 then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`. -/
 theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ≥0∞)
@@ -1853,6 +3111,12 @@ theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ
   exact sum_le_tsum _ (fun _ _ => zero_le _) ENNReal.summable
 #align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendsto
 
+/- warning: edist_le_tsum_of_edist_le_of_tendsto₀ -> edist_le_tsum_of_edist_le_of_tendsto₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) a) (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (m : Nat) => d m))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} α] {f : Nat -> α} (d : Nat -> ENNReal), (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f n) (f (Nat.succ n))) (d n)) -> (forall {a : α}, (Filter.Tendsto.{0, u1} Nat α f (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α _inst_1)) a)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α _inst_1) (f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) a) (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (m : Nat) => d m))))
+Case conversion may be inaccurate. Consider using '#align edist_le_tsum_of_edist_le_of_tendsto₀ edist_le_tsum_of_edist_le_of_tendsto₀ₓ'. -/
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
 then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`. -/
 theorem edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ℝ≥0∞)
Diff
@@ -4,14 +4,15 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
+! leanprover-community/mathlib commit 90ac7a91781abbb5f0206888d68bd095f88c4229
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Instances.Nnreal
 import Mathbin.Topology.Algebra.Order.MonotoneContinuity
-import Mathbin.Analysis.Normed.Group.Basic
 import Mathbin.Topology.Algebra.InfiniteSum.Real
+import Mathbin.Topology.Algebra.Order.LiminfLimsup
+import Mathbin.Topology.MetricSpace.Lipschitz
 
 /-!
 # Extended non-negative reals
@@ -786,7 +787,7 @@ section Liminf
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
-    (hx : liminf (fun n => (‖x n‖₊ : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
+    (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
   by
   by_contra h
   simp_rw [not_exists, not_frequently, not_lt] at h
@@ -799,12 +800,12 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
               is_bounded_default)
           _)
   simp only [eventually_map, ENNReal.coe_le_coe]
-  filter_upwards [h r]with i hi using hi.trans ((coe_nnnorm (x i)).symm ▸ le_abs_self (x i))
+  filter_upwards [h r]with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
-    (hx : liminf (fun n => (‖x n‖₊ : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
+    (hx : liminf (fun n => ((x n).nnabs : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
   by
   by_contra h
   simp_rw [not_exists, not_frequently, not_lt] at h
@@ -821,7 +822,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
-    (hf : liminf (fun i => (‖x i‖₊ : ℝ≥0∞)) l ≠ ∞)
+    (hf : liminf (fun i => ((x i).nnabs : ℝ≥0∞)) l ≠ ∞)
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
     ∃ a b : ℚ, a < b ∧ (∃ᶠ i in l, x i < a) ∧ ∃ᶠ i in l, ↑b < x i :=
   by
Diff
@@ -1578,7 +1578,7 @@ theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ,
 
 section
 
-variable [EmetricSpace β]
+variable [EMetricSpace β]
 
 open ENNReal Filter Emetric
 
@@ -1595,27 +1595,27 @@ theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : ed
 /-- Each ball in an extended metric space gives us a metric space, as the edist
 is everywhere finite. -/
 def metricSpaceEmetricBall (a : β) (r : ℝ≥0∞) : MetricSpace (ball a r) :=
-  EmetricSpace.toMetricSpace edist_ne_top_of_mem_ball
+  EMetricSpace.toMetricSpace edist_ne_top_of_mem_ball
 #align metric_space_emetric_ball metricSpaceEmetricBall
 
 attribute [local instance] metricSpaceEmetricBall
 
 theorem nhds_eq_nhds_emetric_ball (a x : β) (r : ℝ≥0∞) (h : x ∈ ball a r) :
     𝓝 x = map (coe : ball a r → β) (𝓝 ⟨x, h⟩) :=
-  (map_nhds_subtype_coe_eq_nhds _ <| IsOpen.mem_nhds Emetric.isOpen_ball h).symm
+  (map_nhds_subtype_coe_eq_nhds _ <| IsOpen.mem_nhds EMetric.isOpen_ball h).symm
 #align nhds_eq_nhds_emetric_ball nhds_eq_nhds_emetric_ball
 
 end
 
 section
 
-variable [PseudoEmetricSpace α]
+variable [PseudoEMetricSpace α]
 
 open Emetric
 
 theorem tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} :
     Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) := by
-  simp only [emetric.nhds_basis_eball.tendsto_right_iff, Emetric.mem_ball,
+  simp only [emetric.nhds_basis_eball.tendsto_right_iff, EMetric.mem_ball,
     @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and_iff]
 #align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0
 
@@ -1627,7 +1627,7 @@ theorem Emetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
         (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) :=
   ⟨by
     intro hs
-    rw [Emetric.cauchySeq_iff] at hs
+    rw [EMetric.cauchySeq_iff] at hs
     /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking
       the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/
     let b N := Sup ((fun p : β × β => edist (s p.1) (s p.2)) '' { p | p.1 ≥ N ∧ p.2 ≥ N })
@@ -1659,7 +1659,7 @@ theorem Emetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
     rintro ⟨b, ⟨b_bound, b_lim⟩⟩
     /-b : ℕ → ℝ, b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N,
         b_lim : tendsto b at_top (𝓝 0)-/
-    refine' Emetric.cauchySeq_iff.2 fun ε εpos => _
+    refine' EMetric.cauchySeq_iff.2 fun ε εpos => _
     have : ∀ᶠ n in at_top, b n < ε := (tendsto_order.1 b_lim).2 _ εpos
     rcases Filter.mem_atTop_sets.1 this with ⟨N, hN⟩
     exact
@@ -1680,13 +1680,13 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
     by_cases hx : f x = ∞
     · have : f =ᶠ[𝓝 x] fun _ => ∞ :=
         by
-        filter_upwards [Emetric.ball_mem_nhds x ENNReal.coe_lt_top]
+        filter_upwards [EMetric.ball_mem_nhds x ENNReal.coe_lt_top]
         refine' fun y (hy : edist y x < ⊤) => _
         rw [edist_comm] at hy
         simpa [hx, ENNReal.mul_ne_top hC hy.ne] using h x y
       exact this.continuous_at
     · refine' (ENNReal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
-      filter_upwards [Emetric.closedBall_mem_nhds x (ENNReal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
+      filter_upwards [EMetric.closedBall_mem_nhds x (ENNReal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
       have hεC : C * (ε / C) = ε := ENNReal.mul_div_cancel' C0 hC
       refine' fun y (hy : edist y x ≤ ε / C) => ⟨tsub_le_iff_right.2 _, _⟩
       · rw [edist_comm] at hy
@@ -1753,7 +1753,7 @@ theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
     Metric.diam (closure s) = diam s := by simp only [Metric.diam, Emetric.diam_closure]
 #align metric.diam_closure Metric.diam_closure
 
-theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEmetricSpace α] [PseudoEmetricSpace β] (K : ℝ≥0)
+theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0)
     (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } :=
   by
   simp only [LipschitzOnWith, set_of_forall]
@@ -1761,7 +1761,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEmetricSpace α] [PseudoEm
   exacts[Continuous.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
-theorem isClosed_setOf_lipschitzWith {α β} [PseudoEmetricSpace α] [PseudoEmetricSpace β] (K : ℝ≥0) :
+theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
     IsClosed { f : α → β | LipschitzWith K f } := by
   simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
 #align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWith
@@ -1770,7 +1770,7 @@ namespace Real
 
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
-theorem ediam_eq {s : Set ℝ} (h : Bounded s) : Emetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) :=
+theorem ediam_eq {s : Set ℝ} (h : Bounded s) : EMetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne); · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
@@ -1795,7 +1795,7 @@ theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = supₛ s - inf
 #align real.diam_eq Real.diam_eq
 
 @[simp]
-theorem ediam_Ioo (a b : ℝ) : Emetric.diam (Ioo a b) = ENNReal.ofReal (b - a) :=
+theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) :=
   by
   rcases le_or_lt b a with (h | h)
   · simp [h]
@@ -1803,7 +1803,7 @@ theorem ediam_Ioo (a b : ℝ) : Emetric.diam (Ioo a b) = ENNReal.ofReal (b - a)
 #align real.ediam_Ioo Real.ediam_Ioo
 
 @[simp]
-theorem ediam_Icc (a b : ℝ) : Emetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
+theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
   by
   rcases le_or_lt a b with (h | h)
   · rw [Real.ediam_eq (bounded_Icc _ _), csupₛ_Icc h, cinfₛ_Icc h]
@@ -1811,13 +1811,13 @@ theorem ediam_Icc (a b : ℝ) : Emetric.diam (Icc a b) = ENNReal.ofReal (b - a)
 #align real.ediam_Icc Real.ediam_Icc
 
 @[simp]
-theorem ediam_Ico (a b : ℝ) : Emetric.diam (Ico a b) = ENNReal.ofReal (b - a) :=
+theorem ediam_Ico (a b : ℝ) : EMetric.diam (Ico a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ico_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ico_self)
 #align real.ediam_Ico Real.ediam_Ico
 
 @[simp]
-theorem ediam_Ioc (a b : ℝ) : Emetric.diam (Ioc a b) = ENNReal.ofReal (b - a) :=
+theorem ediam_Ioc (a b : ℝ) : EMetric.diam (Ioc a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ioc_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ioc_self)
 #align real.ediam_Ioc Real.ediam_Ioc
Diff
@@ -172,7 +172,7 @@ def ltTopHomeomorphNnreal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNnreal
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
 #align ennreal.nhds_top ENNReal.nhds_top
@@ -219,7 +219,7 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (a «expr ≠ » 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
 #align ennreal.nhds_zero ENNReal.nhds_zero
@@ -784,7 +784,7 @@ end TopologicalSpace
 
 section Liminf
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => (‖x n‖₊ : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R :=
   by
@@ -802,7 +802,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
   filter_upwards [h r]with i hi using hi.trans ((coe_nnnorm (x i)).symm ▸ le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => (‖x n‖₊ : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n :=
   by
@@ -1140,7 +1140,7 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
       apply tsum_congr_subtype
       rw [union_diff_self]
     _ = (∑' x : s, f x) + ∑' x : t \ s, f x :=
-      tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable
+      (tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable)
     _ ≤ (∑' x : s, f x) + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
     
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
@@ -1155,7 +1155,7 @@ theorem tsum_bUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
     calc
       (∑' x : t i ∪ ⋃ j ∈ s, t j, f x) ≤ (∑' x : t i, f x) + ∑' x : ⋃ j ∈ s, t j, f x :=
         tsum_union_le _ _ _
-      _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := add_le_add le_rfl ihs
+      _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := (add_le_add le_rfl ihs)
       _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
       
 #align ennreal.tsum_bUnion_le ENNReal.tsum_bUnion_le
@@ -1692,13 +1692,13 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
       · rw [edist_comm] at hy
         calc
           f x ≤ f y + C * edist x y := h x y
-          _ ≤ f y + C * (ε / C) := add_le_add_left (mul_le_mul_left' hy C) (f y)
+          _ ≤ f y + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f y))
           _ = f y + ε := by rw [hεC]
           
       ·
         calc
           f y ≤ f x + C * edist y x := h y x
-          _ ≤ f x + C * (ε / C) := add_le_add_left (mul_le_mul_left' hy C) (f x)
+          _ ≤ f x + C * (ε / C) := (add_le_add_left (mul_le_mul_left' hy C) (f x))
           _ = f x + ε := by rw [hεC]
           
 #align continuous_of_le_add_edist continuous_of_le_add_edist
@@ -1711,7 +1711,7 @@ theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 :=
     edist x y ≤ edist x x' + edist x' y' + edist y' y := edist_triangle4 _ _ _ _
     _ = edist x' y' + (edist x x' + edist y y') := by simp [edist_comm] <;> cc
     _ ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) :=
-      add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _
+      (add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _)
     _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm]
     
 #align continuous_edist continuous_edist
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit afdb4fa3b32d41106a4a09b371ce549ad7958abd
+! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -205,7 +205,7 @@ theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : 
 
 theorem tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) :=
   tendsto_nhds_top fun n =>
-    mem_atTop_sets.2 ⟨n + 1, fun m hm => ENNReal.coe_nat_lt_coe_nat.2 <| Nat.lt_of_succ_le hm⟩
+    mem_atTop_sets.2 ⟨n + 1, fun m hm => mem_setOf.2 <| Nat.cast_lt.2 <| Nat.lt_of_succ_le hm⟩
 #align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_top
 
 @[simp, norm_cast]
@@ -539,7 +539,7 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
     (ENNReal.continuousAt_mul_const (Or.inr one_ne_zero)).mono_left inf_le_left
   rw [one_mul] at this
-  haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, ENNReal.zero_lt_one⟩
+  haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, zero_lt_one⟩
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
Diff
@@ -22,11 +22,11 @@ noncomputable section
 
 open Classical Set Filter Metric
 
-open Classical Topology Ennreal NNReal BigOperators Filter
+open Classical Topology ENNReal NNReal BigOperators Filter
 
 variable {α : Type _} {β : Type _} {γ : Type _}
 
-namespace Ennreal
+namespace ENNReal
 
 variable {a b c d : ℝ≥0∞} {r p q : ℝ≥0}
 
@@ -70,177 +70,177 @@ theorem embedding_coe : Embedding (coe : ℝ≥0 → ℝ≥0∞) :=
         rcases ha with ⟨a, rfl | rfl⟩
         exact ⟨Ioi a, isOpen_Ioi, by simp [Ioi]⟩
         exact ⟨Iio a, isOpen_Iio, by simp [Iio]⟩⟩, fun a b => coe_eq_coe.1⟩
-#align ennreal.embedding_coe Ennreal.embedding_coe
+#align ennreal.embedding_coe ENNReal.embedding_coe
 
 theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ⊤ } :=
   isOpen_ne
-#align ennreal.is_open_ne_top Ennreal.isOpen_ne_top
+#align ennreal.is_open_ne_top ENNReal.isOpen_ne_top
 
 theorem isOpen_Ico_zero : IsOpen (Ico 0 b) :=
   by
-  rw [Ennreal.Ico_eq_Iio]
+  rw [ENNReal.Ico_eq_Iio]
   exact isOpen_Iio
-#align ennreal.is_open_Ico_zero Ennreal.isOpen_Ico_zero
+#align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zero
 
 theorem openEmbedding_coe : OpenEmbedding (coe : ℝ≥0 → ℝ≥0∞) :=
   ⟨embedding_coe, by
     convert is_open_ne_top
     ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
-#align ennreal.open_embedding_coe Ennreal.openEmbedding_coe
+#align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
 
 theorem coe_range_mem_nhds : range (coe : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) :=
   IsOpen.mem_nhds openEmbedding_coe.open_range <| mem_range_self _
-#align ennreal.coe_range_mem_nhds Ennreal.coe_range_mem_nhds
+#align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhds
 
 @[norm_cast]
 theorem tendsto_coe {f : Filter α} {m : α → ℝ≥0} {a : ℝ≥0} :
     Tendsto (fun a => (m a : ℝ≥0∞)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) :=
   embedding_coe.tendsto_nhds_iff.symm
-#align ennreal.tendsto_coe Ennreal.tendsto_coe
+#align ennreal.tendsto_coe ENNReal.tendsto_coe
 
 theorem continuous_coe : Continuous (coe : ℝ≥0 → ℝ≥0∞) :=
   embedding_coe.Continuous
-#align ennreal.continuous_coe Ennreal.continuous_coe
+#align ennreal.continuous_coe ENNReal.continuous_coe
 
 theorem continuous_coe_iff {α} [TopologicalSpace α] {f : α → ℝ≥0} :
     (Continuous fun a => (f a : ℝ≥0∞)) ↔ Continuous f :=
   embedding_coe.continuous_iff.symm
-#align ennreal.continuous_coe_iff Ennreal.continuous_coe_iff
+#align ennreal.continuous_coe_iff ENNReal.continuous_coe_iff
 
 theorem nhds_coe {r : ℝ≥0} : 𝓝 (r : ℝ≥0∞) = (𝓝 r).map coe :=
   (openEmbedding_coe.map_nhds_eq r).symm
-#align ennreal.nhds_coe Ennreal.nhds_coe
+#align ennreal.nhds_coe ENNReal.nhds_coe
 
 theorem tendsto_nhds_coe_iff {α : Type _} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ coe : ℝ≥0 → α) (𝓝 x) l :=
   show _ ≤ _ ↔ _ ≤ _ by rw [nhds_coe, Filter.map_map]
-#align ennreal.tendsto_nhds_coe_iff Ennreal.tendsto_nhds_coe_iff
+#align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iff
 
 theorem continuousAt_coe_iff {α : Type _} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     ContinuousAt f ↑x ↔ ContinuousAt (f ∘ coe : ℝ≥0 → α) x :=
   tendsto_nhds_coe_iff
-#align ennreal.continuous_at_coe_iff Ennreal.continuousAt_coe_iff
+#align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iff
 
 theorem nhds_coe_coe {r p : ℝ≥0} :
     𝓝 ((r : ℝ≥0∞), (p : ℝ≥0∞)) = (𝓝 (r, p)).map fun p : ℝ≥0 × ℝ≥0 => (p.1, p.2) :=
   ((openEmbedding_coe.Prod openEmbedding_coe).map_nhds_eq (r, p)).symm
-#align ennreal.nhds_coe_coe Ennreal.nhds_coe_coe
+#align ennreal.nhds_coe_coe ENNReal.nhds_coe_coe
 
-theorem continuous_ofReal : Continuous Ennreal.ofReal :=
+theorem continuous_ofReal : Continuous ENNReal.ofReal :=
   (continuous_coe_iff.2 continuous_id).comp continuous_real_toNNReal
-#align ennreal.continuous_of_real Ennreal.continuous_ofReal
+#align ennreal.continuous_of_real ENNReal.continuous_ofReal
 
 theorem tendsto_ofReal {f : Filter α} {m : α → ℝ} {a : ℝ} (h : Tendsto m f (𝓝 a)) :
-    Tendsto (fun a => Ennreal.ofReal (m a)) f (𝓝 (Ennreal.ofReal a)) :=
+    Tendsto (fun a => ENNReal.ofReal (m a)) f (𝓝 (ENNReal.ofReal a)) :=
   Tendsto.comp (Continuous.tendsto continuous_ofReal _) h
-#align ennreal.tendsto_of_real Ennreal.tendsto_ofReal
+#align ennreal.tendsto_of_real ENNReal.tendsto_ofReal
 
-theorem tendsto_toNnreal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto Ennreal.toNnreal (𝓝 a) (𝓝 a.toNNReal) :=
+theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 a.toNNReal) :=
   by
   lift a to ℝ≥0 using ha
   rw [nhds_coe, tendsto_map'_iff]
   exact tendsto_id
-#align ennreal.tendsto_to_nnreal Ennreal.tendsto_toNnreal
+#align ennreal.tendsto_to_nnreal ENNReal.tendsto_toNNReal
 
 theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥0∞}
     (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞)
     (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g :=
   by
   filter_upwards [hfi, hgi, hfg]with _ hfx hgx _
-  rwa [← Ennreal.toReal_eq_toReal hfx hgx]
-#align ennreal.eventually_eq_of_to_real_eventually_eq Ennreal.eventuallyEq_of_toReal_eventuallyEq
+  rwa [← ENNReal.toReal_eq_toReal hfx hgx]
+#align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEq
 
-theorem continuousOn_toNnreal : ContinuousOn Ennreal.toNnreal { a | a ≠ ∞ } := fun a ha =>
-  ContinuousAt.continuousWithinAt (tendsto_toNnreal ha)
-#align ennreal.continuous_on_to_nnreal Ennreal.continuousOn_toNnreal
+theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal { a | a ≠ ∞ } := fun a ha =>
+  ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
+#align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNReal
 
-theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto Ennreal.toReal (𝓝 a) (𝓝 a.toReal) :=
-  NNReal.tendsto_coe.2 <| tendsto_toNnreal ha
-#align ennreal.tendsto_to_real Ennreal.tendsto_toReal
+theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) :=
+  NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
+#align ennreal.tendsto_to_real ENNReal.tendsto_toReal
 
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def neTopHomeomorphNnreal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 :=
   {
-    neTopEquivNnreal with
-    continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toNnreal
+    neTopEquivNNReal with
+    continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toNNReal
     continuous_invFun := continuous_coe.subtype_mk _ }
-#align ennreal.ne_top_homeomorph_nnreal Ennreal.neTopHomeomorphNnreal
+#align ennreal.ne_top_homeomorph_nnreal ENNReal.neTopHomeomorphNnreal
 
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def ltTopHomeomorphNnreal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
   refine' (Homeomorph.setCongr <| Set.ext fun x => _).trans ne_top_homeomorph_nnreal <;>
     simp only [mem_set_of_eq, lt_top_iff_ne_top]
-#align ennreal.lt_top_homeomorph_nnreal Ennreal.ltTopHomeomorphNnreal
+#align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNnreal
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (a «expr ≠ » ennreal.top()) -/
 theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
-#align ennreal.nhds_top Ennreal.nhds_top
+#align ennreal.nhds_top ENNReal.nhds_top
 
 theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
   nhds_top.trans <| infᵢ_ne_top _
-#align ennreal.nhds_top' Ennreal.nhds_top'
+#align ennreal.nhds_top' ENNReal.nhds_top'
 
 theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :=
   nhds_top_basis
-#align ennreal.nhds_top_basis Ennreal.nhds_top_basis
+#align ennreal.nhds_top_basis ENNReal.nhds_top_basis
 
 theorem tendsto_nhds_top_iff_nNReal {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
   simp only [nhds_top', tendsto_infi, tendsto_principal, mem_Ioi]
-#align ennreal.tendsto_nhds_top_iff_nnreal Ennreal.tendsto_nhds_top_iff_nNReal
+#align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nNReal
 
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
   tendsto_nhds_top_iff_nNReal.trans
-    ⟨fun h n => by simpa only [Ennreal.coe_nat] using h n, fun h x =>
+    ⟨fun h n => by simpa only [ENNReal.coe_nat] using h n, fun h x =>
       let ⟨n, hn⟩ := exists_nat_gt x
-      (h n).mono fun y => lt_trans <| by rwa [← Ennreal.coe_nat, coe_lt_coe]⟩
-#align ennreal.tendsto_nhds_top_iff_nat Ennreal.tendsto_nhds_top_iff_nat
+      (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_nat, coe_lt_coe]⟩
+#align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
 
 theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) :
     Tendsto m f (𝓝 ⊤) :=
   tendsto_nhds_top_iff_nat.2 h
-#align ennreal.tendsto_nhds_top Ennreal.tendsto_nhds_top
+#align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_top
 
 theorem tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) :=
   tendsto_nhds_top fun n =>
-    mem_atTop_sets.2 ⟨n + 1, fun m hm => Ennreal.coe_nat_lt_coe_nat.2 <| Nat.lt_of_succ_le hm⟩
-#align ennreal.tendsto_nat_nhds_top Ennreal.tendsto_nat_nhds_top
+    mem_atTop_sets.2 ⟨n + 1, fun m hm => ENNReal.coe_nat_lt_coe_nat.2 <| Nat.lt_of_succ_le hm⟩
+#align ennreal.tendsto_nat_nhds_top ENNReal.tendsto_nat_nhds_top
 
 @[simp, norm_cast]
 theorem tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} :
     Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by
   rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff] <;> [simp, infer_instance,
     infer_instance]
-#align ennreal.tendsto_coe_nhds_top Ennreal.tendsto_coe_nhds_top
+#align ennreal.tendsto_coe_nhds_top ENNReal.tendsto_coe_nhds_top
 
-theorem tendsto_ofReal_atTop : Tendsto Ennreal.ofReal atTop (𝓝 ∞) :=
+theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
-#align ennreal.tendsto_of_real_at_top Ennreal.tendsto_ofReal_atTop
+#align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (a «expr ≠ » 0) -/
 theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [bot_lt_iff_ne_bot, Iio]
-#align ennreal.nhds_zero Ennreal.nhds_zero
+#align ennreal.nhds_zero ENNReal.nhds_zero
 
 theorem nhds_zero_basis : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) fun a => Iio a :=
   nhds_bot_basis
-#align ennreal.nhds_zero_basis Ennreal.nhds_zero_basis
+#align ennreal.nhds_zero_basis ENNReal.nhds_zero_basis
 
 theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0∞ => 0 < a) Iic :=
   nhds_bot_basis_Iic
-#align ennreal.nhds_zero_basis_Iic Ennreal.nhds_zero_basis_Iic
+#align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iic
 
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).ne_bot :=
-  nhdsWithin_Ioi_self_neBot' ⟨⊤, Ennreal.coe_lt_top⟩
-#align ennreal.nhds_within_Ioi_coe_ne_bot Ennreal.nhdsWithin_Ioi_coe_neBot
+  nhdsWithin_Ioi_self_neBot' ⟨⊤, ENNReal.coe_lt_top⟩
+#align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBot
 
 @[instance]
 theorem nhdsWithin_Ioi_zero_neBot : (𝓝[>] (0 : ℝ≥0∞)).ne_bot :=
   nhdsWithin_Ioi_coe_neBot
-#align ennreal.nhds_within_Ioi_zero_ne_bot Ennreal.nhdsWithin_Ioi_zero_neBot
+#align ennreal.nhds_within_Ioi_zero_ne_bot ENNReal.nhdsWithin_Ioi_zero_neBot
 
 -- using Icc because
 -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0
@@ -259,7 +259,7 @@ theorem Icc_mem_nhds (xt : x ≠ ⊤) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
   · use Ioo (x - ε) (x + ε)
     use Ioo_subset_Icc_self
     exact ⟨isOpen_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0⟩
-#align ennreal.Icc_mem_nhds Ennreal.Icc_mem_nhds
+#align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
 
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   by
@@ -295,26 +295,26 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
       y ≤ b := h₂
       _ < a := ba
       
-#align ennreal.nhds_of_ne_top Ennreal.nhds_of_ne_top
+#align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
 protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ⊤) :
     Tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε) := by
   simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc]
-#align ennreal.tendsto_nhds Ennreal.tendsto_nhds
+#align ennreal.tendsto_nhds ENNReal.tendsto_nhds
 
 protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
     Tendsto u f (𝓝 0) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ≤ ε :=
   by
-  rw [Ennreal.tendsto_nhds zero_ne_top]
+  rw [ENNReal.tendsto_nhds zero_ne_top]
   simp only [true_and_iff, zero_tsub, zero_le, zero_add, Set.mem_Icc]
-#align ennreal.tendsto_nhds_zero Ennreal.tendsto_nhds_zero
+#align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zero
 
 protected theorem tendsto_atTop [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} {a : ℝ≥0∞}
     (ha : a ≠ ⊤) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) := by
-  simp only [Ennreal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, Filter.Eventually]
-#align ennreal.tendsto_at_top Ennreal.tendsto_atTop
+  simp only [ENNReal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, Filter.Eventually]
+#align ennreal.tendsto_at_top ENNReal.tendsto_atTop
 
 instance : ContinuousAdd ℝ≥0∞ :=
   by
@@ -329,10 +329,10 @@ instance : ContinuousAdd ℝ≥0∞ :=
 protected theorem tendsto_atTop_zero [hβ : Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} :
     Filter.atTop.Tendsto f (𝓝 0) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ≤ ε :=
   by
-  rw [Ennreal.tendsto_atTop zero_ne_top]
+  rw [ENNReal.tendsto_atTop zero_ne_top]
   · simp_rw [Set.mem_Icc, zero_add, zero_tsub, zero_le _, true_and_iff]
   · exact hβ
-#align ennreal.tendsto_at_top_zero Ennreal.tendsto_atTop_zero
+#align ennreal.tendsto_at_top_zero ENNReal.tendsto_atTop_zero
 
 theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b)) :=
@@ -346,13 +346,13 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     refine'
       ⟨fun z => (n + (b + 1) : ℝ≥0∞) < z,
         Ioi_mem_nhds (by simp only [one_lt_top, add_lt_top, coe_lt_top, and_self_iff]), fun z =>
-        z < b + 1, Iio_mem_nhds (Ennreal.lt_add_right coe_ne_top one_ne_zero), fun x hx y hy => _⟩
+        z < b + 1, Iio_mem_nhds (ENNReal.lt_add_right coe_ne_top one_ne_zero), fun x hx y hy => _⟩
     dsimp
     rw [lt_tsub_iff_right]
     have : (n : ℝ≥0∞) + y + (b + 1) < x + (b + 1) :=
       calc
         (n : ℝ≥0∞) + y + (b + 1) = (n : ℝ≥0∞) + (b + 1) + y := by abel
-        _ < x + (b + 1) := Ennreal.add_lt_add hx hy
+        _ < x + (b + 1) := ENNReal.add_lt_add hx hy
         
     exact lt_of_add_lt_add_right this
   · simp only [some_eq_coe, WithTop.sub_top, none_eq_top]
@@ -360,23 +360,23 @@ theorem tendsto_sub {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ ∞) :
     exact tendsto_const_nhds.congr' H
     rw [nhds_prod_eq, eventually_prod_iff]
     refine'
-      ⟨fun z => z < a + 1, Iio_mem_nhds (Ennreal.lt_add_right coe_ne_top one_ne_zero), fun z =>
+      ⟨fun z => z < a + 1, Iio_mem_nhds (ENNReal.lt_add_right coe_ne_top one_ne_zero), fun z =>
         (a : ℝ≥0∞) + 1 < z,
         Ioi_mem_nhds (by simp only [one_lt_top, add_lt_top, coe_lt_top, and_self_iff]),
         fun x hx y hy => _⟩
     rw [eq_comm]
     simp only [tsub_eq_zero_iff_le, (LT.lt.trans hx hy).le]
-  · simp only [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, Function.comp, ← Ennreal.coe_sub,
+  · simp only [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, Function.comp, ← ENNReal.coe_sub,
       tendsto_coe]
     exact Continuous.tendsto (by continuity) _
-#align ennreal.tendsto_sub Ennreal.tendsto_sub
+#align ennreal.tendsto_sub ENNReal.tendsto_sub
 
 protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (hmb : Tendsto mb f (𝓝 b)) (h : a ≠ ∞ ∨ b ≠ ∞) :
     Tendsto (fun a => ma a - mb a) f (𝓝 (a - b)) :=
   show Tendsto ((fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) ∘ fun a => (ma a, mb a)) f (𝓝 (a - b)) from
-    Tendsto.comp (Ennreal.tendsto_sub h) (hma.prod_mk_nhds hmb)
-#align ennreal.tendsto.sub Ennreal.Tendsto.sub
+    Tendsto.comp (ENNReal.tendsto_sub h) (hma.prod_mk_nhds hmb)
+#align ennreal.tendsto.sub ENNReal.Tendsto.sub
 
 protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) :=
@@ -389,7 +389,7 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     have : ∀ᶠ c : ℝ≥0∞ × ℝ≥0∞ in 𝓝 (∞, b), ↑n / ↑ε < c.1 ∧ ↑ε < c.2 :=
       (lt_mem_nhds <| div_lt_top coe_ne_top hε.ne').prod_nhds (lt_mem_nhds hεb)
     refine' this.mono fun c hc => _
-    exact (Ennreal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2)
+    exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2)
   cases a
   · simp [none_eq_top] at hb
     simp [none_eq_top, ht b hb, top_mul, hb]
@@ -399,38 +399,38 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
       mul_comm]
   simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (· ∘ ·)]
   simp only [coe_mul.symm, tendsto_coe, tendsto_mul]
-#align ennreal.tendsto_mul Ennreal.tendsto_mul
+#align ennreal.tendsto_mul ENNReal.tendsto_mul
 
 protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun a => ma a * mb a) f (𝓝 (a * b)) :=
   show Tendsto ((fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) ∘ fun a => (ma a, mb a)) f (𝓝 (a * b)) from
-    Tendsto.comp (Ennreal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
-#align ennreal.tendsto.mul Ennreal.Tendsto.mul
+    Tendsto.comp (ENNReal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
+#align ennreal.tendsto.mul ENNReal.Tendsto.mul
 
-theorem ContinuousOn.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} {s : Set α}
+theorem ContinuousOn.eNNReal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} {s : Set α}
     (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h₁ : ∀ x ∈ s, f x ≠ 0 ∨ g x ≠ ∞)
     (h₂ : ∀ x ∈ s, g x ≠ 0 ∨ f x ≠ ∞) : ContinuousOn (fun x => f x * g x) s := fun x hx =>
-  Ennreal.Tendsto.mul (hf x hx) (h₁ x hx) (hg x hx) (h₂ x hx)
-#align continuous_on.ennreal_mul ContinuousOn.ennreal_mul
+  ENNReal.Tendsto.mul (hf x hx) (h₁ x hx) (hg x hx) (h₂ x hx)
+#align continuous_on.ennreal_mul ContinuousOn.eNNReal_mul
 
-theorem Continuous.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (hf : Continuous f)
+theorem Continuous.eNNReal_mul [TopologicalSpace α] {f g : α → ℝ≥0∞} (hf : Continuous f)
     (hg : Continuous g) (h₁ : ∀ x, f x ≠ 0 ∨ g x ≠ ∞) (h₂ : ∀ x, g x ≠ 0 ∨ f x ≠ ∞) :
     Continuous fun x => f x * g x :=
   continuous_iff_continuousAt.2 fun x =>
-    Ennreal.Tendsto.mul hf.ContinuousAt (h₁ x) hg.ContinuousAt (h₂ x)
-#align continuous.ennreal_mul Continuous.ennreal_mul
+    ENNReal.Tendsto.mul hf.ContinuousAt (h₁ x) hg.ContinuousAt (h₂ x)
+#align continuous.ennreal_mul Continuous.eNNReal_mul
 
 protected theorem Tendsto.const_mul {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun b => a * m b) f (𝓝 (a * b)) :=
   by_cases (fun this : a = 0 => by simp [this, tendsto_const_nhds]) fun ha : a ≠ 0 =>
-    Ennreal.Tendsto.mul tendsto_const_nhds (Or.inl ha) hm hb
-#align ennreal.tendsto.const_mul Ennreal.Tendsto.const_mul
+    ENNReal.Tendsto.mul tendsto_const_nhds (Or.inl ha) hm hb
+#align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mul
 
 protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : Tendsto (fun x => m x * b) f (𝓝 (a * b)) := by
-  simpa only [mul_comm] using Ennreal.Tendsto.const_mul hm ha
-#align ennreal.tendsto.mul_const Ennreal.Tendsto.mul_const
+  simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha
+#align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_const
 
 theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
     (s : Finset ι) (h : ∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) (h' : ∀ i ∈ s, a i ≠ ∞) :
@@ -446,33 +446,33 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0
       IH (fun i hi => h _ (Finset.mem_insert_of_mem hi)) fun i hi =>
         h' _ (Finset.mem_insert_of_mem hi)
   · exact Or.inr (h' _ (Finset.mem_insert_self _ _))
-#align ennreal.tendsto_finset_prod_of_ne_top Ennreal.tendsto_finset_prod_of_ne_top
+#align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_top
 
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt ((· * ·) a) b :=
   Tendsto.const_mul tendsto_id h.symm
-#align ennreal.continuous_at_const_mul Ennreal.continuousAt_const_mul
+#align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mul
 
 protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
     ContinuousAt (fun x => x * a) b :=
   Tendsto.mul_const tendsto_id h.symm
-#align ennreal.continuous_at_mul_const Ennreal.continuousAt_mul_const
+#align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_const
 
 protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
-  continuous_iff_continuousAt.2 fun x => Ennreal.continuousAt_const_mul (Or.inl ha)
-#align ennreal.continuous_const_mul Ennreal.continuous_const_mul
+  continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_const_mul (Or.inl ha)
+#align ennreal.continuous_const_mul ENNReal.continuous_const_mul
 
 protected theorem continuous_mul_const {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous fun x => x * a :=
-  continuous_iff_continuousAt.2 fun x => Ennreal.continuousAt_mul_const (Or.inl ha)
-#align ennreal.continuous_mul_const Ennreal.continuous_mul_const
+  continuous_iff_continuousAt.2 fun x => ENNReal.continuousAt_mul_const (Or.inl ha)
+#align ennreal.continuous_mul_const ENNReal.continuous_mul_const
 
 protected theorem continuous_div_const (c : ℝ≥0∞) (c_ne_zero : c ≠ 0) :
     Continuous fun x : ℝ≥0∞ => x / c :=
   by
   simp_rw [div_eq_mul_inv, continuous_iff_continuousAt]
   intro x
-  exact Ennreal.continuousAt_mul_const (Or.intro_left _ (inv_ne_top.mpr c_ne_zero))
-#align ennreal.continuous_div_const Ennreal.continuous_div_const
+  exact ENNReal.continuousAt_mul_const (Or.intro_left _ (inv_ne_top.mpr c_ne_zero))
+#align ennreal.continuous_div_const ENNReal.continuous_div_const
 
 @[continuity]
 theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
@@ -481,14 +481,14 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n :=
   · simp [continuous_const]
   simp_rw [Nat.succ_eq_add_one, pow_add, pow_one, continuous_iff_continuousAt]
   intro x
-  refine' Ennreal.Tendsto.mul (IH.tendsto _) _ tendsto_id _ <;> by_cases H : x = 0
+  refine' ENNReal.Tendsto.mul (IH.tendsto _) _ tendsto_id _ <;> by_cases H : x = 0
   · simp only [H, zero_ne_top, Ne.def, or_true_iff, not_false_iff]
   · exact Or.inl fun h => H (pow_eq_zero h)
   ·
     simp only [H, pow_eq_top_iff, zero_ne_top, false_or_iff, eq_self_iff_true, not_true, Ne.def,
       not_false_iff, false_and_iff]
   · simp only [H, true_or_iff, Ne.def, not_false_iff]
-#align ennreal.continuous_pow Ennreal.continuous_pow
+#align ennreal.continuous_pow ENNReal.continuous_pow
 
 theorem continuousOn_sub :
     ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) { p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩ } :=
@@ -497,7 +497,7 @@ theorem continuousOn_sub :
   rintro ⟨x, y⟩ hp
   simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_distrib.mp hp))
-#align ennreal.continuous_on_sub Ennreal.continuousOn_sub
+#align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous fun x => a - x :=
   by
@@ -505,11 +505,11 @@ theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous
   apply ContinuousOn.comp_continuous continuous_on_sub (Continuous.Prod.mk a)
   intro x
   simp only [a_ne_top, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
-#align ennreal.continuous_sub_left Ennreal.continuous_sub_left
+#align ennreal.continuous_sub_left ENNReal.continuous_sub_left
 
 theorem continuous_nNReal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
   continuous_sub_left coe_ne_top
-#align ennreal.continuous_nnreal_sub Ennreal.continuous_nNReal_sub
+#align ennreal.continuous_nnreal_sub ENNReal.continuous_nNReal_sub
 
 theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) { x : ℝ≥0∞ | x ≠ ∞ } :=
   by
@@ -517,7 +517,7 @@ theorem continuousOn_sub_left (a : ℝ≥0∞) : ContinuousOn (fun x => a - x) {
   apply ContinuousOn.comp continuous_on_sub (Continuous.continuousOn (Continuous.Prod.mk a))
   rintro _ h (_ | _)
   exact h none_eq_top
-#align ennreal.continuous_on_sub_left Ennreal.continuousOn_sub_left
+#align ennreal.continuous_on_sub_left ENNReal.continuousOn_sub_left
 
 theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ => x - a :=
   by
@@ -527,21 +527,21 @@ theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ =>
     apply ContinuousOn.comp_continuous continuous_on_sub (continuous_id'.prod_mk continuous_const)
     intro x
     simp only [a_infty, Ne.def, mem_set_of_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]
-#align ennreal.continuous_sub_right Ennreal.continuous_sub_right
+#align ennreal.continuous_sub_right ENNReal.continuous_sub_right
 
 protected theorem Tendsto.pow {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} {n : ℕ}
     (hm : Tendsto m f (𝓝 a)) : Tendsto (fun x => m x ^ n) f (𝓝 (a ^ n)) :=
   ((continuous_pow n).Tendsto a).comp hm
-#align ennreal.tendsto.pow Ennreal.Tendsto.pow
+#align ennreal.tendsto.pow ENNReal.Tendsto.pow
 
 theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤ y) : x ≤ y :=
   by
   have : tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) :=
-    (Ennreal.continuousAt_mul_const (Or.inr one_ne_zero)).mono_left inf_le_left
+    (ENNReal.continuousAt_mul_const (Or.inr one_ne_zero)).mono_left inf_le_left
   rw [one_mul] at this
-  haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, Ennreal.zero_lt_one⟩
+  haveI : (𝓝[<] (1 : ℝ≥0∞)).ne_bot := nhdsWithin_Iio_self_neBot' ⟨0, ENNReal.zero_lt_one⟩
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
-#align ennreal.le_of_forall_lt_one_mul_le Ennreal.le_of_forall_lt_one_mul_le
+#align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
 theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i :=
@@ -556,114 +556,114 @@ theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a =
       exact mt h0 (not_nonempty_iff.2 ‹_›)
     ·
       exact
-        (ennreal.mul_left_mono.map_infi_of_continuous_at' (Ennreal.continuousAt_const_mul H)).symm
-#align ennreal.infi_mul_left' Ennreal.infᵢ_mul_left'
+        (ennreal.mul_left_mono.map_infi_of_continuous_at' (ENNReal.continuousAt_const_mul H)).symm
+#align ennreal.infi_mul_left' ENNReal.infᵢ_mul_left'
 
 theorem infᵢ_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
   infᵢ_mul_left' h fun _ => ‹Nonempty ι›
-#align ennreal.infi_mul_left Ennreal.infᵢ_mul_left
+#align ennreal.infi_mul_left ENNReal.infᵢ_mul_left
 
 theorem infᵢ_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using infi_mul_left' h h0
-#align ennreal.infi_mul_right' Ennreal.infᵢ_mul_right'
+#align ennreal.infi_mul_right' ENNReal.infᵢ_mul_right'
 
 theorem infᵢ_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
   infᵢ_mul_right' h fun _ => ‹Nonempty ι›
-#align ennreal.infi_mul_right Ennreal.infᵢ_mul_right
+#align ennreal.infi_mul_right ENNReal.infᵢ_mul_right
 
 theorem inv_map_infᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (infᵢ x)⁻¹ = ⨆ i, (x i)⁻¹ :=
-  OrderIso.invEnnreal.map_infᵢ x
-#align ennreal.inv_map_infi Ennreal.inv_map_infᵢ
+  OrderIso.invENNReal.map_infᵢ x
+#align ennreal.inv_map_infi ENNReal.inv_map_infᵢ
 
 theorem inv_map_supᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (supᵢ x)⁻¹ = ⨅ i, (x i)⁻¹ :=
-  OrderIso.invEnnreal.map_supᵢ x
-#align ennreal.inv_map_supr Ennreal.inv_map_supᵢ
+  OrderIso.invENNReal.map_supᵢ x
+#align ennreal.inv_map_supr ENNReal.inv_map_supᵢ
 
 theorem inv_limsup {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (limsup x l)⁻¹ = liminf (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
-#align ennreal.inv_limsup Ennreal.inv_limsup
+#align ennreal.inv_limsup ENNReal.inv_limsup
 
 theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (liminf x l)⁻¹ = limsup (fun i => (x i)⁻¹) l := by
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
-#align ennreal.inv_liminf Ennreal.inv_liminf
+#align ennreal.inv_liminf ENNReal.inv_liminf
 
 instance : ContinuousInv ℝ≥0∞ :=
-  ⟨OrderIso.invEnnreal.Continuous⟩
+  ⟨OrderIso.invENNReal.Continuous⟩
 
 @[simp]
 protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} :
     Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ↔ Tendsto m f (𝓝 a) :=
   ⟨fun h => by simpa only [inv_inv] using tendsto.inv h, Tendsto.inv⟩
-#align ennreal.tendsto_inv_iff Ennreal.tendsto_inv_iff
+#align ennreal.tendsto_inv_iff ENNReal.tendsto_inv_iff
 
 protected theorem Tendsto.div {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : Tendsto mb f (𝓝 b))
     (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) := by
-  apply tendsto.mul hma _ (Ennreal.tendsto_inv_iff.2 hmb) _ <;> simp [ha, hb]
-#align ennreal.tendsto.div Ennreal.Tendsto.div
+  apply tendsto.mul hma _ (ENNReal.tendsto_inv_iff.2 hmb) _ <;> simp [ha, hb]
+#align ennreal.tendsto.div ENNReal.Tendsto.div
 
 protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) :=
   by
-  apply tendsto.const_mul (Ennreal.tendsto_inv_iff.2 hm)
+  apply tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm)
   simp [hb]
-#align ennreal.tendsto.const_div Ennreal.Tendsto.const_div
+#align ennreal.tendsto.const_div ENNReal.Tendsto.const_div
 
 protected theorem Tendsto.div_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : Tendsto (fun x => m x / b) f (𝓝 (a / b)) :=
   by
   apply tendsto.mul_const hm
   simp [ha]
-#align ennreal.tendsto.div_const Ennreal.Tendsto.div_const
+#align ennreal.tendsto.div_const ENNReal.Tendsto.div_const
 
 protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ≥0∞)⁻¹) atTop (𝓝 0) :=
-  Ennreal.inv_top ▸ Ennreal.tendsto_inv_iff.2 tendsto_nat_nhds_top
-#align ennreal.tendsto_inv_nat_nhds_zero Ennreal.tendsto_inv_nat_nhds_zero
+  ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
+#align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
 
 theorem supᵢ_add {ι : Sort _} {s : ι → ℝ≥0∞} [h : Nonempty ι] : supᵢ s + a = ⨆ b, s b + a :=
   Monotone.map_supᵢ_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
-#align ennreal.supr_add Ennreal.supᵢ_add
+#align ennreal.supr_add ENNReal.supᵢ_add
 
 theorem bsupr_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (hi : p i), f i) + a = ⨆ (i) (hi : p i), f i + a :=
   by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h
   simp only [supᵢ_subtype', supr_add]
-#align ennreal.bsupr_add' Ennreal.bsupr_add'
+#align ennreal.bsupr_add' ENNReal.bsupr_add'
 
 theorem add_bsupr' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (hi : p i), f i) = ⨆ (i) (hi : p i), a + f i := by
   simp only [add_comm a, bsupr_add' h]
-#align ennreal.add_bsupr' Ennreal.add_bsupr'
+#align ennreal.add_bsupr' ENNReal.add_bsupr'
 
 theorem bsupr_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (⨆ i ∈ s, f i) + a = ⨆ i ∈ s, f i + a :=
   bsupr_add' hs
-#align ennreal.bsupr_add Ennreal.bsupr_add
+#align ennreal.bsupr_add ENNReal.bsupr_add
 
 theorem add_bsupr {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (a + ⨆ i ∈ s, f i) = ⨆ i ∈ s, a + f i :=
   add_bsupr' hs
-#align ennreal.add_bsupr Ennreal.add_bsupr
+#align ennreal.add_bsupr ENNReal.add_bsupr
 
 theorem supₛ_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : supₛ s + a = ⨆ b ∈ s, b + a := by
   rw [supₛ_eq_supᵢ, bsupr_add hs]
-#align ennreal.Sup_add Ennreal.supₛ_add
+#align ennreal.Sup_add ENNReal.supₛ_add
 
 theorem add_supᵢ {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + supᵢ s = ⨆ b, a + s b := by
   rw [add_comm, supr_add] <;> simp [add_comm]
-#align ennreal.add_supr Ennreal.add_supᵢ
+#align ennreal.add_supr ENNReal.add_supᵢ
 
 theorem supᵢ_add_supᵢ_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
     {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : supᵢ f + supᵢ g ≤ a := by
   simpa only [add_supr, supr_add] using supᵢ₂_le h
-#align ennreal.supr_add_supr_le Ennreal.supᵢ_add_supᵢ_le
+#align ennreal.supr_add_supr_le ENNReal.supᵢ_add_supᵢ_le
 
 theorem bsupr_add_bsupr_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ (i) (hi : p i) (j) (hj : q j), f i + g j ≤ a) :
@@ -671,13 +671,13 @@ theorem bsupr_add_bsupr_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp :
   by
   simp_rw [bsupr_add' hp, add_bsupr' hq]
   exact supᵢ₂_le fun i hi => supᵢ₂_le (h i hi)
-#align ennreal.bsupr_add_bsupr_le' Ennreal.bsupr_add_bsupr_le'
+#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupr_add_bsupr_le'
 
 theorem bsupr_add_bsupr_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i ∈ s, ∀ j ∈ t, f i + g j ≤ a) :
     ((⨆ i ∈ s, f i) + ⨆ j ∈ t, g j) ≤ a :=
   bsupr_add_bsupr_le' hs ht h
-#align ennreal.bsupr_add_bsupr_le Ennreal.bsupr_add_bsupr_le
+#align ennreal.bsupr_add_bsupr_le ENNReal.bsupr_add_bsupr_le
 
 theorem supᵢ_add_supᵢ {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
     supᵢ f + supᵢ g = ⨆ a, f a + g a :=
@@ -688,12 +688,12 @@ theorem supᵢ_add_supᵢ {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j,
     refine' supr_add_supr_le fun i j => _
     rcases h i j with ⟨k, hk⟩
     exact le_supᵢ_of_le k hk
-#align ennreal.supr_add_supr Ennreal.supᵢ_add_supᵢ
+#align ennreal.supr_add_supr ENNReal.supᵢ_add_supᵢ
 
 theorem supᵢ_add_supᵢ_of_monotone {ι : Sort _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
     (hg : Monotone g) : supᵢ f + supᵢ g = ⨆ a, f a + g a :=
   supᵢ_add_supᵢ fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
-#align ennreal.supr_add_supr_of_monotone Ennreal.supᵢ_add_supᵢ_of_monotone
+#align ennreal.supr_add_supr_of_monotone ENNReal.supᵢ_add_supᵢ_of_monotone
 
 theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
     (hf : ∀ a, Monotone (f a)) : (∑ a in s, supᵢ (f a)) = ⨆ n, ∑ a in s, f a n :=
@@ -705,7 +705,7 @@ theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f :
     rw [ih, supr_add_supr_of_monotone (hf a)]
     intro i j h
     exact Finset.sum_le_sum fun a ha => hf a h
-#align ennreal.finset_sum_supr_nat Ennreal.finset_sum_supᵢ_nat
+#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_supᵢ_nat
 
 theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * supᵢ f = ⨆ i, a * f i :=
   by
@@ -714,21 +714,21 @@ theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a *
     exact funext hf
     simp only [supr_zero_eq_zero, mul_zero]
   · refine' (monotone_id.const_mul' _).map_supᵢ_of_continuousAt _ (mul_zero a)
-    refine' Ennreal.Tendsto.const_mul tendsto_id (Or.inl _)
+    refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
     exact mt supr_eq_zero.1 hf
-#align ennreal.mul_supr Ennreal.mul_supᵢ
+#align ennreal.mul_supr ENNReal.mul_supᵢ
 
 theorem mul_supₛ {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * supₛ s = ⨆ i ∈ s, a * i := by
   simp only [supₛ_eq_supᵢ, mul_supr]
-#align ennreal.mul_Sup Ennreal.mul_supₛ
+#align ennreal.mul_Sup ENNReal.mul_supₛ
 
 theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f * a = ⨆ i, f i * a := by
   rw [mul_comm, mul_supr] <;> congr <;> funext <;> rw [mul_comm]
-#align ennreal.supr_mul Ennreal.supᵢ_mul
+#align ennreal.supr_mul ENNReal.supᵢ_mul
 
 theorem supᵢ_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f / a = ⨆ i, f i / a :=
   supᵢ_mul
-#align ennreal.supr_div Ennreal.supᵢ_div
+#align ennreal.supr_div ENNReal.supᵢ_div
 
 protected theorem tendsto_coe_sub :
     ∀ {b : ℝ≥0∞}, Tendsto (fun b : ℝ≥0∞ => ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
@@ -742,7 +742,7 @@ protected theorem tendsto_coe_sub :
         (mem_of_superset (lt_mem_nhds <| @coe_lt_top r) <| by
           simp (config := { contextual := true }) [le_of_lt]))
       tendsto_const_nhds
-#align ennreal.tendsto_coe_sub Ennreal.tendsto_coe_sub
+#align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
 theorem sub_supᵢ {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
@@ -751,9 +751,9 @@ theorem sub_supᵢ {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a <
   have : infₛ ((fun b => ↑r - b) '' range b) = ↑r - ⨆ i, b i :=
     IsGLB.infₛ_eq <|
       isLUB_supᵢ.isGLB_of_tendsto (fun x _ y _ => tsub_le_tsub (le_refl (r : ℝ≥0∞)))
-        (range_nonempty _) (Ennreal.tendsto_coe_sub.comp (tendsto_id'.2 inf_le_left))
+        (range_nonempty _) (ENNReal.tendsto_coe_sub.comp (tendsto_id'.2 inf_le_left))
   rw [Eq, ← this] <;> simp [infₛ_image, infᵢ_range, -mem_range] <;> exact le_rfl
-#align ennreal.sub_supr Ennreal.sub_supᵢ
+#align ennreal.sub_supr ENNReal.sub_supᵢ
 
 theorem exists_countable_dense_no_zero_top :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
@@ -762,7 +762,7 @@ theorem exists_countable_dense_no_zero_top :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ (∀ x, IsBot x → x ∉ s) ∧ ∀ x, IsTop x → x ∉ s :=
     exists_countable_dense_no_bot_top ℝ≥0∞
   exact ⟨s, s_count, s_dense, fun h => hs.1 0 (by simp) h, fun h => hs.2 ∞ (by simp) h⟩
-#align ennreal.exists_countable_dense_no_zero_top Ennreal.exists_countable_dense_no_zero_top
+#align ennreal.exists_countable_dense_no_zero_top ENNReal.exists_countable_dense_no_zero_top
 
 theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠ 0) (hz : z ≠ 0) :
     ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' :=
@@ -778,7 +778,7 @@ theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠
         (Filter.prod_mem_prod self_mem_nhdsWithin self_mem_nhdsWithin)).exists with
     ⟨⟨y', z'⟩, hx, hy', hz'⟩
   exact ⟨y', z', hy', hz', hx⟩
-#align ennreal.exists_lt_add_of_lt_add Ennreal.exists_lt_add_of_lt_add
+#align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_add
 
 end TopologicalSpace
 
@@ -792,15 +792,15 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
   simp_rw [not_exists, not_frequently, not_lt] at h
   refine'
     hx
-      (Ennreal.eq_top_of_forall_nNReal_le fun r =>
+      (ENNReal.eq_top_of_forall_nnreal_le fun r =>
         le_Liminf_of_le
           (by
             run_tac
               is_bounded_default)
           _)
-  simp only [eventually_map, Ennreal.coe_le_coe]
+  simp only [eventually_map, ENNReal.coe_le_coe]
   filter_upwards [h r]with i hi using hi.trans ((coe_nnnorm (x i)).symm ▸ le_abs_self (x i))
-#align ennreal.exists_frequently_lt_of_liminf_ne_top Ennreal.exists_frequently_lt_of_liminf_ne_top
+#align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
@@ -810,15 +810,15 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
   simp_rw [not_exists, not_frequently, not_lt] at h
   refine'
     hx
-      (Ennreal.eq_top_of_forall_nNReal_le fun r =>
+      (ENNReal.eq_top_of_forall_nnreal_le fun r =>
         le_Liminf_of_le
           (by
             run_tac
               is_bounded_default)
           _)
-  simp only [eventually_map, Ennreal.coe_le_coe]
+  simp only [eventually_map, ENNReal.coe_le_coe]
   filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
-#align ennreal.exists_frequently_lt_of_liminf_ne_top' Ennreal.exists_frequently_lt_of_liminf_ne_top'
+#align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
 theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => (‖x i‖₊ : ℝ≥0∞)) l ≠ ∞)
@@ -845,7 +845,7 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x
       filter_upwards [hcon]with x hx using not_lt.1 hx
     · refine' fun hcon => hR _
       filter_upwards [hcon]with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le)
-#align ennreal.exists_upcrossings_of_not_bounded_under Ennreal.exists_upcrossings_of_not_bounded_under
+#align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_under
 
 end Liminf
 
@@ -860,156 +860,156 @@ protected theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
   have :
     (fun s : Finset α => ∑ a in s, ↑(f a)) =
       (coe : ℝ≥0 → ℝ≥0∞) ∘ fun s : Finset α => ∑ a in s, f a :=
-    funext fun s => Ennreal.coe_finset_sum.symm
+    funext fun s => ENNReal.coe_finset_sum.symm
   unfold HasSum <;> rw [this, tendsto_coe]
-#align ennreal.has_sum_coe Ennreal.hasSum_coe
+#align ennreal.has_sum_coe ENNReal.hasSum_coe
 
 protected theorem tsum_coe_eq {f : α → ℝ≥0} (h : HasSum f r) : (∑' a, (f a : ℝ≥0∞)) = r :=
-  (Ennreal.hasSum_coe.2 h).tsum_eq
-#align ennreal.tsum_coe_eq Ennreal.tsum_coe_eq
+  (ENNReal.hasSum_coe.2 h).tsum_eq
+#align ennreal.tsum_coe_eq ENNReal.tsum_coe_eq
 
 protected theorem coe_tsum {f : α → ℝ≥0} : Summable f → ↑(tsum f) = ∑' a, (f a : ℝ≥0∞)
-  | ⟨r, hr⟩ => by rw [hr.tsum_eq, Ennreal.tsum_coe_eq hr]
-#align ennreal.coe_tsum Ennreal.coe_tsum
+  | ⟨r, hr⟩ => by rw [hr.tsum_eq, ENNReal.tsum_coe_eq hr]
+#align ennreal.coe_tsum ENNReal.coe_tsum
 
 protected theorem hasSum : HasSum f (⨆ s : Finset α, ∑ a in s, f a) :=
   tendsto_atTop_supᵢ fun s t => Finset.sum_le_sum_of_subset
-#align ennreal.has_sum Ennreal.hasSum
+#align ennreal.has_sum ENNReal.hasSum
 
 @[simp]
 protected theorem summable : Summable f :=
-  ⟨_, Ennreal.hasSum⟩
-#align ennreal.summable Ennreal.summable
+  ⟨_, ENNReal.hasSum⟩
+#align ennreal.summable ENNReal.summable
 
 theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ≥0∞)) ≠ ∞ ↔ Summable f :=
   by
-  refine' ⟨fun h => _, fun h => Ennreal.coe_tsum h ▸ Ennreal.coe_ne_top⟩
+  refine' ⟨fun h => _, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩
   lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h with a ha
-  refine' ⟨a, Ennreal.hasSum_coe.1 _⟩
+  refine' ⟨a, ENNReal.hasSum_coe.1 _⟩
   rw [ha]
   exact ennreal.summable.has_sum
-#align ennreal.tsum_coe_ne_top_iff_summable Ennreal.tsum_coe_ne_top_iff_summable
+#align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
 protected theorem tsum_eq_supᵢ_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
-  Ennreal.hasSum.tsum_eq
-#align ennreal.tsum_eq_supr_sum Ennreal.tsum_eq_supᵢ_sum
+  ENNReal.hasSum.tsum_eq
+#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_supᵢ_sum
 
 protected theorem tsum_eq_supᵢ_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     (∑' a, f a) = ⨆ i, ∑ a in s i, f a :=
   by
-  rw [Ennreal.tsum_eq_supᵢ_sum]
+  rw [ENNReal.tsum_eq_supᵢ_sum]
   symm
   change (⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i)) = ⨆ s : Finset α, ∑ a in s, f a
   exact (Finset.sum_mono_set f).supᵢ_comp_eq hs
-#align ennreal.tsum_eq_supr_sum' Ennreal.tsum_eq_supᵢ_sum'
+#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_supᵢ_sum'
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
     (∑' p : Σa, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
-  tsum_sigma' (fun b => Ennreal.summable) Ennreal.summable
-#align ennreal.tsum_sigma Ennreal.tsum_sigma
+  tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
+#align ennreal.tsum_sigma ENNReal.tsum_sigma
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_sigma' {β : α → Type _} (f : (Σa, β a) → ℝ≥0∞) :
     (∑' p : Σa, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
-  tsum_sigma' (fun b => Ennreal.summable) Ennreal.summable
-#align ennreal.tsum_sigma' Ennreal.tsum_sigma'
+  tsum_sigma' (fun b => ENNReal.summable) ENNReal.summable
+#align ennreal.tsum_sigma' ENNReal.tsum_sigma'
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_prod {f : α → β → ℝ≥0∞} : (∑' p : α × β, f p.1 p.2) = ∑' (a) (b), f a b :=
-  tsum_prod' Ennreal.summable fun _ => Ennreal.summable
-#align ennreal.tsum_prod Ennreal.tsum_prod
+  tsum_prod' ENNReal.summable fun _ => ENNReal.summable
+#align ennreal.tsum_prod ENNReal.tsum_prod
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
 protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : (∑' p : α × β, f p) = ∑' (a) (b), f (a, b) :=
-  tsum_prod' Ennreal.summable fun _ => Ennreal.summable
-#align ennreal.tsum_prod' Ennreal.tsum_prod'
+  tsum_prod' ENNReal.summable fun _ => ENNReal.summable
+#align ennreal.tsum_prod' ENNReal.tsum_prod'
 
 protected theorem tsum_comm {f : α → β → ℝ≥0∞} : (∑' a, ∑' b, f a b) = ∑' b, ∑' a, f a b :=
-  tsum_comm' Ennreal.summable (fun _ => Ennreal.summable) fun _ => Ennreal.summable
-#align ennreal.tsum_comm Ennreal.tsum_comm
+  tsum_comm' ENNReal.summable (fun _ => ENNReal.summable) fun _ => ENNReal.summable
+#align ennreal.tsum_comm ENNReal.tsum_comm
 
 protected theorem tsum_add : (∑' a, f a + g a) = (∑' a, f a) + ∑' a, g a :=
-  tsum_add Ennreal.summable Ennreal.summable
-#align ennreal.tsum_add Ennreal.tsum_add
+  tsum_add ENNReal.summable ENNReal.summable
+#align ennreal.tsum_add ENNReal.tsum_add
 
 protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : (∑' a, f a) ≤ ∑' a, g a :=
-  tsum_le_tsum h Ennreal.summable Ennreal.summable
-#align ennreal.tsum_le_tsum Ennreal.tsum_le_tsum
+  tsum_le_tsum h ENNReal.summable ENNReal.summable
+#align ennreal.tsum_le_tsum ENNReal.tsum_le_tsum
 
 protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x in s, f x) ≤ ∑' x, f x :=
-  sum_le_tsum s (fun x hx => zero_le _) Ennreal.summable
-#align ennreal.sum_le_tsum Ennreal.sum_le_tsum
+  sum_le_tsum s (fun x hx => zero_le _) ENNReal.summable
+#align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
 protected theorem tsum_eq_supᵢ_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
-  Ennreal.tsum_eq_supᵢ_sum' _ fun t =>
+  ENNReal.tsum_eq_supᵢ_sum' _ fun t =>
     let ⟨n, hn⟩ := t.exists_nat_subset_range
     let ⟨k, _, hk⟩ := exists_le_of_tendsto_atTop hN 0 n
     ⟨k, Finset.Subset.trans hn (Finset.range_mono hk)⟩
-#align ennreal.tsum_eq_supr_nat' Ennreal.tsum_eq_supᵢ_nat'
+#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_supᵢ_nat'
 
 protected theorem tsum_eq_supᵢ_nat {f : ℕ → ℝ≥0∞} :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
-  Ennreal.tsum_eq_supᵢ_sum' _ Finset.exists_nat_subset_range
-#align ennreal.tsum_eq_supr_nat Ennreal.tsum_eq_supᵢ_nat
+  ENNReal.tsum_eq_supᵢ_sum' _ Finset.exists_nat_subset_range
+#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_supᵢ_nat
 
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   by
-  rw [Ennreal.tsum_eq_supᵢ_nat, Filter.liminf_eq_supᵢ_infᵢ_of_nat]
+  rw [ENNReal.tsum_eq_supᵢ_nat, Filter.liminf_eq_supᵢ_infᵢ_of_nat]
   congr
   refine' funext fun n => le_antisymm _ _
   · refine' le_infᵢ₂ fun i hi => Finset.sum_le_sum_of_subset_of_nonneg _ fun _ _ _ => zero_le _
     simpa only [Finset.range_subset, add_le_add_iff_right] using hi
   · refine' le_trans (infᵢ_le _ n) _
     simp [le_refl n, le_refl ((Finset.range n).Sum f)]
-#align ennreal.tsum_eq_liminf_sum_nat Ennreal.tsum_eq_liminf_sum_nat
+#align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_nat
 
 protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
-  le_tsum' Ennreal.summable a
-#align ennreal.le_tsum Ennreal.le_tsum
+  le_tsum' ENNReal.summable a
+#align ennreal.le_tsum ENNReal.le_tsum
 
 @[simp]
 protected theorem tsum_eq_zero : (∑' i, f i) = 0 ↔ ∀ i, f i = 0 :=
-  ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ Ennreal.le_tsum i, fun h => by simp [h]⟩
-#align ennreal.tsum_eq_zero Ennreal.tsum_eq_zero
+  ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ ENNReal.le_tsum i, fun h => by simp [h]⟩
+#align ennreal.tsum_eq_zero ENNReal.tsum_eq_zero
 
 protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞
-  | ⟨a, ha⟩ => top_unique <| ha ▸ Ennreal.le_tsum a
-#align ennreal.tsum_eq_top_of_eq_top Ennreal.tsum_eq_top_of_eq_top
+  | ⟨a, ha⟩ => top_unique <| ha ▸ ENNReal.le_tsum a
+#align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_top
 
 protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞) (j : α) :
     a j < ∞ := by
-  have key := not_imp_not.mpr Ennreal.tsum_eq_top_of_eq_top
+  have key := not_imp_not.mpr ENNReal.tsum_eq_top_of_eq_top
   simp only [not_exists] at key
   exact lt_top_iff_ne_top.mpr (key tsum_ne_top j)
-#align ennreal.lt_top_of_tsum_ne_top Ennreal.lt_top_of_tsum_ne_top
+#align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
 @[simp]
 protected theorem tsum_top [Nonempty α] : (∑' a : α, ∞) = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
-  Ennreal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
-#align ennreal.tsum_top Ennreal.tsum_top
+  ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
+#align ennreal.tsum_top ENNReal.tsum_top
 
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
     (∑' a : α, c) = ∞ :=
   by
   have A : tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) at_top (𝓝 (∞ * c)) :=
     by
-    apply Ennreal.Tendsto.mul_const tendsto_nat_nhds_top
+    apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top
     simp only [true_or_iff, top_ne_zero, Ne.def, not_false_iff]
   have B : ∀ n : ℕ, (n : ℝ≥0∞) * c ≤ ∑' a : α, c :=
     by
     intro n
     rcases Infinite.exists_subset_card_eq α n with ⟨s, hs⟩
-    simpa [hs] using @Ennreal.sum_le_tsum α (fun i => c) s
+    simpa [hs] using @ENNReal.sum_le_tsum α (fun i => c) s
   simpa [hc] using le_of_tendsto' A B
-#align ennreal.tsum_const_eq_top_of_ne_zero Ennreal.tsum_const_eq_top_of_ne_zero
+#align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zero
 
 protected theorem ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
-  h <| Ennreal.tsum_eq_top_of_eq_top ⟨a, ha⟩
-#align ennreal.ne_top_of_tsum_ne_top Ennreal.ne_top_of_tsum_ne_top
+  h <| ENNReal.tsum_eq_top_of_eq_top ⟨a, ha⟩
+#align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_top
 
 protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
   if h : ∀ i, f i = 0 then by simp [h]
@@ -1019,25 +1019,25 @@ protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i :=
       ne_of_gt <|
         calc
           0 < f i := lt_of_le_of_ne (zero_le _) hi.symm
-          _ ≤ ∑' i, f i := Ennreal.le_tsum _
+          _ ≤ ∑' i, f i := ENNReal.le_tsum _
           
     have : Tendsto (fun s : Finset α => ∑ j in s, a * f j) atTop (𝓝 (a * ∑' i, f i)) := by
       rw [←
           show ((· * ·) a ∘ fun s : Finset α => ∑ j in s, f j) = fun s => ∑ j in s, a * f j from
             funext fun s => Finset.mul_sum] <;>
-        exact Ennreal.Tendsto.const_mul ennreal.summable.has_sum (Or.inl sum_ne_0)
+        exact ENNReal.Tendsto.const_mul ennreal.summable.has_sum (Or.inl sum_ne_0)
     HasSum.tsum_eq this
-#align ennreal.tsum_mul_left Ennreal.tsum_mul_left
+#align ennreal.tsum_mul_left ENNReal.tsum_mul_left
 
 protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
-  simp [mul_comm, Ennreal.tsum_mul_left]
-#align ennreal.tsum_mul_right Ennreal.tsum_mul_right
+  simp [mul_comm, ENNReal.tsum_mul_left]
+#align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
 @[simp]
 theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ h : a = b, f b) = f a :=
   le_antisymm
     (by
-      rw [Ennreal.tsum_eq_supᵢ_sum] <;>
+      rw [ENNReal.tsum_eq_supᵢ_sum] <;>
         exact
           supᵢ_le fun s =>
             calc
@@ -1049,88 +1049,88 @@ theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b
               )
     (calc
       f a ≤ ⨆ h : a = a, f a := le_supᵢ (fun h : a = a => f a) rfl
-      _ ≤ ∑' b : α, ⨆ h : a = b, f b := Ennreal.le_tsum _
+      _ ≤ ∑' b : α, ⨆ h : a = b, f b := ENNReal.le_tsum _
       )
-#align ennreal.tsum_supr_eq Ennreal.tsum_supᵢ_eq
+#align ennreal.tsum_supr_eq ENNReal.tsum_supᵢ_eq
 
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) :=
   by
   refine' ⟨HasSum.tendsto_sum_nat, fun h => _⟩
-  rw [← supᵢ_eq_of_tendsto _ h, ← Ennreal.tsum_eq_supᵢ_nat]
+  rw [← supᵢ_eq_of_tendsto _ h, ← ENNReal.tsum_eq_supᵢ_nat]
   · exact ennreal.summable.has_sum
   · exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst)
-#align ennreal.has_sum_iff_tendsto_nat Ennreal.hasSum_iff_tendsto_nat
+#align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_nat
 
 theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
     Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' n, f n)) :=
   by
   rw [← has_sum_iff_tendsto_nat]
   exact ennreal.summable.has_sum
-#align ennreal.tendsto_nat_tsum Ennreal.tendsto_nat_tsum
+#align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
-theorem toNnreal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) (x : α) :
-    (((Ennreal.toNnreal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
-  coe_toNnreal <| Ennreal.ne_top_of_tsum_ne_top hf _
-#align ennreal.to_nnreal_apply_of_tsum_ne_top Ennreal.toNnreal_apply_of_tsum_ne_top
+theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) (x : α) :
+    (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
+  coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
+#align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
 
-theorem summable_toNnreal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) :
-    Summable (Ennreal.toNnreal ∘ f) := by
+theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) :
+    Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf
-#align ennreal.summable_to_nnreal_of_tsum_ne_top Ennreal.summable_toNnreal_of_tsum_ne_top
+#align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
 
 theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto f cofinite (𝓝 0) :=
   by
-  have f_ne_top : ∀ n, f n ≠ ∞ := Ennreal.ne_top_of_tsum_ne_top hf
-  have h_f_coe : f = fun n => ((f n).toNNReal : Ennreal) :=
+  have f_ne_top : ∀ n, f n ≠ ∞ := ENNReal.ne_top_of_tsum_ne_top hf
+  have h_f_coe : f = fun n => ((f n).toNNReal : ENNReal) :=
     funext fun n => (coe_to_nnreal (f_ne_top n)).symm
   rw [h_f_coe, ← @coe_zero, tendsto_coe]
   exact NNReal.tendsto_cofinite_zero_of_summable (summable_to_nnreal_of_tsum_ne_top hf)
-#align ennreal.tendsto_cofinite_zero_of_tsum_ne_top Ennreal.tendsto_cofinite_zero_of_tsum_ne_top
+#align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_top
 
 theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto f atTop (𝓝 0) := by
   rw [← Nat.cofinite_eq_atTop]
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
-#align ennreal.tendsto_at_top_zero_of_tsum_ne_top Ennreal.tendsto_atTop_zero_of_tsum_ne_top
+#align ennreal.tendsto_at_top_zero_of_tsum_ne_top ENNReal.tendsto_atTop_zero_of_tsum_ne_top
 
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
 theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
     Tendsto (fun s : Finset α => ∑' b : { x // x ∉ s }, f b) atTop (𝓝 0) :=
   by
-  lift f to α → ℝ≥0 using Ennreal.ne_top_of_tsum_ne_top hf
-  convert Ennreal.tendsto_coe.2 (NNReal.tendsto_tsum_compl_atTop_zero f)
+  lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
+  convert ENNReal.tendsto_coe.2 (NNReal.tendsto_tsum_compl_atTop_zero f)
   ext1 s
-  rw [Ennreal.coe_tsum]
+  rw [ENNReal.coe_tsum]
   exact NNReal.summable_comp_injective (tsum_coe_ne_top_iff_summable.1 hf) Subtype.coe_injective
-#align ennreal.tendsto_tsum_compl_at_top_zero Ennreal.tendsto_tsum_compl_atTop_zero
+#align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zero
 
 protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x : α} :
     (∑' i, f i) x = ∑' i, f i x :=
-  tsum_apply <| Pi.summable.mpr fun _ => Ennreal.summable
-#align ennreal.tsum_apply Ennreal.tsum_apply
+  tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
+#align ennreal.tsum_apply ENNReal.tsum_apply
 
 theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑' i, g i) ≠ ∞) (h₂ : g ≤ f) :
     (∑' i, f i - g i) = (∑' i, f i) - ∑' i, g i :=
   by
   have h₃ : (∑' i, f i - g i) = (∑' i, f i - g i + g i) - ∑' i, g i := by
-    rw [Ennreal.tsum_add, Ennreal.add_sub_cancel_right h₁]
+    rw [ENNReal.tsum_add, ENNReal.add_sub_cancel_right h₁]
   have h₄ : (fun i => f i - g i + g i) = f := by
     ext n
     rw [tsub_add_cancel_of_le (h₂ n)]
   rw [h₄] at h₃
   apply h₃
-#align ennreal.tsum_sub Ennreal.tsum_sub
+#align ennreal.tsum_sub ENNReal.tsum_sub
 
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
     (∑' x : s, f x) ≤ ∑' x : t, f x :=
   by
   simp only [tsum_subtype]
-  apply Ennreal.tsum_le_tsum
+  apply ENNReal.tsum_le_tsum
   exact indicator_le_indicator_of_subset h fun _ => zero_le _
-#align ennreal.tsum_mono_subtype Ennreal.tsum_mono_subtype
+#align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     (∑' x : s ∪ t, f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
@@ -1140,10 +1140,10 @@ theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
       apply tsum_congr_subtype
       rw [union_diff_self]
     _ = (∑' x : s, f x) + ∑' x : t \ s, f x :=
-      tsum_union_disjoint disjoint_sdiff_self_right Ennreal.summable Ennreal.summable
+      tsum_union_disjoint disjoint_sdiff_self_right ENNReal.summable ENNReal.summable
     _ ≤ (∑' x : s, f x) + ∑' x : t, f x := add_le_add le_rfl (tsum_mono_subtype _ (diff_subset _ _))
     
-#align ennreal.tsum_union_le Ennreal.tsum_union_le
+#align ennreal.tsum_union_le ENNReal.tsum_union_le
 
 theorem tsum_bUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x := by
@@ -1158,7 +1158,7 @@ theorem tsum_bUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t
       _ ≤ (∑' x : t i, f x) + ∑ i in s, ∑' x : t i, f x := add_le_add le_rfl ihs
       _ = ∑ j in insert i s, ∑' x : t j, f x := (Finset.sum_insert hi).symm
       
-#align ennreal.tsum_bUnion_le Ennreal.tsum_bUnion_le
+#align ennreal.tsum_bUnion_le ENNReal.tsum_bUnion_le
 
 theorem tsum_unionᵢ_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
@@ -1166,12 +1166,12 @@ theorem tsum_unionᵢ_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t :
     have : (⋃ i, t i) = ⋃ i ∈ (Finset.univ : Finset ι), t i := by simp
     rw [tsum_congr_subtype f this]
     exact tsum_bUnion_le _ _ _
-#align ennreal.tsum_Union_le Ennreal.tsum_unionᵢ_le
+#align ennreal.tsum_Union_le ENNReal.tsum_unionᵢ_le
 
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
     (∑' x, f x) = f b + ∑' x, ite (x = b) 0 (f x) :=
-  tsum_eq_add_tsum_ite' b Ennreal.summable
-#align ennreal.tsum_eq_add_tsum_ite Ennreal.tsum_eq_add_tsum_ite
+  tsum_eq_add_tsum_ite' b ENNReal.summable
+#align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_ite
 
 theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞) (hf0 : f 0 ≠ ∞) :
     (∑' n, f (n + 1)) = ∞ :=
@@ -1182,14 +1182,14 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞)
   have h₁ :
     ((∑' b : { n // n ∈ Finset.range 1 }, f b) + ∑' b : { n // n ∉ Finset.range 1 }, f b) =
       ∑' b, f b :=
-    tsum_add_tsum_compl Ennreal.summable Ennreal.summable
-  rw [Finset.tsum_subtype, Finset.sum_range_one, hf, Ennreal.add_eq_top] at h₁
+    tsum_add_tsum_compl ENNReal.summable ENNReal.summable
+  rw [Finset.tsum_subtype, Finset.sum_range_one, hf, ENNReal.add_eq_top] at h₁
   rw [← h₁.resolve_left hf0]
   apply tsum_congr
   rintro ⟨i, hi⟩
   simp only [Multiset.mem_range, not_lt] at hi
   simp only [tsub_add_cancel_of_le hi, coe_notMemRangeEquiv, Function.comp_apply, Subtype.coe_mk]
-#align ennreal.tsum_add_one_eq_top Ennreal.tsum_add_one_eq_top
+#align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
@@ -1200,7 +1200,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
   · rw [ε_infty]
     by_contra maybe_infinite
     obtain ⟨j, hj⟩ := Set.Infinite.nonempty maybe_infinite
-    exact tsum_ne_top (le_antisymm le_top (le_trans hj (le_tsum' (@Ennreal.summable _ a) j)))
+    exact tsum_ne_top (le_antisymm le_top (le_trans hj (le_tsum' (@ENNReal.summable _ a) j)))
   have key :=
     (nnreal.summable_coe.mpr (summable_to_nnreal_of_tsum_ne_top tsum_ne_top)).tendsto_cofinite_zero
       (Iio_mem_nhds (to_real_pos ε_ne_zero ε_infty))
@@ -1209,9 +1209,9 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
     by
     ext i
     simpa only [mem_Iio, mem_compl_iff, mem_set_of_eq, not_lt] using
-      to_real_le_to_real ε_infty (Ennreal.ne_top_of_tsum_ne_top tsum_ne_top _)
+      to_real_le_to_real ε_infty (ENNReal.ne_top_of_tsum_ne_top tsum_ne_top _)
   rwa [obs] at key
-#align ennreal.finite_const_le_of_tsum_ne_top Ennreal.finite_const_le_of_tsum_ne_top
+#align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
 
 /-- Markov's inequality for `finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
@@ -1223,90 +1223,90 @@ theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞}
       by
       rw [eq_empty_iff_forall_not_mem]
       intro i hi
-      have oops := (le_trans hi (le_tsum' (@Ennreal.summable _ a) i)).trans tsum_le_c
+      have oops := (le_trans hi (le_tsum' (@ENNReal.summable _ a) i)).trans tsum_le_c
       rw [h] at oops
       exact c_ne_top (le_antisymm le_top oops)
     simp only [obs, finite_empty, finite.to_finset_empty, Finset.card_empty, algebraMap.coe_zero,
       zero_le', exists_true_left]
   have hf : { i : ι | ε ≤ a i }.Finite :=
-    Ennreal.finite_const_le_of_tsum_ne_top (lt_of_le_of_lt tsum_le_c c_ne_top.lt_top).Ne ε_ne_zero
+    ENNReal.finite_const_le_of_tsum_ne_top (lt_of_le_of_lt tsum_le_c c_ne_top.lt_top).Ne ε_ne_zero
   use hf
   have at_least : ∀ i ∈ hf.to_finset, ε ≤ a i :=
     by
     intro i hi
     simpa only [finite.mem_to_finset, mem_set_of_eq] using hi
   have partial_sum :=
-    @sum_le_tsum _ _ _ _ _ a hf.to_finset (fun _ _ => zero_le') (@Ennreal.summable _ a)
+    @sum_le_tsum _ _ _ _ _ a hf.to_finset (fun _ _ => zero_le') (@ENNReal.summable _ a)
   have lower_bound := Finset.sum_le_sum at_least
   simp only [Finset.sum_const, nsmul_eq_mul] at lower_bound
-  have key := (Ennreal.le_div_iff_mul_le (Or.inl ε_ne_zero) (Or.inl h)).mpr lower_bound
-  exact le_trans key (Ennreal.div_le_div_right (partial_sum.trans tsum_le_c) _)
-#align ennreal.finset_card_const_le_le_of_tsum_le Ennreal.finset_card_const_le_le_of_tsum_le
+  have key := (ENNReal.le_div_iff_mul_le (Or.inl ε_ne_zero) (Or.inl h)).mpr lower_bound
+  exact le_trans key (ENNReal.div_le_div_right (partial_sum.trans tsum_le_c) _)
+#align ennreal.finset_card_const_le_le_of_tsum_le ENNReal.finset_card_const_le_le_of_tsum_le
 
 end tsum
 
 theorem tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : ∀ i, f i ≠ ∞) {x : ℝ≥0∞}
     (hx : x ≠ ∞) : fi.Tendsto (fun n => (f n).toReal) (𝓝 x.toReal) ↔ fi.Tendsto f (𝓝 x) :=
   by
-  refine' ⟨fun h => _, fun h => tendsto.comp (Ennreal.tendsto_toReal hx) h⟩
-  have h_eq : f = fun n => Ennreal.ofReal (f n).toReal :=
+  refine' ⟨fun h => _, fun h => tendsto.comp (ENNReal.tendsto_toReal hx) h⟩
+  have h_eq : f = fun n => ENNReal.ofReal (f n).toReal :=
     by
     ext1 n
-    rw [Ennreal.ofReal_toReal (hf n)]
-  rw [h_eq, ← Ennreal.ofReal_toReal hx]
-  exact Ennreal.tendsto_ofReal h
-#align ennreal.tendsto_to_real_iff Ennreal.tendsto_toReal_iff
+    rw [ENNReal.ofReal_toReal (hf n)]
+  rw [h_eq, ← ENNReal.ofReal_toReal hx]
+  exact ENNReal.tendsto_ofReal h
+#align ennreal.tendsto_to_real_iff ENNReal.tendsto_toReal_iff
 
 theorem tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} :
     (∑' a, (f a : ℝ≥0∞)) ≠ ∞ ↔ Summable fun a => (f a : ℝ) :=
   by
   rw [NNReal.summable_coe]
   exact tsum_coe_ne_top_iff_summable
-#align ennreal.tsum_coe_ne_top_iff_summable_coe Ennreal.tsum_coe_ne_top_iff_summable_coe
+#align ennreal.tsum_coe_ne_top_iff_summable_coe ENNReal.tsum_coe_ne_top_iff_summable_coe
 
 theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
     (∑' a, (f a : ℝ≥0∞)) = ∞ ↔ ¬Summable fun a => (f a : ℝ) :=
   by
   rw [← @Classical.not_not ((∑' a, ↑(f a)) = ⊤)]
   exact not_congr tsum_coe_ne_top_iff_summable_coe
-#align ennreal.tsum_coe_eq_top_iff_not_summable_coe Ennreal.tsum_coe_eq_top_iff_not_summable_coe
+#align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coe
 
 theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
     HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) :=
   by
-  lift f to α → ℝ≥0 using Ennreal.ne_top_of_tsum_ne_top hsum
+  lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hsum
   simp only [coe_to_real, ← NNReal.coe_tsum, NNReal.hasSum_coe]
   exact (tsum_coe_ne_top_iff_summable.1 hsum).HasSum
-#align ennreal.has_sum_to_real Ennreal.hasSum_toReal
+#align ennreal.has_sum_to_real ENNReal.hasSum_toReal
 
 theorem summable_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) : Summable fun x => (f x).toReal :=
   (hasSum_toReal hsum).Summable
-#align ennreal.summable_to_real Ennreal.summable_toReal
+#align ennreal.summable_to_real ENNReal.summable_toReal
 
-end Ennreal
+end ENNReal
 
 namespace NNReal
 
 open NNReal
 
-theorem tsum_eq_toNnreal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
+theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal :=
   by
   by_cases h : Summable f
-  · rw [← Ennreal.coe_tsum h, Ennreal.toNnreal_coe]
+  · rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe]
   · have A := tsum_eq_zero_of_not_summable h
-    simp only [← Ennreal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h
-    simp only [h, Ennreal.top_toNnreal, A]
-#align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNnreal_tsum
+    simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h
+    simp only [h, ENNReal.top_toNNReal, A]
+#align nnreal.tsum_eq_to_nnreal_tsum NNReal.tsum_eq_toNNReal_tsum
 
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
 theorem exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b, g b ≤ f b) (hfr : HasSum f r) :
     ∃ p ≤ r, HasSum g p :=
   have : (∑' b, (g b : ℝ≥0∞)) ≤ r :=
     by
-    refine' hasSum_le (fun b => _) ennreal.summable.has_sum (Ennreal.hasSum_coe.2 hfr)
-    exact Ennreal.coe_le_coe.2 (hgf _)
-  let ⟨p, Eq, hpr⟩ := Ennreal.le_coe_iff.1 this
-  ⟨p, hpr, Ennreal.hasSum_coe.1 <| Eq ▸ Ennreal.summable.HasSum⟩
+    refine' hasSum_le (fun b => _) ennreal.summable.has_sum (ENNReal.hasSum_coe.2 hfr)
+    exact ENNReal.coe_le_coe.2 (hgf _)
+  let ⟨p, Eq, hpr⟩ := ENNReal.le_coe_iff.1 this
+  ⟨p, hpr, ENNReal.hasSum_coe.1 <| Eq ▸ ENNReal.summable.HasSum⟩
 #align nnreal.exists_le_has_sum_of_le NNReal.exists_le_hasSum_of_le
 
 /-- Comparison test of convergence of `ℝ≥0`-valued series. -/
@@ -1321,9 +1321,9 @@ the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) :=
   by
-  rw [← Ennreal.hasSum_coe, Ennreal.hasSum_iff_tendsto_nat]
+  rw [← ENNReal.hasSum_coe, ENNReal.hasSum_iff_tendsto_nat]
   simp only [ennreal.coe_finset_sum.symm]
-  exact Ennreal.tendsto_coe
+  exact ENNReal.tendsto_coe
 #align nnreal.has_sum_iff_tendsto_nat NNReal.hasSum_iff_tendsto_nat
 
 theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
@@ -1368,7 +1368,7 @@ theorem summable_sigma {β : ∀ x : α, Type _} {f : (Σx, β x) → ℝ≥0} :
   · simp only [← NNReal.summable_coe, NNReal.coe_tsum]
     exact fun h => ⟨h.sigma_factor, h.Sigma⟩
   · rintro ⟨h₁, h₂⟩
-    simpa only [← Ennreal.tsum_coe_ne_top_iff_summable, Ennreal.tsum_sigma', Ennreal.coe_tsum,
+    simpa only [← ENNReal.tsum_coe_ne_top_iff_summable, ENNReal.tsum_sigma', ENNReal.coe_tsum,
       h₁] using h₂
 #align nnreal.summable_sigma NNReal.summable_sigma
 
@@ -1441,54 +1441,54 @@ theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
 
 end NNReal
 
-namespace Ennreal
+namespace ENNReal
 
-theorem tsum_toNnreal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
+theorem tsum_toNNReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toNNReal = ∑' a, (f a).toNNReal :=
-  (congr_arg Ennreal.toNnreal (tsum_congr fun x => (coe_toNnreal (hf x)).symm)).trans
-    NNReal.tsum_eq_toNnreal_tsum.symm
-#align ennreal.tsum_to_nnreal_eq Ennreal.tsum_toNnreal_eq
+  (congr_arg ENNReal.toNNReal (tsum_congr fun x => (coe_toNNReal (hf x)).symm)).trans
+    NNReal.tsum_eq_toNNReal_tsum.symm
+#align ennreal.tsum_to_nnreal_eq ENNReal.tsum_toNNReal_eq
 
 theorem tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
     (∑' a, f a).toReal = ∑' a, (f a).toReal := by
-  simp only [Ennreal.toReal, tsum_to_nnreal_eq hf, NNReal.coe_tsum]
-#align ennreal.tsum_to_real_eq Ennreal.tsum_toReal_eq
+  simp only [ENNReal.toReal, tsum_to_nnreal_eq hf, NNReal.coe_tsum]
+#align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eq
 
 theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞) :
     Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) :=
   by
-  lift f to ℕ → ℝ≥0 using Ennreal.ne_top_of_tsum_ne_top hf
+  lift f to ℕ → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
   replace hf : Summable f := tsum_coe_ne_top_iff_summable.1 hf
-  simp only [← Ennreal.coe_tsum, NNReal.summable_nat_add _ hf, ← Ennreal.coe_zero]
+  simp only [← ENNReal.coe_tsum, NNReal.summable_nat_add _ hf, ← ENNReal.coe_zero]
   exact_mod_cast NNReal.tendsto_sum_nat_add f
-#align ennreal.tendsto_sum_nat_add Ennreal.tendsto_sum_nat_add
+#align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
 
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
     (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
-  tsum_le_of_sum_range_le Ennreal.summable h
-#align ennreal.tsum_le_of_sum_range_le Ennreal.tsum_le_of_sum_range_le
+  tsum_le_of_sum_range_le ENNReal.summable h
+#align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
 
 theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
     (hsf : sf ≠ ⊤) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg :=
   by
   by_cases hsg : sg = ⊤
   · exact hsg.symm ▸ lt_of_le_of_ne le_top hsf
-  · have hg' : ∀ x, g x ≠ ⊤ := Ennreal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg)
+  · have hg' : ∀ x, g x ≠ ⊤ := ENNReal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg)
     lift f to α → ℝ≥0 using fun x =>
       ne_of_lt (lt_of_le_of_lt (h x) <| lt_of_le_of_ne le_top (hg' x))
     lift g to α → ℝ≥0 using hg'
     lift sf to ℝ≥0 using hsf
     lift sg to ℝ≥0 using hsg
     simp only [coe_le_coe, coe_lt_coe] at h hi⊢
-    exact NNReal.hasSum_lt h hi (Ennreal.hasSum_coe.1 hf) (Ennreal.hasSum_coe.1 hg)
-#align ennreal.has_sum_lt Ennreal.hasSum_lt
+    exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
+#align ennreal.has_sum_lt ENNReal.hasSum_lt
 
 theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
     (hi : f i < g i) : (∑' x, f x) < ∑' x, g x :=
-  hasSum_lt h hi hfi Ennreal.summable.HasSum Ennreal.summable.HasSum
-#align ennreal.tsum_lt_tsum Ennreal.tsum_lt_tsum
+  hasSum_lt h hi hfi ENNReal.summable.HasSum ENNReal.summable.HasSum
+#align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsum
 
-end Ennreal
+end ENNReal
 
 theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a)
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f :=
@@ -1525,10 +1525,10 @@ theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f
   exact exists_congr fun hr => NNReal.hasSum_iff_tendsto_nat
 #align has_sum_iff_tendsto_nat_of_nonneg hasSum_iff_tendsto_nat_of_nonneg
 
-theorem Ennreal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) :
-    Ennreal.ofReal (∑' n, f n) = ∑' n, Ennreal.ofReal (f n) := by
-  simp_rw [Ennreal.ofReal, Ennreal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
-#align ennreal.of_real_tsum_of_nonneg Ennreal.ofReal_tsum_of_nonneg
+theorem ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) :
+    ENNReal.ofReal (∑' n, f n) = ∑' n, ENNReal.ofReal (f n) := by
+  simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
+#align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonneg
 
 theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop :=
@@ -1580,7 +1580,7 @@ section
 
 variable [EmetricSpace β]
 
-open Ennreal Filter Emetric
+open ENNReal Filter Emetric
 
 /-- In an emetric ball, the distance between points is everywhere finite -/
 theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ :=
@@ -1616,7 +1616,7 @@ open Emetric
 theorem tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} :
     Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) := by
   simp only [emetric.nhds_basis_eball.tendsto_right_iff, Emetric.mem_ball,
-    @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false Ennreal.not_lt_zero, forall_const, true_and_iff]
+    @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and_iff]
 #align tendsto_iff_edist_tendsto_0 tendsto_iff_edist_tendsto_0
 
 /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the
@@ -1641,7 +1641,7 @@ theorem Emetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
     --Prove that it tends to `0`, by using the Cauchy property of `s`
     have D : tendsto b at_top (𝓝 0) :=
       by
-      refine' tendsto_order.2 ⟨fun a ha => absurd ha Ennreal.not_lt_zero, fun ε εpos => _⟩
+      refine' tendsto_order.2 ⟨fun a ha => absurd ha ENNReal.not_lt_zero, fun ε εpos => _⟩
       rcases exists_between εpos with ⟨δ, δpos, δlt⟩
       rcases hs δ δpos with ⟨N, hN⟩
       refine' Filter.mem_atTop_sets.2 ⟨N, fun n hn => _⟩
@@ -1680,14 +1680,14 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
     by_cases hx : f x = ∞
     · have : f =ᶠ[𝓝 x] fun _ => ∞ :=
         by
-        filter_upwards [Emetric.ball_mem_nhds x Ennreal.coe_lt_top]
+        filter_upwards [Emetric.ball_mem_nhds x ENNReal.coe_lt_top]
         refine' fun y (hy : edist y x < ⊤) => _
         rw [edist_comm] at hy
-        simpa [hx, Ennreal.mul_ne_top hC hy.ne] using h x y
+        simpa [hx, ENNReal.mul_ne_top hC hy.ne] using h x y
       exact this.continuous_at
-    · refine' (Ennreal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
-      filter_upwards [Emetric.closedBall_mem_nhds x (Ennreal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
-      have hεC : C * (ε / C) = ε := Ennreal.mul_div_cancel' C0 hC
+    · refine' (ENNReal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
+      filter_upwards [Emetric.closedBall_mem_nhds x (ENNReal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
+      have hεC : C * (ε / C) = ε := ENNReal.mul_div_cancel' C0 hC
       refine' fun y (hy : edist y x ≤ ε / C) => ⟨tsub_le_iff_right.2 _, _⟩
       · rw [edist_comm] at hy
         calc
@@ -1730,8 +1730,8 @@ theorem Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf :
 theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ≥0∞)
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f :=
   by
-  lift d to ℕ → NNReal using fun i => Ennreal.ne_top_of_tsum_ne_top hd i
-  rw [Ennreal.tsum_coe_ne_top_iff_summable] at hd
+  lift d to ℕ → NNReal using fun i => ENNReal.ne_top_of_tsum_ne_top hd i
+  rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd
   exact cauchySeq_of_edist_le_of_summable d hf hd
 #align cauchy_seq_of_edist_le_of_tsum_ne_top cauchySeq_of_edist_le_of_tsum_ne_top
 
@@ -1770,13 +1770,13 @@ namespace Real
 
 /-- For a bounded set `s : set ℝ`, its `emetric.diam` is equal to `Sup s - Inf s` reinterpreted as
 `ℝ≥0∞`. -/
-theorem ediam_eq {s : Set ℝ} (h : Bounded s) : Emetric.diam s = Ennreal.ofReal (supₛ s - infₛ s) :=
+theorem ediam_eq {s : Set ℝ} (h : Bounded s) : Emetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne); · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
   · have := Real.subset_Icc_infₛ_supₛ_of_bounded h
     exact Real.dist_le_of_mem_Icc (this hx) (this hy)
-  · apply Ennreal.ofReal_le_of_le_toReal
+  · apply ENNReal.ofReal_le_of_le_toReal
     rw [← Metric.diam, ← Metric.diam_closure]
     have h' := Real.bounded_iff_bddBelow_bddAbove.1 h
     calc
@@ -1789,13 +1789,13 @@ theorem ediam_eq {s : Set ℝ} (h : Bounded s) : Emetric.diam s = Ennreal.ofReal
 /-- For a bounded set `s : set ℝ`, its `metric.diam` is equal to `Sup s - Inf s`. -/
 theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = supₛ s - infₛ s :=
   by
-  rw [Metric.diam, Real.ediam_eq h, Ennreal.toReal_ofReal]
+  rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
   rw [Real.bounded_iff_bddBelow_bddAbove] at h
   exact sub_nonneg.2 (Real.infₛ_le_supₛ s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
 @[simp]
-theorem ediam_Ioo (a b : ℝ) : Emetric.diam (Ioo a b) = Ennreal.ofReal (b - a) :=
+theorem ediam_Ioo (a b : ℝ) : Emetric.diam (Ioo a b) = ENNReal.ofReal (b - a) :=
   by
   rcases le_or_lt b a with (h | h)
   · simp [h]
@@ -1803,7 +1803,7 @@ theorem ediam_Ioo (a b : ℝ) : Emetric.diam (Ioo a b) = Ennreal.ofReal (b - a)
 #align real.ediam_Ioo Real.ediam_Ioo
 
 @[simp]
-theorem ediam_Icc (a b : ℝ) : Emetric.diam (Icc a b) = Ennreal.ofReal (b - a) :=
+theorem ediam_Icc (a b : ℝ) : Emetric.diam (Icc a b) = ENNReal.ofReal (b - a) :=
   by
   rcases le_or_lt a b with (h | h)
   · rw [Real.ediam_eq (bounded_Icc _ _), csupₛ_Icc h, cinfₛ_Icc h]
@@ -1811,31 +1811,31 @@ theorem ediam_Icc (a b : ℝ) : Emetric.diam (Icc a b) = Ennreal.ofReal (b - a)
 #align real.ediam_Icc Real.ediam_Icc
 
 @[simp]
-theorem ediam_Ico (a b : ℝ) : Emetric.diam (Ico a b) = Ennreal.ofReal (b - a) :=
+theorem ediam_Ico (a b : ℝ) : Emetric.diam (Ico a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ico_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ico_self)
 #align real.ediam_Ico Real.ediam_Ico
 
 @[simp]
-theorem ediam_Ioc (a b : ℝ) : Emetric.diam (Ioc a b) = Ennreal.ofReal (b - a) :=
+theorem ediam_Ioc (a b : ℝ) : Emetric.diam (Ioc a b) = ENNReal.ofReal (b - a) :=
   le_antisymm (ediam_Icc a b ▸ diam_mono Ioc_subset_Icc_self)
     (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ioc_self)
 #align real.ediam_Ioc Real.ediam_Ioc
 
 theorem diam_Icc {a b : ℝ} (h : a ≤ b) : Metric.diam (Icc a b) = b - a := by
-  simp [Metric.diam, Ennreal.toReal_ofReal, sub_nonneg.2 h]
+  simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Icc Real.diam_Icc
 
 theorem diam_Ico {a b : ℝ} (h : a ≤ b) : Metric.diam (Ico a b) = b - a := by
-  simp [Metric.diam, Ennreal.toReal_ofReal, sub_nonneg.2 h]
+  simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ico Real.diam_Ico
 
 theorem diam_Ioc {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioc a b) = b - a := by
-  simp [Metric.diam, Ennreal.toReal_ofReal, sub_nonneg.2 h]
+  simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioc Real.diam_Ioc
 
 theorem diam_Ioo {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioo a b) = b - a := by
-  simp [Metric.diam, Ennreal.toReal_ofReal, sub_nonneg.2 h]
+  simp [Metric.diam, ENNReal.toReal_ofReal, sub_nonneg.2 h]
 #align real.diam_Ioo Real.diam_Ioo
 
 end Real
@@ -1849,7 +1849,7 @@ theorem edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ
   refine' le_of_tendsto (tendsto_const_nhds.edist ha) (mem_at_top_sets.2 ⟨n, fun m hnm => _⟩)
   refine' le_trans (edist_le_Ico_sum_of_edist_le hnm fun k _ _ => hf k) _
   rw [Finset.sum_Ico_eq_sum_range]
-  exact sum_le_tsum _ (fun _ _ => zero_le _) Ennreal.summable
+  exact sum_le_tsum _ (fun _ _ => zero_le _) ENNReal.summable
 #align edist_le_tsum_of_edist_le_of_tendsto edist_le_tsum_of_edist_le_of_tendsto
 
 /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`,
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit 32253a1a1071173b33dc7d6a218cf722c6feb514
+! leanprover-community/mathlib commit afdb4fa3b32d41106a4a09b371ce549ad7958abd
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1683,7 +1683,7 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
         filter_upwards [Emetric.ball_mem_nhds x Ennreal.coe_lt_top]
         refine' fun y (hy : edist y x < ⊤) => _
         rw [edist_comm] at hy
-        simpa [hx, hC, hy.ne] using h x y
+        simpa [hx, Ennreal.mul_ne_top hC hy.ne] using h x y
       exact this.continuous_at
     · refine' (Ennreal.tendsto_nhds hx).2 fun ε (ε0 : 0 < ε) => _
       filter_upwards [Emetric.closedBall_mem_nhds x (Ennreal.div_pos_iff.2 ⟨ε0.ne', hC⟩)]
Diff
@@ -592,7 +592,7 @@ theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
   simp only [limsup_eq_infi_supr, inv_map_infi, inv_map_supr, liminf_eq_supr_infi]
 #align ennreal.inv_liminf Ennreal.inv_liminf
 
-instance : HasContinuousInv ℝ≥0∞ :=
+instance : ContinuousInv ℝ≥0∞ :=
   ⟨OrderIso.invEnnreal.Continuous⟩
 
 @[simp]

Changes in mathlib4

mathlib3
mathlib4
chore: move summable lemmas (#12503)

We move some lemmas out of Topology/Instances/ENNReal into Topology/Algebra/InfiniteSum/Real. Also use this to address a porting TODO.

This was originally part of #12446

Co-authored-by: Chris Birkbeck <c.birkbeck@uea.ac.uk>

Diff
@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
 import Mathlib.Topology.Order.MonotoneContinuity
-import Mathlib.Topology.Algebra.InfiniteSum.Real
 import Mathlib.Topology.Algebra.Order.LiminfLimsup
 import Mathlib.Topology.Instances.NNReal
 import Mathlib.Topology.EMetricSpace.Lipschitz
@@ -1352,53 +1351,6 @@ theorem ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤
   simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
 #align ennreal.of_real_tsum_of_nonneg ENNReal.ofReal_tsum_of_nonneg
 
-theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
-    ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
-  lift f to ℕ → ℝ≥0 using hf
-  exact mod_cast NNReal.not_summable_iff_tendsto_nat_atTop
-#align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonneg
-
-theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
-    Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
-  rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf]
-#align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonneg
-
-theorem summable_sigma_of_nonneg {β : α → Type*} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
-    Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
-  lift f to (Σx, β x) → ℝ≥0 using hf
-  exact mod_cast NNReal.summable_sigma
-#align summable_sigma_of_nonneg summable_sigma_of_nonneg
-
-theorem summable_prod_of_nonneg {f : (α × β) → ℝ} (hf : 0 ≤ f) :
-    Summable f ↔ (∀ x, Summable fun y ↦ f (x, y)) ∧ Summable fun x ↦ ∑' y, f (x, y) :=
-  (Equiv.sigmaEquivProd _ _).summable_iff.symm.trans <| summable_sigma_of_nonneg fun _ ↦ hf _
-
-theorem summable_of_sum_le {ι : Type*} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
-    (h : ∀ u : Finset ι, ∑ x in u, f x ≤ c) : Summable f :=
-  ⟨⨆ u : Finset ι, ∑ x in u, f x,
-    tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun _ ⟨u, hu⟩ => hu ▸ h u⟩⟩
-#align summable_of_sum_le summable_of_sum_le
-
-theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
-    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : Summable f := by
-  refine (summable_iff_not_tendsto_nat_atTop_of_nonneg hf).2 fun H => ?_
-  rcases exists_lt_of_tendsto_atTop H 0 c with ⟨n, -, hn⟩
-  exact lt_irrefl _ (hn.trans_le (h n))
-#align summable_of_sum_range_le summable_of_sum_range_le
-
-theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
-    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
-  _root_.tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
-#align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_le
-
-/-- If a sequence `f` with non-negative terms is dominated by a sequence `g` with summable
-series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
-then the series of `f` is strictly smaller than the series of `g`. -/
-theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ, 0 ≤ f b)
-    (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
-  tsum_lt_tsum h hi (.of_nonneg_of_le h0 h hg) hg
-#align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonneg
-
 section
 
 variable [EMetricSpace β]
@@ -1497,6 +1449,27 @@ theorem Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf :
   (continuous_edist.tendsto (a, b)).comp (hf.prod_mk_nhds hg)
 #align filter.tendsto.edist Filter.Tendsto.edist
 
+/-- If the extended distance between consecutive points of a sequence is estimated
+by a summable series of `NNReal`s, then the original sequence is a Cauchy sequence. -/
+theorem cauchySeq_of_edist_le_of_summable [PseudoEMetricSpace α] {f : ℕ → α} (d : ℕ → ℝ≥0)
+    (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : Summable d) : CauchySeq f := by
+  refine EMetric.cauchySeq_iff_NNReal.2 fun ε εpos ↦ ?_
+  -- Actually we need partial sums of `d` to be a Cauchy sequence.
+  replace hd : CauchySeq fun n : ℕ ↦ ∑ x in Finset.range n, d x :=
+    let ⟨_, H⟩ := hd
+    H.tendsto_sum_nat.cauchySeq
+  -- Now we take the same `N` as in one of the definitions of a Cauchy sequence.
+  refine (Metric.cauchySeq_iff'.1 hd ε (NNReal.coe_pos.2 εpos)).imp fun N hN n hn ↦ ?_
+  specialize hN n hn
+  -- We simplify the known inequality.
+  rw [dist_nndist, NNReal.nndist_eq, ← Finset.sum_range_add_sum_Ico _ hn, add_tsub_cancel_left,
+    NNReal.coe_lt_coe, max_lt_iff] at hN
+  rw [edist_comm]
+  -- Then use `hf` to simplify the goal to the same form.
+  refine lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn fun _ _ ↦ hf _) ?_
+  exact mod_cast hN.1
+#align cauchy_seq_of_edist_le_of_summable cauchySeq_of_edist_le_of_summable
+
 theorem cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ≥0∞)
     (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f := by
   lift d to ℕ → NNReal using fun i => ENNReal.ne_top_of_tsum_ne_top hd i
chore: adapt to multiple goal linter 3 (#12372)

A PR analogous to #12338 and #12361: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -648,8 +648,8 @@ theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : 
 theorem mul_iSup {ι : Sort*} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i := by
   by_cases hf : ∀ i, f i = 0
   · obtain rfl : f = fun _ => 0
-    exact funext hf
-    simp only [iSup_zero_eq_zero, mul_zero]
+    · exact funext hf
+    · simp only [iSup_zero_eq_zero, mul_zero]
   · refine' (monotone_id.const_mul' _).map_iSup_of_continuousAt _ (mul_zero a)
     refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
     exact mt iSup_eq_zero.1 hf
@@ -1203,8 +1203,8 @@ theorem indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) :
     Summable (s.indicator f) := by
   refine' NNReal.summable_of_le (fun a => le_trans (le_of_eq (s.indicator_apply f a)) _) hf
   split_ifs
-  exact le_refl (f a)
-  exact zero_le_coe
+  · exact le_refl (f a)
+  · exact zero_le_coe
 #align nnreal.indicator_summable NNReal.indicator_summable
 
 theorem tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set α} (h : ∃ a ∈ s, f a ≠ 0) :
chore: Rename coe_nat/coe_int/coe_rat to natCast/intCast/ratCast (#11499)

This is less exhaustive than its sibling #11486 because edge cases are harder to classify. No fundamental difficulty, just me being a bit fast and lazy.

Reduce the diff of #11203

Diff
@@ -175,9 +175,9 @@ theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ∞) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
   tendsto_nhds_top_iff_nnreal.trans
-    ⟨fun h n => by simpa only [ENNReal.coe_nat] using h n, fun h x =>
+    ⟨fun h n => by simpa only [ENNReal.coe_natCast] using h n, fun h x =>
       let ⟨n, hn⟩ := exists_nat_gt x
-      (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_nat, coe_lt_coe]⟩
+      (h n).mono fun y => lt_trans <| by rwa [← ENNReal.coe_natCast, coe_lt_coe]⟩
 #align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
 
 theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) :
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -1057,7 +1057,7 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (h
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
-above any positive threshold.-/
+above any positive threshold. -/
 theorem finite_const_le_of_tsum_ne_top {ι : Type*} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞)
     {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : { i : ι | ε ≤ a i }.Finite := by
   by_contra h
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -437,25 +437,25 @@ theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n := by
   simp_rw [Nat.succ_eq_add_one, pow_add, pow_one, continuous_iff_continuousAt]
   intro x
   refine' ENNReal.Tendsto.mul (IH.tendsto _) _ tendsto_id _ <;> by_cases H : x = 0
-  · simp only [H, zero_ne_top, Ne.def, or_true_iff, not_false_iff]
+  · simp only [H, zero_ne_top, Ne, or_true_iff, not_false_iff]
   · exact Or.inl fun h => H (pow_eq_zero h)
-  · simp only [H, pow_eq_top_iff, zero_ne_top, false_or_iff, eq_self_iff_true, not_true, Ne.def,
+  · simp only [H, pow_eq_top_iff, zero_ne_top, false_or_iff, eq_self_iff_true, not_true, Ne,
       not_false_iff, false_and_iff]
-  · simp only [H, true_or_iff, Ne.def, not_false_iff]
+  · simp only [H, true_or_iff, Ne, not_false_iff]
 #align ennreal.continuous_pow ENNReal.continuous_pow
 
 theorem continuousOn_sub :
     ContinuousOn (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) { p : ℝ≥0∞ × ℝ≥0∞ | p ≠ ⟨∞, ∞⟩ } := by
   rw [ContinuousOn]
   rintro ⟨x, y⟩ hp
-  simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp
+  simp only [Ne, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp
   exact tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_or.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ∞) : Continuous (a - ·) := by
   change Continuous (Function.uncurry Sub.sub ∘ (a, ·))
   refine continuousOn_sub.comp_continuous (Continuous.Prod.mk a) fun x => ?_
-  simp only [a_ne_top, Ne.def, mem_setOf_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
+  simp only [a_ne_top, Ne, mem_setOf_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
 #align ennreal.continuous_sub_left ENNReal.continuous_sub_left
 
 theorem continuous_nnreal_sub {a : ℝ≥0} : Continuous fun x : ℝ≥0∞ => (a : ℝ≥0∞) - x :=
@@ -475,7 +475,7 @@ theorem continuous_sub_right (a : ℝ≥0∞) : Continuous fun x : ℝ≥0∞ =>
   · rw [show (fun x => x - a) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨x, a⟩ by rfl]
     apply ContinuousOn.comp_continuous continuousOn_sub (continuous_id'.prod_mk continuous_const)
     intro x
-    simp only [a_infty, Ne.def, mem_setOf_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]
+    simp only [a_infty, Ne, mem_setOf_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]
 #align ennreal.continuous_sub_right ENNReal.continuous_sub_right
 
 protected theorem Tendsto.pow {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} {n : ℕ}
@@ -907,7 +907,7 @@ theorem tsum_const_eq_top_of_ne_zero {α : Type*} [Infinite α] {c : ℝ≥0∞}
     ∑' _ : α, c = ∞ := by
   have A : Tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) atTop (𝓝 (∞ * c)) := by
     apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top
-    simp only [true_or_iff, top_ne_zero, Ne.def, not_false_iff]
+    simp only [true_or_iff, top_ne_zero, Ne, not_false_iff]
   have B : ∀ n : ℕ, (n : ℝ≥0∞) * c ≤ ∑' _ : α, c := fun n => by
     rcases Infinite.exists_subset_card_eq α n with ⟨s, hs⟩
     simpa [hs] using @ENNReal.sum_le_tsum α (fun _ => c) s
move(Topology/Order): Move anything that doesn't concern algebra (#11610)

Move files from Topology.Algebra.Order to Topology.Order when they do not contain any algebra. Also move Topology.LocalExtr to Topology.Order.LocalExtr.

According to git, the moves are:

  • Mathlib/Topology/{Algebra => }/Order/ExtendFrom.lean
  • Mathlib/Topology/{Algebra => }/Order/ExtrClosure.lean
  • Mathlib/Topology/{Algebra => }/Order/Filter.lean
  • Mathlib/Topology/{Algebra => }/Order/IntermediateValue.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRight.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRightLim.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneContinuity.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneConvergence.lean
  • Mathlib/Topology/{Algebra => }/Order/ProjIcc.lean
  • Mathlib/Topology/{Algebra => }/Order/T5.lean
  • Mathlib/Topology/{ => Order}/LocalExtr.lean
Diff
@@ -3,13 +3,13 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathlib.Topology.Instances.NNReal
-import Mathlib.Topology.Algebra.Order.MonotoneContinuity
+import Mathlib.Topology.Order.MonotoneContinuity
 import Mathlib.Topology.Algebra.InfiniteSum.Real
 import Mathlib.Topology.Algebra.Order.LiminfLimsup
-import Mathlib.Topology.Algebra.Order.T5
+import Mathlib.Topology.Instances.NNReal
 import Mathlib.Topology.EMetricSpace.Lipschitz
 import Mathlib.Topology.Metrizable.Basic
+import Mathlib.Topology.Order.T5
 
 #align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
 
chore: rename open_range to isOpen_range, closed_range to isClosed_range (#11438)

All these lemmas refer to the range of some function being open/range (i.e. isOpen or isClosed).

Diff
@@ -68,7 +68,7 @@ theorem openEmbedding_coe : OpenEmbedding ((↑) : ℝ≥0 → ℝ≥0∞) :=
 #align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
 
 theorem coe_range_mem_nhds : range ((↑) : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) :=
-  IsOpen.mem_nhds openEmbedding_coe.open_range <| mem_range_self _
+  IsOpen.mem_nhds openEmbedding_coe.isOpen_range <| mem_range_self _
 #align ennreal.coe_range_mem_nhds ENNReal.coe_range_mem_nhds
 
 @[norm_cast]
chore: classify new lemma porting notes (#11217)

Classifies by adding issue number #10756 to porting notes claiming anything semantically equivalent to:

  • "new lemma"
  • "added lemma"
Diff
@@ -273,7 +273,7 @@ theorem biInf_le_nhds : ∀ x : ℝ≥0∞, ⨅ ε > 0, 𝓟 (Icc (x - ε) (x +
     simpa only [← coe_one, top_sub_coe, top_add, Icc_self, principal_singleton] using pure_le_nhds _
   | (x : ℝ≥0) => (nhds_of_ne_top coe_ne_top).ge
 
--- Porting note: new lemma
+-- Porting note (#10756): new lemma
 protected theorem tendsto_nhds_of_Icc {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞}
     (h : ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε)) : Tendsto u f (𝓝 a) := by
   refine Tendsto.mono_right ?_ (biInf_le_nhds _)
chore: classify todo porting notes (#11216)

Classifies by adding issue number #11215 to porting notes claiming "TODO".

Diff
@@ -212,7 +212,7 @@ theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0
   nhds_bot_basis_Iic
 #align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iic
 
--- Porting note: todo: add a TC for `≠ ∞`?
+-- Porting note (#11215): TODO: add a TC for `≠ ∞`?
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).NeBot :=
   nhdsWithin_Ioi_self_neBot' ⟨∞, ENNReal.coe_lt_top⟩
@@ -539,7 +539,7 @@ theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
 
 instance : ContinuousInv ℝ≥0∞ := ⟨OrderIso.invENNReal.continuous⟩
 
-@[simp] -- Porting note: todo: generalize to `[InvolutiveInv _] [ContinuousInv _]`
+@[simp] -- Porting note (#11215): TODO: generalize to `[InvolutiveInv _] [ContinuousInv _]`
 protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} :
     Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ↔ Tendsto m f (𝓝 a) :=
   ⟨fun h => by simpa only [inv_inv] using Tendsto.inv h, Tendsto.inv⟩
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -212,7 +212,7 @@ theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0
   nhds_bot_basis_Iic
 #align ennreal.nhds_zero_basis_Iic ENNReal.nhds_zero_basis_Iic
 
--- porting note: todo: add a TC for `≠ ∞`?
+-- Porting note: todo: add a TC for `≠ ∞`?
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).NeBot :=
   nhdsWithin_Ioi_self_neBot' ⟨∞, ENNReal.coe_lt_top⟩
@@ -273,7 +273,7 @@ theorem biInf_le_nhds : ∀ x : ℝ≥0∞, ⨅ ε > 0, 𝓟 (Icc (x - ε) (x +
     simpa only [← coe_one, top_sub_coe, top_add, Icc_self, principal_singleton] using pure_le_nhds _
   | (x : ℝ≥0) => (nhds_of_ne_top coe_ne_top).ge
 
--- porting note: new lemma
+-- Porting note: new lemma
 protected theorem tendsto_nhds_of_Icc {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞}
     (h : ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε)) : Tendsto u f (𝓝 a) := by
   refine Tendsto.mono_right ?_ (biInf_le_nhds _)
@@ -539,7 +539,7 @@ theorem inv_liminf {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
 
 instance : ContinuousInv ℝ≥0∞ := ⟨OrderIso.invENNReal.continuous⟩
 
-@[simp] -- porting note: todo: generalize to `[InvolutiveInv _] [ContinuousInv _]`
+@[simp] -- Porting note: todo: generalize to `[InvolutiveInv _] [ContinuousInv _]`
 protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} :
     Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ↔ Tendsto m f (𝓝 a) :=
   ⟨fun h => by simpa only [inv_inv] using Tendsto.inv h, Tendsto.inv⟩
feat: add versions of the monotone convergence theorem for the Bochner integral (#10793)
Diff
@@ -139,6 +139,9 @@ theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ∞) : Tendsto ENNReal.toRea
 lemma continuousOn_toReal : ContinuousOn ENNReal.toReal { a | a ≠ ∞ } :=
   NNReal.continuous_coe.comp_continuousOn continuousOn_toNNReal
 
+lemma continuousAt_toReal (hx : x ≠ ∞) : ContinuousAt ENNReal.toReal x :=
+  continuousOn_toReal.continuousAt (isOpen_ne_top.mem_nhds_iff.mpr hx)
+
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 where
   toEquiv := neTopEquivNNReal
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -446,7 +446,7 @@ theorem continuousOn_sub :
   rw [ContinuousOn]
   rintro ⟨x, y⟩ hp
   simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp
-  refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_or.mp hp))
+  exact tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_or.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
 theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ∞) : Continuous (a - ·) := by
chore: redistribute tags for fun_prop regarding continuity across the library (#10494)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -1483,7 +1483,7 @@ theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 := by
     _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm]
 #align continuous_edist continuous_edist
 
-@[continuity]
+@[continuity, fun_prop]
 theorem Continuous.edist [TopologicalSpace β] {f g : β → α} (hf : Continuous f)
     (hg : Continuous g) : Continuous fun b => edist (f b) (g b) :=
   continuous_edist.comp (hf.prod_mk hg : _)
refactor(Probability/Kernel/CondCdf): mv ofReal_cinfi (#10044)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -708,6 +708,20 @@ theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠
   exact ⟨y', z', hy', hz', hx⟩
 #align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_add
 
+theorem ofReal_cinfi (f : α → ℝ) [Nonempty α] :
+    ENNReal.ofReal (⨅ i, f i) = ⨅ i, ENNReal.ofReal (f i) := by
+  by_cases hf : BddBelow (range f)
+  · exact
+      Monotone.map_ciInf_of_continuousAt ENNReal.continuous_ofReal.continuousAt
+        (fun i j hij => ENNReal.ofReal_le_ofReal hij) hf
+  · symm
+    rw [Real.iInf_of_not_bddBelow hf, ENNReal.ofReal_zero, ← ENNReal.bot_eq_zero, iInf_eq_bot]
+    obtain ⟨y, hy_mem, hy_neg⟩ := not_bddBelow_iff.mp hf 0
+    obtain ⟨i, rfl⟩ := mem_range.mpr hy_mem
+    refine' fun x hx => ⟨i, _⟩
+    rwa [ENNReal.ofReal_of_nonpos hy_neg.le]
+#align ennreal.of_real_cinfi ENNReal.ofReal_cinfi
+
 end TopologicalSpace
 
 section Liminf
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -8,7 +8,7 @@ import Mathlib.Topology.Algebra.Order.MonotoneContinuity
 import Mathlib.Topology.Algebra.InfiniteSum.Real
 import Mathlib.Topology.Algebra.Order.LiminfLimsup
 import Mathlib.Topology.Algebra.Order.T5
-import Mathlib.Topology.MetricSpace.Lipschitz
+import Mathlib.Topology.EMetricSpace.Lipschitz
 import Mathlib.Topology.Metrizable.Basic
 
 #align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
refactor: Multiplicativise abs (#9553)

The current design for abs is flawed:

  • The Abs notation typeclass has exactly two instances: one for [Neg α] [Sup α], one for [Inv α] [Sup α]. This means that:
    • We can't write a meaningful hover for Abs.abs
    • Fields have two Abs instances!
  • We have the multiplicative definition but:
    • All the lemmas in Algebra.Order.Group.Abs are about the additive version.
    • The only lemmas about the multiplicative version are in Algebra.Order.Group.PosPart, and they get additivised to duplicates of the lemmas in Algebra.Order.Group.Abs!

This PR changes the notation typeclass with two new definitions (related through to_additive): mabs and abs. abs inherits the |a| notation and mabs gets |a|ₘ instead.

The first half of Algebra.Order.Group.Abs gets multiplicativised. A later PR will multiplicativise the second half, and another one will deduplicate the lemmas in Algebra.Order.Group.PosPart.

Part of #9411.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -727,7 +727,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type*} {l : Filter ι} {x :
   simp_rw [not_exists, not_frequently, not_lt] at h
   refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_limsInf_of_le (by isBoundedDefault) ?_)
   simp only [eventually_map, ENNReal.coe_le_coe]
-  filter_upwards [h (-r)] with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
+  filter_upwards [h (-r)] with i hi using(le_neg.1 hi).trans (neg_le_abs _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
 theorem exists_upcrossings_of_not_bounded_under {ι : Type*} {l : Filter ι} {x : ι → ℝ}
chore(Topology): remove autoImplicit in some files (#9689)

... where this is easy to do.

Co-authored-by: grunweg <grunweg@posteo.de>

Diff
@@ -1647,7 +1647,7 @@ end truncateToReal
 
 section LimsupLiminf
 
-set_option autoImplicit true
+variable {ι : Type*}
 
 lemma limsup_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) :
     Filter.limsup (fun i ↦ f i - c) F = Filter.limsup f F - c :=
chore(*): use for ⊤ : ENNReal (#9541)
Diff
@@ -35,7 +35,7 @@ open TopologicalSpace
 /-- Topology on `ℝ≥0∞`.
 
 Note: this is different from the `EMetricSpace` topology. The `EMetricSpace` topology has
-`IsOpen {⊤}`, while this topology doesn't have singleton elements. -/
+`IsOpen {∞}`, while this topology doesn't have singleton elements. -/
 instance : TopologicalSpace ℝ≥0∞ := Preorder.topology ℝ≥0∞
 
 instance : OrderTopology ℝ≥0∞ := ⟨rfl⟩
@@ -55,7 +55,7 @@ theorem embedding_coe : Embedding ((↑) : ℝ≥0 → ℝ≥0∞) :=
   coe_strictMono.embedding_of_ordConnected <| by rw [range_coe']; exact ordConnected_Iio
 #align ennreal.embedding_coe ENNReal.embedding_coe
 
-theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ⊤ } := isOpen_ne
+theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ∞ } := isOpen_ne
 #align ennreal.is_open_ne_top ENNReal.isOpen_ne_top
 
 theorem isOpen_Ico_zero : IsOpen (Ico 0 b) := by
@@ -114,7 +114,7 @@ theorem tendsto_ofReal {f : Filter α} {m : α → ℝ} {a : ℝ} (h : Tendsto m
   (continuous_ofReal.tendsto a).comp h
 #align ennreal.tendsto_of_real ENNReal.tendsto_ofReal
 
-theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) :
+theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ∞) :
     Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 a.toNNReal) := by
   lift a to ℝ≥0 using ha
   rw [nhds_coe, tendsto_map'_iff]
@@ -132,7 +132,7 @@ theorem continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal { a | a ≠ ∞ }
   ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
 #align ennreal.continuous_on_to_nnreal ENNReal.continuousOn_toNNReal
 
-theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) :=
+theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ∞) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) :=
   NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
 #align ennreal.tendsto_to_real ENNReal.tendsto_toReal
 
@@ -165,12 +165,12 @@ theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :
 #align ennreal.nhds_top_basis ENNReal.nhds_top_basis
 
 theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
-    Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
+    Tendsto m f (𝓝 ∞) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
   simp only [nhds_top', tendsto_iInf, tendsto_principal, mem_Ioi]
 #align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnreal
 
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
-    Tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
+    Tendsto m f (𝓝 ∞) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
   tendsto_nhds_top_iff_nnreal.trans
     ⟨fun h n => by simpa only [ENNReal.coe_nat] using h n, fun h x =>
       let ⟨n, hn⟩ := exists_nat_gt x
@@ -178,7 +178,7 @@ theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
 #align ennreal.tendsto_nhds_top_iff_nat ENNReal.tendsto_nhds_top_iff_nat
 
 theorem tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) :
-    Tendsto m f (𝓝 ⊤) :=
+    Tendsto m f (𝓝 ∞) :=
   tendsto_nhds_top_iff_nat.2 h
 #align ennreal.tendsto_nhds_top ENNReal.tendsto_nhds_top
 
@@ -212,7 +212,7 @@ theorem nhds_zero_basis_Iic : (𝓝 (0 : ℝ≥0∞)).HasBasis (fun a : ℝ≥0
 -- porting note: todo: add a TC for `≠ ∞`?
 @[instance]
 theorem nhdsWithin_Ioi_coe_neBot {r : ℝ≥0} : (𝓝[>] (r : ℝ≥0∞)).NeBot :=
-  nhdsWithin_Ioi_self_neBot' ⟨⊤, ENNReal.coe_lt_top⟩
+  nhdsWithin_Ioi_self_neBot' ⟨∞, ENNReal.coe_lt_top⟩
 #align ennreal.nhds_within_Ioi_coe_ne_bot ENNReal.nhdsWithin_Ioi_coe_neBot
 
 @[instance]
@@ -261,12 +261,12 @@ theorem Icc_mem_nhds (xt : x ≠ ∞) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
   (hasBasis_nhds_of_ne_top' xt).mem_of_mem ε0
 #align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
 
-theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
+theorem nhds_of_ne_top (xt : x ≠ ∞) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
   (hasBasis_nhds_of_ne_top xt).eq_biInf
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
 theorem biInf_le_nhds : ∀ x : ℝ≥0∞, ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) ≤ 𝓝 x
-  | ⊤ => iInf₂_le_of_le 1 one_pos <| by
+  | ∞ => iInf₂_le_of_le 1 one_pos <| by
     simpa only [← coe_one, top_sub_coe, top_add, Icc_self, principal_singleton] using pure_le_nhds _
   | (x : ℝ≥0) => (nhds_of_ne_top coe_ne_top).ge
 
@@ -278,7 +278,7 @@ protected theorem tendsto_nhds_of_Icc {f : Filter α} {u : α → ℝ≥0∞} {a
 
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
-protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ⊤) :
+protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ∞) :
     Tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε) := by
   simp only [nhds_of_ne_top ha, tendsto_iInf, tendsto_principal]
 #align ennreal.tendsto_nhds ENNReal.tendsto_nhds
@@ -289,7 +289,7 @@ protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
 #align ennreal.tendsto_nhds_zero ENNReal.tendsto_nhds_zero
 
 protected theorem tendsto_atTop [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} {a : ℝ≥0∞}
-    (ha : a ≠ ⊤) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) :=
+    (ha : a ≠ ∞) : Tendsto f atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, f n ∈ Icc (a - ε) (a + ε) :=
   .trans (atTop_basis.tendsto_iff (hasBasis_nhds_of_ne_top ha)) (by simp only [true_and]; rfl)
 #align ennreal.tendsto_at_top ENNReal.tendsto_atTop
 
@@ -309,15 +309,15 @@ protected theorem tendsto_atTop_zero [Nonempty β] [SemilatticeSup β] {f : β 
 
 theorem tendsto_sub : ∀ {a b : ℝ≥0∞}, (a ≠ ∞ ∨ b ≠ ∞) →
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b))
-  | ⊤, ⊤, h => by simp only [ne_eq, not_true_eq_false, or_self] at h
-  | ⊤, (b : ℝ≥0), _ => by
+  | ∞, ∞, h => by simp only [ne_eq, not_true_eq_false, or_self] at h
+  | ∞, (b : ℝ≥0), _ => by
     rw [top_sub_coe, tendsto_nhds_top_iff_nnreal]
     refine fun x => ((lt_mem_nhds <| @coe_lt_top (b + 1 + x)).prod_nhds
       (ge_mem_nhds <| coe_lt_coe.2 <| lt_add_one b)).mono fun y hy => ?_
     rw [lt_tsub_iff_left]
     calc y.2 + x ≤ ↑(b + 1) + x := add_le_add_right hy.2 _
     _ < y.1 := hy.1
-  | (a : ℝ≥0), ⊤, _ => by
+  | (a : ℝ≥0), ∞, _ => by
     rw [sub_top]
     refine (tendsto_pure.2 ?_).mono_right (pure_le_nhds _)
     exact ((gt_mem_nhds <| coe_lt_coe.2 <| lt_add_one a).prod_nhds
@@ -335,10 +335,10 @@ protected theorem Tendsto.sub {f : Filter α} {ma : α → ℝ≥0∞} {mb : α
     Tendsto.comp (ENNReal.tendsto_sub h) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.sub ENNReal.Tendsto.sub
 
-protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) :
+protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ∞) (hb : b ≠ 0 ∨ a ≠ ∞) :
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) := by
   have ht : ∀ b : ℝ≥0∞, b ≠ 0 →
-      Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 ((⊤ : ℝ≥0∞), b)) (𝓝 ⊤) := fun b hb => by
+      Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 (∞, b)) (𝓝 ∞) := fun b hb => by
     refine' tendsto_nhds_top_iff_nnreal.2 fun n => _
     rcases lt_iff_exists_nnreal_btwn.1 (pos_iff_ne_zero.2 hb) with ⟨ε, hε, hεb⟩
     have : ∀ᶠ c : ℝ≥0∞ × ℝ≥0∞ in 𝓝 (∞, b), ↑n / ↑ε < c.1 ∧ ↑ε < c.2 :=
@@ -352,14 +352,14 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     | top =>
       simp only [ne_eq, or_false, not_true_eq_false] at ha
       simpa [(· ∘ ·), mul_comm, mul_top ha]
-        using (ht a ha).comp (continuous_swap.tendsto (ofNNReal a, ⊤))
+        using (ht a ha).comp (continuous_swap.tendsto (ofNNReal a, ∞))
     | coe b =>
       simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul]
 #align ennreal.tendsto_mul ENNReal.tendsto_mul
 
 protected theorem Tendsto.mul {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
-    (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : Tendsto mb f (𝓝 b))
-    (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun a => ma a * mb a) f (𝓝 (a * b)) :=
+    (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ∞) (hmb : Tendsto mb f (𝓝 b))
+    (hb : b ≠ 0 ∨ a ≠ ∞) : Tendsto (fun a => ma a * mb a) f (𝓝 (a * b)) :=
   show Tendsto ((fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) ∘ fun a => (ma a, mb a)) f (𝓝 (a * b)) from
     Tendsto.comp (ENNReal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
 #align ennreal.tendsto.mul ENNReal.Tendsto.mul
@@ -378,13 +378,13 @@ theorem _root_.Continuous.ennreal_mul [TopologicalSpace α] {f g : α → ℝ≥
 #align continuous.ennreal_mul Continuous.ennreal_mul
 
 protected theorem Tendsto.const_mul {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
-    (hm : Tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : Tendsto (fun b => a * m b) f (𝓝 (a * b)) :=
+    (hm : Tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ∞) : Tendsto (fun b => a * m b) f (𝓝 (a * b)) :=
   by_cases (fun (this : a = 0) => by simp [this, tendsto_const_nhds]) fun ha : a ≠ 0 =>
     ENNReal.Tendsto.mul tendsto_const_nhds (Or.inl ha) hm hb
 #align ennreal.tendsto.const_mul ENNReal.Tendsto.const_mul
 
 protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
-    (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : Tendsto (fun x => m x * b) f (𝓝 (a * b)) := by
+    (hm : Tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ∞) : Tendsto (fun x => m x * b) f (𝓝 (a * b)) := by
   simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha
 #align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_const
 
@@ -402,21 +402,21 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type*} {f : ι → α → ℝ≥0∞
   · exact Or.inr (h' _ (Finset.mem_insert_self _ _))
 #align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_top
 
-protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
+protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ 0) :
     ContinuousAt (a * ·) b :=
   Tendsto.const_mul tendsto_id h.symm
 #align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mul
 
-protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
+protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ∞ ∨ b ≠ 0) :
     ContinuousAt (fun x => x * a) b :=
   Tendsto.mul_const tendsto_id h.symm
 #align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_const
 
-protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous (a * ·) :=
+protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ∞) : Continuous (a * ·) :=
   continuous_iff_continuousAt.2 fun _ => ENNReal.continuousAt_const_mul (Or.inl ha)
 #align ennreal.continuous_const_mul ENNReal.continuous_const_mul
 
-protected theorem continuous_mul_const {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous fun x => x * a :=
+protected theorem continuous_mul_const {a : ℝ≥0∞} (ha : a ≠ ∞) : Continuous fun x => x * a :=
   continuous_iff_continuousAt.2 fun _ => ENNReal.continuousAt_mul_const (Or.inl ha)
 #align ennreal.continuous_mul_const ENNReal.continuous_mul_const
 
@@ -449,7 +449,7 @@ theorem continuousOn_sub :
   refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_or.mp hp))
 #align ennreal.continuous_on_sub ENNReal.continuousOn_sub
 
-theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ⊤) : Continuous (a - ·) := by
+theorem continuous_sub_left {a : ℝ≥0∞} (a_ne_top : a ≠ ∞) : Continuous (a - ·) := by
   change Continuous (Function.uncurry Sub.sub ∘ (a, ·))
   refine continuousOn_sub.comp_continuous (Continuous.Prod.mk a) fun x => ?_
   simp only [a_ne_top, Ne.def, mem_setOf_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff]
@@ -487,9 +487,9 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
-theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0)
+theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ∞ → ⨅ i, f i = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : ⨅ i, a * f i = a * ⨅ i, f i := by
-  by_cases H : a = ⊤ ∧ ⨅ i, f i = 0
+  by_cases H : a = ∞ ∧ ⨅ i, f i = 0
   · rcases h H.1 H.2 with ⟨i, hi⟩
     rw [H.2, mul_zero, ← bot_eq_zero, iInf_eq_bot]
     exact fun b hb => ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩
@@ -502,17 +502,17 @@ theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = 
 #align ennreal.infi_mul_left' ENNReal.iInf_mul_left'
 
 theorem iInf_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
-    (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0) : ⨅ i, a * f i = a * ⨅ i, f i :=
+    (h : a = ∞ → ⨅ i, f i = 0 → ∃ i, f i = 0) : ⨅ i, a * f i = a * ⨅ i, f i :=
   iInf_mul_left' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_left ENNReal.iInf_mul_left
 
-theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0)
+theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ∞ → ⨅ i, f i = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : ⨅ i, f i * a = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using iInf_mul_left' h h0
 #align ennreal.infi_mul_right' ENNReal.iInf_mul_right'
 
 theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
-    (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0) : ⨅ i, f i * a = (⨅ i, f i) * a :=
+    (h : a = ∞ → ⨅ i, f i = 0 → ∃ i, f i = 0) : ⨅ i, f i * a = (⨅ i, f i) * a :=
   iInf_mul_right' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_right ENNReal.iInf_mul_right
 
@@ -544,12 +544,12 @@ protected theorem tendsto_inv_iff {f : Filter α} {m : α → ℝ≥0∞} {a : 
 
 protected theorem Tendsto.div {f : Filter α} {ma : α → ℝ≥0∞} {mb : α → ℝ≥0∞} {a b : ℝ≥0∞}
     (hma : Tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : Tendsto mb f (𝓝 b))
-    (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) := by
+    (hb : b ≠ ∞ ∨ a ≠ ∞) : Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) := by
   apply Tendsto.mul hma _ (ENNReal.tendsto_inv_iff.2 hmb) _ <;> simp [ha, hb]
 #align ennreal.tendsto.div ENNReal.Tendsto.div
 
 protected theorem Tendsto.const_div {f : Filter α} {m : α → ℝ≥0∞} {a b : ℝ≥0∞}
-    (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) := by
+    (hm : Tendsto m f (𝓝 b)) (hb : b ≠ ∞ ∨ a ≠ ∞) : Tendsto (fun b => a / m b) f (𝓝 (a / b)) := by
   apply Tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm)
   simp [hb]
 #align ennreal.tendsto.const_div ENNReal.Tendsto.const_div
@@ -681,7 +681,7 @@ protected theorem tendsto_coe_sub {b : ℝ≥0∞} :
   continuous_nnreal_sub.tendsto _
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
-theorem sub_iSup {ι : Sort*} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
+theorem sub_iSup {ι : Sort*} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ∞) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
   antitone_const_tsub.map_iSup_of_continuousAt' (continuous_sub_left hr.ne).continuousAt
 #align ennreal.sub_supr ENNReal.sub_iSup
@@ -1046,7 +1046,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type*} {a : ι → ℝ≥0∞} (tsu
   by_contra h
   have := Infinite.to_subtype h
   refine tsum_ne_top (top_unique ?_)
-  calc ⊤ = ∑' _ : { i | ε ≤ a i }, ε := (tsum_const_eq_top_of_ne_zero ε_ne_zero).symm
+  calc ∞ = ∑' _ : { i | ε ≤ a i }, ε := (tsum_const_eq_top_of_ne_zero ε_ne_zero).symm
   _ ≤ ∑' i, a i := tsum_le_tsum_of_inj (↑) Subtype.val_injective (fun _ _ => zero_le _)
     (fun i => i.2) ENNReal.summable ENNReal.summable
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
@@ -1273,10 +1273,10 @@ theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
 #align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
 
 theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
-    (hsf : sf ≠ ⊤) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg := by
-  by_cases hsg : sg = ⊤
+    (hsf : sf ≠ ∞) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg := by
+  by_cases hsg : sg = ∞
   · exact hsg.symm ▸ lt_of_le_of_ne le_top hsf
-  · have hg' : ∀ x, g x ≠ ⊤ := ENNReal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg)
+  · have hg' : ∀ x, g x ≠ ∞ := ENNReal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg)
     lift f to α → ℝ≥0 using fun x =>
       ne_of_lt (lt_of_le_of_lt (h x) <| lt_of_le_of_ne le_top (hg' x))
     lift g to α → ℝ≥0 using hg'
@@ -1286,7 +1286,7 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
     exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
-theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
+theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ∞) (h : ∀ a : α, f a ≤ g a)
     (hi : f i < g i) : ∑' x, f x < ∑' x, g x :=
   hasSum_lt h hi hfi ENNReal.summable.hasSum ENNReal.summable.hasSum
 #align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsum
@@ -1316,7 +1316,7 @@ theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n =>
 #align summable.to_nnreal Summable.toNNReal
 
 /-- Finitely summable non-negative functions have countable support -/
-theorem _root_.Summable.countable_support_ennreal {f : α → ℝ≥0∞} (h : ∑' (i : α), f i ≠ ⊤) :
+theorem _root_.Summable.countable_support_ennreal {f : α → ℝ≥0∞} (h : ∑' (i : α), f i ≠ ∞) :
     f.support.Countable := by
   lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top h
   simpa [support] using (ENNReal.tsum_coe_ne_top_iff_summable.1 h).countable_support_nnreal
@@ -1389,12 +1389,12 @@ variable [EMetricSpace β]
 open ENNReal Filter EMetric
 
 /-- In an emetric ball, the distance between points is everywhere finite -/
-theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ :=
+theorem edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ∞ :=
   ne_of_lt <|
     calc
       edist x y ≤ edist a x + edist a y := edist_triangle_left x.1 y.1 a
       _ < r + r := by rw [edist_comm a x, edist_comm a y]; exact add_lt_add x.2 y.2
-      _ ≤ ⊤ := le_top
+      _ ≤ ∞ := le_top
 #align edist_ne_top_of_mem_ball edist_ne_top_of_mem_ball
 
 /-- Each ball in an extended metric space gives us a metric space, as the edist
@@ -1447,7 +1447,7 @@ theorem EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s
     _ < ε := hN
 #align emetric.cauchy_seq_iff_le_tendsto_0 EMetric.cauchySeq_iff_le_tendsto_0
 
-theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ⊤)
+theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ∞)
     (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f := by
   refine continuous_iff_continuousAt.2 fun x => ENNReal.tendsto_nhds_of_Icc fun ε ε0 => ?_
   rcases ENNReal.exists_nnreal_pos_mul_lt hC ε0.ne' with ⟨δ, δ0, hδ⟩
fix: rename tsum_congr_subtype (#9080)

The lemma tsum_congr_subtype is currently stated in terms of set coercions rather than subtypes. This PR renames tsum_congr_subtype to tsum_congr_set_coe, and adds a new lemma tsum_congr_subtype whose statement is explicitly about subtypes.

Diff
@@ -1008,7 +1008,7 @@ theorem tsum_iUnion_le_tsum {ι : Type*} (f : α → ℝ≥0∞) (t : ι → Set
 
 theorem tsum_biUnion_le_tsum {ι : Type*} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
     ∑' x : ⋃ i ∈ s , t i, f x ≤ ∑' i : s, ∑' x : t i, f x :=
-  calc ∑' x : ⋃ i ∈ s, t i, f x = ∑' x : ⋃ i : s, t i, f x := tsum_congr_subtype _ <| by simp
+  calc ∑' x : ⋃ i ∈ s, t i, f x = ∑' x : ⋃ i : s, t i, f x := tsum_congr_set_coe _ <| by simp
   _ ≤ ∑' i : s, ∑' x : t i, f x := tsum_iUnion_le_tsum _ _
 
 theorem tsum_biUnion_le {ι : Type*} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
@@ -1024,7 +1024,7 @@ theorem tsum_iUnion_le {ι : Type*} [Fintype ι] (f : α → ℝ≥0∞) (t : ι
 
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     ∑' x : ↑(s ∪ t), f x ≤ ∑' x : s, f x + ∑' x : t, f x :=
-  calc ∑' x : ↑(s ∪ t), f x = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_subtype _ union_eq_iUnion
+  calc ∑' x : ↑(s ∪ t), f x = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_set_coe _ union_eq_iUnion
   _ ≤ _ := by simpa using tsum_iUnion_le f (cond · s t)
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -403,7 +403,7 @@ theorem tendsto_finset_prod_of_ne_top {ι : Type*} {f : ι → α → ℝ≥0∞
 #align ennreal.tendsto_finset_prod_of_ne_top ENNReal.tendsto_finset_prod_of_ne_top
 
 protected theorem continuousAt_const_mul {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b ≠ 0) :
-    ContinuousAt ((· * ·) a) b :=
+    ContinuousAt (a * ·) b :=
   Tendsto.const_mul tendsto_id h.symm
 #align ennreal.continuous_at_const_mul ENNReal.continuousAt_const_mul
 
@@ -412,7 +412,7 @@ protected theorem continuousAt_mul_const {a b : ℝ≥0∞} (h : a ≠ ⊤ ∨ b
   Tendsto.mul_const tendsto_id h.symm
 #align ennreal.continuous_at_mul_const ENNReal.continuousAt_mul_const
 
-protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous ((· * ·) a) :=
+protected theorem continuous_const_mul {a : ℝ≥0∞} (ha : a ≠ ⊤) : Continuous (a * ·) :=
   continuous_iff_continuousAt.2 fun _ => ENNReal.continuousAt_const_mul (Or.inl ha)
 #align ennreal.continuous_const_mul ENNReal.continuous_const_mul
 
chore: replace exact_mod_cast tactic with mod_cast elaborator where possible (#8404)

We still have the exact_mod_cast tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast are the ones that don't work using the term elaborator by itself.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -1264,7 +1264,7 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : ∑' i, f i ≠ ∞)
   lift f to ℕ → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
   replace hf : Summable f := tsum_coe_ne_top_iff_summable.1 hf
   simp only [← ENNReal.coe_tsum, NNReal.summable_nat_add _ hf, ← ENNReal.coe_zero]
-  exact_mod_cast NNReal.tendsto_sum_nat_add f
+  exact mod_cast NNReal.tendsto_sum_nat_add f
 #align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
 
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
@@ -1338,7 +1338,7 @@ theorem ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤
 theorem not_summable_iff_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
     ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop atTop := by
   lift f to ℕ → ℝ≥0 using hf
-  exact_mod_cast NNReal.not_summable_iff_tendsto_nat_atTop
+  exact mod_cast NNReal.not_summable_iff_tendsto_nat_atTop
 #align not_summable_iff_tendsto_nat_at_top_of_nonneg not_summable_iff_tendsto_nat_atTop_of_nonneg
 
 theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
@@ -1349,7 +1349,7 @@ theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀
 theorem summable_sigma_of_nonneg {β : α → Type*} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
   lift f to (Σx, β x) → ℝ≥0 using hf
-  exact_mod_cast NNReal.summable_sigma
+  exact mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
 theorem summable_prod_of_nonneg {f : (α × β) → ℝ} (hf : 0 ≤ f) :
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -309,7 +309,7 @@ protected theorem tendsto_atTop_zero [Nonempty β] [SemilatticeSup β] {f : β 
 
 theorem tendsto_sub : ∀ {a b : ℝ≥0∞}, (a ≠ ∞ ∨ b ≠ ∞) →
     Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 - p.2) (𝓝 (a, b)) (𝓝 (a - b))
-  | ⊤, ⊤, h => by simp only at h
+  | ⊤, ⊤, h => by simp only [ne_eq, not_true_eq_false, or_self] at h
   | ⊤, (b : ℝ≥0), _ => by
     rw [top_sub_coe, tendsto_nhds_top_iff_nnreal]
     refine fun x => ((lt_mem_nhds <| @coe_lt_top (b + 1 + x)).prod_nhds
@@ -346,11 +346,11 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     refine' this.mono fun c hc => _
     exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2)
   induction a using recTopCoe with
-  | top => simp only [ne_eq, or_false] at hb; simp [ht b hb, top_mul hb]
+  | top => simp only [ne_eq, or_false, not_true_eq_false] at hb; simp [ht b hb, top_mul hb]
   | coe a =>
     induction b using recTopCoe with
     | top =>
-      simp only [ne_eq, or_false] at ha
+      simp only [ne_eq, or_false, not_true_eq_false] at ha
       simpa [(· ∘ ·), mul_comm, mul_top ha]
         using (ht a ha).comp (continuous_swap.tendsto (ofNNReal a, ⊤))
     | coe b =>
@@ -1459,7 +1459,7 @@ theorem continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC
 #align continuous_of_le_add_edist continuous_of_le_add_edist
 
 theorem continuous_edist : Continuous fun p : α × α => edist p.1 p.2 := by
-  apply continuous_of_le_add_edist 2 (by norm_num)
+  apply continuous_of_le_add_edist 2 (by decide)
   rintro ⟨x, y⟩ ⟨x', y'⟩
   calc
     edist x y ≤ edist x x' + edist x' y' + edist y' y := edist_triangle4 _ _ _ _
chore(InfiniteSum): use dot notation (#8358)

Rename

  • summable_of_norm_bounded -> Summable.of_norm_bounded;
  • summable_of_norm_bounded_eventually -> Summable.of_norm_bounded_eventually;
  • summable_of_nnnorm_bounded -> Summable.of_nnnorm_bounded;
  • summable_of_summable_norm -> Summable.of_norm;
  • summable_of_summable_nnnorm -> Summable.of_nnnorm;

New lemmas

  • Summable.of_norm_bounded_eventually_nat
  • Summable.norm

Misc changes

  • Golf a few proofs.
Diff
@@ -1301,17 +1301,17 @@ theorem tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : Summable f)
 #align tsum_comp_le_tsum_of_inj tsum_comp_le_tsum_of_inj
 
 /-- Comparison test of convergence of series of non-negative real numbers. -/
-theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
+theorem Summable.of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b)
     (hf : Summable f) : Summable g := by
   lift f to β → ℝ≥0 using fun b => (hg b).trans (hgf b)
   lift g to β → ℝ≥0 using hg
   rw [NNReal.summable_coe] at hf ⊢
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
-#align summable_of_nonneg_of_le summable_of_nonneg_of_le
+#align summable_of_nonneg_of_le Summable.of_nonneg_of_le
 
 theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n => (f n).toNNReal := by
   apply NNReal.summable_coe.1
-  refine' summable_of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => _) hf.abs
+  refine' .of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => _) hf.abs
   simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
 #align summable.to_nnreal Summable.toNNReal
 
@@ -1379,7 +1379,7 @@ series and at least one term of `f` is strictly smaller than the corresponding t
 then the series of `f` is strictly smaller than the series of `g`. -/
 theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ, 0 ≤ f b)
     (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
-  tsum_lt_tsum h hi (summable_of_nonneg_of_le h0 h hg) hg
+  tsum_lt_tsum h hi (.of_nonneg_of_le h0 h hg) hg
 #align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonneg
 
 section
feat: add last implication of portmanteau characterizations of weak convergence (#8097)

This PR adds the last missing implication of the general case of portmanteau equivalent characterizations of convergence in distribution: a sufficient condition for convergence in distribution of a sequence of probability measures is that for all open sets the candidate limit measure is at most the liminf of the measures.

Co-authored-by: Kalle <kalle.kytola@aalto.fi> Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com>

Diff
@@ -136,6 +136,9 @@ theorem tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto ENNReal.toRea
   NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
 #align ennreal.tendsto_to_real ENNReal.tendsto_toReal
 
+lemma continuousOn_toReal : ContinuousOn ENNReal.toReal { a | a ≠ ∞ } :=
+  NNReal.continuous_coe.comp_continuousOn continuousOn_toNNReal
+
 /-- The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`. -/
 def neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 where
   toEquiv := neTopEquivNNReal
@@ -1603,9 +1606,47 @@ theorem edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → 
 
 end
 
+namespace ENNReal
+
+section truncateToReal
+
+/-- With truncation level `t`, the truncated cast `ℝ≥0∞ → ℝ` is given by `x ↦ (min t x).toReal`.
+Unlike `ENNReal.toReal`, this cast is continuous and monotone when `t ≠ ∞`. -/
+noncomputable def truncateToReal (t x : ℝ≥0∞) : ℝ := (min t x).toReal
+
+lemma truncateToReal_eq_toReal {t x : ℝ≥0∞} (t_ne_top : t ≠ ∞) (x_le : x ≤ t) :
+    truncateToReal t x = x.toReal := by
+  have x_lt_top : x < ∞ := lt_of_le_of_lt x_le t_ne_top.lt_top
+  have obs : min t x ≠ ∞ := by
+    simp_all only [ne_eq, ge_iff_le, min_eq_top, false_and, not_false_eq_true]
+  exact (ENNReal.toReal_eq_toReal obs x_lt_top.ne).mpr (min_eq_right x_le)
+
+lemma truncateToReal_le {t : ℝ≥0∞} (t_ne_top : t ≠ ∞) {x : ℝ≥0∞} :
+    truncateToReal t x ≤ t.toReal := by
+  rw [truncateToReal]
+  apply (toReal_le_toReal _ t_ne_top).mpr (min_le_left t x)
+  simp_all only [ne_eq, ge_iff_le, min_eq_top, false_and, not_false_eq_true]
+
+lemma truncateToReal_nonneg {t x : ℝ≥0∞} : 0 ≤ truncateToReal t x := toReal_nonneg
+
+/-- The truncated cast `ENNReal.truncateToReal t : ℝ≥0∞ → ℝ` is monotone when `t ≠ ∞`. -/
+lemma monotone_truncateToReal {t : ℝ≥0∞} (t_ne_top : t ≠ ∞) : Monotone (truncateToReal t) := by
+  intro x y x_le_y
+  have obs_x : min t x ≠ ∞ := by
+    simp_all only [ne_eq, ge_iff_le, min_eq_top, false_and, not_false_eq_true]
+  have obs_y : min t y ≠ ∞ := by
+    simp_all only [ne_eq, ge_iff_le, min_eq_top, false_and, not_false_eq_true]
+  exact (ENNReal.toReal_le_toReal obs_x obs_y).mpr (min_le_min_left t x_le_y)
+
+/-- The truncated cast `ENNReal.truncateToReal t : ℝ≥0∞ → ℝ` is continuous when `t ≠ ∞`. -/
+lemma continuous_truncateToReal {t : ℝ≥0∞} (t_ne_top : t ≠ ∞) : Continuous (truncateToReal t) := by
+  apply continuousOn_toReal.comp_continuous (continuous_min.comp (Continuous.Prod.mk t))
+  simp [t_ne_top]
+
+end truncateToReal
+
 section LimsupLiminf
 
-namespace ENNReal
 set_option autoImplicit true
 
 lemma limsup_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) :
@@ -1630,6 +1671,43 @@ lemma liminf_const_sub (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞)
   (Antitone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ c - x)
     (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c_ne_top).continuousAt).symm
 
-end ENNReal -- namespace
+/-- If `xs : ι → ℝ≥0∞` is bounded, then we have `liminf (toReal ∘ xs) = toReal (liminf xs)`. -/
+lemma liminf_toReal_eq {ι : Type*} {F : Filter ι} [NeBot F] {b : ℝ≥0∞} (b_ne_top : b ≠ ∞)
+    {xs : ι → ℝ≥0∞} (le_b : ∀ᶠ i in F, xs i ≤ b) :
+    F.liminf (fun i ↦ (xs i).toReal) = (F.liminf xs).toReal := by
+  have liminf_le : F.liminf xs ≤ b := by
+    apply liminf_le_of_le ⟨0, by simp⟩
+    intro y h
+    obtain ⟨i, hi⟩ := (Eventually.and h le_b).exists
+    exact hi.1.trans hi.2
+  have aux : ∀ᶠ i in F, (xs i).toReal = ENNReal.truncateToReal b (xs i) := by
+    filter_upwards [le_b] with i i_le_b
+    simp only [truncateToReal_eq_toReal b_ne_top i_le_b, implies_true]
+  have aux' : (F.liminf xs).toReal = ENNReal.truncateToReal b (F.liminf xs) := by
+    rw [truncateToReal_eq_toReal b_ne_top liminf_le]
+  simp_rw [liminf_congr aux, aux']
+  have key := Monotone.map_liminf_of_continuousAt (F := F) (monotone_truncateToReal b_ne_top) xs
+          (continuous_truncateToReal b_ne_top).continuousAt
+          ⟨b, by simpa only [eventually_map] using le_b⟩ ⟨0, eventually_of_forall (by simp)⟩
+  rw [key]
+  rfl
+
+/-- If `xs : ι → ℝ≥0∞` is bounded, then we have `liminf (toReal ∘ xs) = toReal (liminf xs)`. -/
+lemma limsup_toReal_eq {ι : Type*} {F : Filter ι} [NeBot F] {b : ℝ≥0∞} (b_ne_top : b ≠ ∞)
+    {xs : ι → ℝ≥0∞} (le_b : ∀ᶠ i in F, xs i ≤ b) :
+    F.limsup (fun i ↦ (xs i).toReal) = (F.limsup xs).toReal := by
+  have aux : ∀ᶠ i in F, (xs i).toReal = ENNReal.truncateToReal b (xs i) := by
+    filter_upwards [le_b] with i i_le_b
+    simp only [truncateToReal_eq_toReal b_ne_top i_le_b, implies_true]
+  have aux' : (F.limsup xs).toReal = ENNReal.truncateToReal b (F.limsup xs) := by
+    rw [truncateToReal_eq_toReal b_ne_top (limsup_le_of_le ⟨0, by simp⟩ le_b)]
+  simp_rw [limsup_congr aux, aux']
+  have key := Monotone.map_limsup_of_continuousAt (F := F) (monotone_truncateToReal b_ne_top) xs
+          (continuous_truncateToReal b_ne_top).continuousAt
+          ⟨b, by simpa only [eventually_map] using le_b⟩ ⟨0, eventually_of_forall (by simp)⟩
+  rw [key]
+  rfl
 
 end LimsupLiminf
+
+end ENNReal -- namespace
chore(Data/Real/ENNReal): rename some to ofNNReal (#8276)

The some name feels like an implementation detail.

Diff
@@ -349,7 +349,7 @@ protected theorem tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a 
     | top =>
       simp only [ne_eq, or_false] at ha
       simpa [(· ∘ ·), mul_comm, mul_top ha]
-        using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤))
+        using (ht a ha).comp (continuous_swap.tendsto (ofNNReal a, ⊤))
     | coe b =>
       simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul]
 #align ennreal.tendsto_mul ENNReal.tendsto_mul
chore: split Topology.MetricSpace.Metrizable* (#7912)

Move

  • basic definitions to Topology.Metrizable.Basic,
  • Urysohn's metrization theorem to `Topology.Metrizable.Urysohns', and
  • metrizability of a uniform space with countably generated uniformity to Topology.Metrizable.Uniform.

The next step is to redefine Metrizable as "uniformizable with countably generated uniformity" and make this definition available much earlier.

Diff
@@ -9,6 +9,7 @@ import Mathlib.Topology.Algebra.InfiniteSum.Real
 import Mathlib.Topology.Algebra.Order.LiminfLimsup
 import Mathlib.Topology.Algebra.Order.T5
 import Mathlib.Topology.MetricSpace.Lipschitz
+import Mathlib.Topology.Metrizable.Basic
 
 #align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
 
@@ -47,6 +48,9 @@ instance : T4Space ℝ≥0∞ := inferInstance
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.embedding.secondCountableTopology
 
+instance : MetrizableSpace ENNReal :=
+  orderIsoUnitIntervalBirational.toHomeomorph.embedding.metrizableSpace
+
 theorem embedding_coe : Embedding ((↑) : ℝ≥0 → ℝ≥0∞) :=
   coe_strictMono.embedding_of_ordConnected <| by rw [range_coe']; exact ordConnected_Iio
 #align ennreal.embedding_coe ENNReal.embedding_coe
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -120,7 +120,7 @@ theorem tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) :
 theorem eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥0∞}
     (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞)
     (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g := by
-  filter_upwards [hfi, hgi, hfg]with _ hfx hgx _
+  filter_upwards [hfi, hgi, hfg] with _ hfx hgx _
   rwa [← ENNReal.toReal_eq_toReal hfx hgx]
 #align ennreal.eventually_eq_of_to_real_eventually_eq ENNReal.eventuallyEq_of_toReal_eventuallyEq
 
@@ -720,7 +720,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type*} {l : Filter ι} {x :
   simp_rw [not_exists, not_frequently, not_lt] at h
   refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_limsInf_of_le (by isBoundedDefault) ?_)
   simp only [eventually_map, ENNReal.coe_le_coe]
-  filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
+  filter_upwards [h (-r)] with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
 theorem exists_upcrossings_of_not_bounded_under {ι : Type*} {l : Filter ι} {x : ι → ℝ}
@@ -733,20 +733,20 @@ theorem exists_upcrossings_of_not_bounded_under {ι : Type*} {l : Filter ι} {x
     obtain ⟨q, hq⟩ := exists_rat_gt R
     refine' ⟨q, q + 1, (lt_add_iff_pos_right _).2 zero_lt_one, _, _⟩
     · refine' fun hcon => hR _
-      filter_upwards [hcon]with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
+      filter_upwards [hcon] with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le
     · simp only [IsBoundedUnder, IsBounded, eventually_map, eventually_atTop, ge_iff_le,
         not_exists, not_forall, not_le, exists_prop] at hbdd
       refine' fun hcon => hbdd ↑(q + 1) _
-      filter_upwards [hcon]with x hx using not_lt.1 hx
+      filter_upwards [hcon] with x hx using not_lt.1 hx
   · obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top' hf
     obtain ⟨q, hq⟩ := exists_rat_lt R
     refine' ⟨q - 1, q, (sub_lt_self_iff _).2 zero_lt_one, _, _⟩
     · simp only [IsBoundedUnder, IsBounded, eventually_map, eventually_atTop, ge_iff_le,
         not_exists, not_forall, not_le, exists_prop] at hbdd
       refine' fun hcon => hbdd ↑(q - 1) _
-      filter_upwards [hcon]with x hx using not_lt.1 hx
+      filter_upwards [hcon] with x hx using not_lt.1 hx
     · refine' fun hcon => hR _
-      filter_upwards [hcon]with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le)
+      filter_upwards [hcon] with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le)
 #align ennreal.exists_upcrossings_of_not_bounded_under ENNReal.exists_upcrossings_of_not_bounded_under
 
 end Liminf
refactor(Topology/MetricSpace): remove Metric.Bounded (#7240)

Use Bornology.IsBounded instead.

Diff
@@ -1513,25 +1513,25 @@ namespace Real
 
 /-- For a bounded set `s : Set ℝ`, its `EMetric.diam` is equal to `sSup s - sInf s` reinterpreted as
 `ℝ≥0∞`. -/
-theorem ediam_eq {s : Set ℝ} (h : Bounded s) :
+theorem ediam_eq {s : Set ℝ} (h : Bornology.IsBounded s) :
     EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) := by
   rcases eq_empty_or_nonempty s with (rfl | hne)
   · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
-  · have := Real.subset_Icc_sInf_sSup_of_bounded h
+  · have := Real.subset_Icc_sInf_sSup_of_isBounded h
     exact Real.dist_le_of_mem_Icc (this hx) (this hy)
   · apply ENNReal.ofReal_le_of_le_toReal
     rw [← Metric.diam, ← Metric.diam_closure]
-    have h' := Real.bounded_iff_bddBelow_bddAbove.1 h
+    have h' := Real.isBounded_iff_bddBelow_bddAbove.1 h
     calc sSup s - sInf s ≤ dist (sSup s) (sInf s) := le_abs_self _
     _ ≤ Metric.diam (closure s) := dist_le_diam_of_mem h.closure (csSup_mem_closure hne h'.2)
         (csInf_mem_closure hne h'.1)
 #align real.ediam_eq Real.ediam_eq
 
 /-- For a bounded set `s : Set ℝ`, its `Metric.diam` is equal to `sSup s - sInf s`. -/
-theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s := by
+theorem diam_eq {s : Set ℝ} (h : Bornology.IsBounded s) : Metric.diam s = sSup s - sInf s := by
   rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
-  rw [Real.bounded_iff_bddBelow_bddAbove] at h
+  rw [Real.isBounded_iff_bddBelow_bddAbove] at h
   exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
@@ -1539,13 +1539,13 @@ theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s
 theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) := by
   rcases le_or_lt b a with (h | h)
   · simp [h]
-  · rw [Real.ediam_eq (bounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h]
+  · rw [Real.ediam_eq (isBounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h]
 #align real.ediam_Ioo Real.ediam_Ioo
 
 @[simp]
 theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) := by
   rcases le_or_lt a b with (h | h)
-  · rw [Real.ediam_eq (bounded_Icc _ _), csSup_Icc h, csInf_Icc h]
+  · rw [Real.ediam_eq (isBounded_Icc _ _), csSup_Icc h, csInf_Icc h]
   · simp [h, h.le]
 #align real.ediam_Icc Real.ediam_Icc
 
refactor: split NormalSpace into NormalSpace and T4Space (#7072)
  • Rename NormalSpace to T4Space.
  • Add NormalSpace, a version without the T1Space assumption.
  • Adjust some theorems.
  • Supersedes thus closes #6892.
  • Add some instance cycles, see #2030
Diff
@@ -42,7 +42,7 @@ instance : OrderTopology ℝ≥0∞ := ⟨rfl⟩
 -- short-circuit type class inference
 instance : T2Space ℝ≥0∞ := inferInstance
 instance : T5Space ℝ≥0∞ := inferInstance
-instance : NormalSpace ℝ≥0∞ := inferInstance
+instance : T4Space ℝ≥0∞ := inferInstance
 
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.embedding.secondCountableTopology
chore(Analysis): rename lipschitz_on_univ to lipschitzOn_univ (#6946)

Also rename dimH_image_le_of_locally_lipschitz_on to dimH_image_le_of_locally_lipschitzOn.

Diff
@@ -1506,7 +1506,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
 
 theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
     IsClosed { f : α → β | LipschitzWith K f } := by
-  simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
+  simp only [← lipschitzOn_univ, isClosed_setOf_lipschitzOnWith]
 #align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWith
 
 namespace Real
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -1602,6 +1602,7 @@ end
 section LimsupLiminf
 
 namespace ENNReal
+set_option autoImplicit true
 
 lemma limsup_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) :
     Filter.limsup (fun i ↦ f i - c) F = Filter.limsup f F - c :=
feat: lemma limsup_const_add + 7 variants (#6455)

Add 8 lemmas: limsup_const_add, ..., liminf_sub_const.

The 4 lemmas about add are proven with typeclass assumptions which apply to , ℝ≥0, and ℝ≥0∞ (at least). The 4 lemmas about sub are proven with typeclass assumptions which apply to and ℝ≥0 (at least). For ℝ≥0∞, we add separate implementations of these latter 4 lemmas ENNReal.liminf_sub_const, ...

Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com>

Diff
@@ -1598,3 +1598,33 @@ theorem edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → 
 #align edist_le_tsum_of_edist_le_of_tendsto₀ edist_le_tsum_of_edist_le_of_tendsto₀
 
 end
+
+section LimsupLiminf
+
+namespace ENNReal
+
+lemma limsup_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) :
+    Filter.limsup (fun i ↦ f i - c) F = Filter.limsup f F - c :=
+  (Monotone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ x - c)
+    (fun _ _ h ↦ tsub_le_tsub_right h c) (continuous_sub_right c).continuousAt).symm
+
+lemma liminf_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) :
+    Filter.liminf (fun i ↦ f i - c) F = Filter.liminf f F - c :=
+  (Monotone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ x - c)
+    (fun _ _ h ↦ tsub_le_tsub_right h c) (continuous_sub_right c).continuousAt).symm
+
+lemma limsup_const_sub (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞)
+    {c : ℝ≥0∞} (c_ne_top : c ≠ ∞):
+    Filter.limsup (fun i ↦ c - f i) F = c - Filter.liminf f F :=
+  (Antitone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ c - x)
+    (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c_ne_top).continuousAt).symm
+
+lemma liminf_const_sub (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞)
+    {c : ℝ≥0∞} (c_ne_top : c ≠ ∞):
+    Filter.liminf (fun i ↦ c - f i) F = c - Filter.limsup f F :=
+  (Antitone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ c - x)
+    (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c_ne_top).continuousAt).symm
+
+end ENNReal -- namespace
+
+end LimsupLiminf
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -21,7 +21,7 @@ noncomputable section
 open Set Filter Metric Function
 open scoped Classical Topology ENNReal NNReal BigOperators Filter
 
-variable {α : Type _} {β : Type _} {γ : Type _}
+variable {α : Type*} {β : Type*} {γ : Type*}
 
 namespace ENNReal
 
@@ -86,12 +86,12 @@ theorem nhds_coe {r : ℝ≥0} : 𝓝 (r : ℝ≥0∞) = (𝓝 r).map (↑) :=
   (openEmbedding_coe.map_nhds_eq r).symm
 #align ennreal.nhds_coe ENNReal.nhds_coe
 
-theorem tendsto_nhds_coe_iff {α : Type _} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} :
+theorem tendsto_nhds_coe_iff {α : Type*} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ (↑) : ℝ≥0 → α) (𝓝 x) l := by
   rw [nhds_coe, tendsto_map'_iff]
 #align ennreal.tendsto_nhds_coe_iff ENNReal.tendsto_nhds_coe_iff
 
-theorem continuousAt_coe_iff {α : Type _} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} :
+theorem continuousAt_coe_iff {α : Type*} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} :
     ContinuousAt f ↑x ↔ ContinuousAt (f ∘ (↑) : ℝ≥0 → α) x :=
   tendsto_nhds_coe_iff
 #align ennreal.continuous_at_coe_iff ENNReal.continuousAt_coe_iff
@@ -381,7 +381,7 @@ protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b
   simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha
 #align ennreal.tendsto.mul_const ENNReal.Tendsto.mul_const
 
-theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
+theorem tendsto_finset_prod_of_ne_top {ι : Type*} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
     (s : Finset ι) (h : ∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) (h' : ∀ i ∈ s, a i ≠ ∞) :
     Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) := by
   induction' s using Finset.induction with a s has IH
@@ -509,11 +509,11 @@ theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0
   iInf_mul_right' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_right ENNReal.iInf_mul_right
 
-theorem inv_map_iInf {ι : Sort _} {x : ι → ℝ≥0∞} : (iInf x)⁻¹ = ⨆ i, (x i)⁻¹ :=
+theorem inv_map_iInf {ι : Sort*} {x : ι → ℝ≥0∞} : (iInf x)⁻¹ = ⨆ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_iInf x
 #align ennreal.inv_map_infi ENNReal.inv_map_iInf
 
-theorem inv_map_iSup {ι : Sort _} {x : ι → ℝ≥0∞} : (iSup x)⁻¹ = ⨅ i, (x i)⁻¹ :=
+theorem inv_map_iSup {ι : Sort*} {x : ι → ℝ≥0∞} : (iSup x)⁻¹ = ⨅ i, (x i)⁻¹ :=
   OrderIso.invENNReal.map_iSup x
 #align ennreal.inv_map_supr ENNReal.inv_map_iSup
 
@@ -557,18 +557,18 @@ protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ
   ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
 #align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
 
-theorem iSup_add {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : iSup s + a = ⨆ b, s b + a :=
+theorem iSup_add {ι : Sort*} {s : ι → ℝ≥0∞} [Nonempty ι] : iSup s + a = ⨆ b, s b + a :=
   Monotone.map_iSup_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
 #align ennreal.supr_add ENNReal.iSup_add
 
-theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+theorem biSup_add' {ι : Sort*} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (_ : p i), f i) + a = ⨆ (i) (_ : p i), f i + a := by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h
   simp only [iSup_subtype', iSup_add]
 #align ennreal.bsupr_add' ENNReal.biSup_add'
 
-theorem add_biSup' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+theorem add_biSup' {ι : Sort*} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (_ : p i), f i) = ⨆ (i) (_ : p i), a + f i := by
   simp only [add_comm a, biSup_add' h]
 #align ennreal.add_bsupr' ENNReal.add_biSup'
@@ -587,11 +587,11 @@ theorem sSup_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : sSup s + a = ⨆ b ∈
   rw [sSup_eq_iSup, biSup_add hs]
 #align ennreal.Sup_add ENNReal.sSup_add
 
-theorem add_iSup {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup s = ⨆ b, a + s b := by
+theorem add_iSup {ι : Sort*} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup s = ⨆ b, a + s b := by
   rw [add_comm, iSup_add]; simp [add_comm]
 #align ennreal.add_supr ENNReal.add_iSup
 
-theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
+theorem iSup_add_iSup_le {ι ι' : Sort*} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
     {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : iSup f + iSup g ≤ a := by
   simp_rw [iSup_add, add_iSup]; exact iSup₂_le h
 #align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_le
@@ -609,7 +609,7 @@ theorem biSup_add_biSup_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty)
   biSup_add_biSup_le' hs ht h
 #align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_le
 
-theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
+theorem iSup_add_iSup {ι : Sort*} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
     iSup f + iSup g = ⨆ a, f a + g a := by
   cases isEmpty_or_nonempty ι
   · simp only [iSup_of_empty, bot_eq_zero, zero_add]
@@ -619,7 +619,7 @@ theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃
     exact le_iSup_of_le k hk
 #align ennreal.supr_add_supr ENNReal.iSup_add_iSup
 
-theorem iSup_add_iSup_of_monotone {ι : Type _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
+theorem iSup_add_iSup_of_monotone {ι : Type*} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
     (hg : Monotone g) : iSup f + iSup g = ⨆ a, f a + g a :=
   iSup_add_iSup fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
 #align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotone
@@ -635,7 +635,7 @@ theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : 
     exact Finset.sum_le_sum fun a _ => hf a h
 #align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_nat
 
-theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i := by
+theorem mul_iSup {ι : Sort*} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i := by
   by_cases hf : ∀ i, f i = 0
   · obtain rfl : f = fun _ => 0
     exact funext hf
@@ -649,11 +649,11 @@ theorem mul_sSup {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * sSup s = ⨆ i ∈
   simp only [sSup_eq_iSup, mul_iSup]
 #align ennreal.mul_Sup ENNReal.mul_sSup
 
-theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f * a = ⨆ i, f i * a := by
+theorem iSup_mul {ι : Sort*} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f * a = ⨆ i, f i * a := by
   rw [mul_comm, mul_iSup]; congr; funext; rw [mul_comm]
 #align ennreal.supr_mul ENNReal.iSup_mul
 
-theorem smul_iSup {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
+theorem smul_iSup {ι : Sort*} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
     (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
   -- Porting note: replaced `iSup _` with `iSup f`
   simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup f), ENNReal.mul_iSup]
@@ -665,7 +665,7 @@ theorem smul_sSup {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞
   simp_rw [← smul_one_mul c (sSup s), ENNReal.mul_sSup, smul_one_mul]
 #align ennreal.smul_Sup ENNReal.smul_sSup
 
-theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
+theorem iSup_div {ι : Sort*} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
   iSup_mul
 #align ennreal.supr_div ENNReal.iSup_div
 
@@ -674,7 +674,7 @@ protected theorem tendsto_coe_sub {b : ℝ≥0∞} :
   continuous_nnreal_sub.tendsto _
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
-theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
+theorem sub_iSup {ι : Sort*} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
   antitone_const_tsub.map_iSup_of_continuousAt' (continuous_sub_left hr.ne).continuousAt
 #align ennreal.sub_supr ENNReal.sub_iSup
@@ -705,7 +705,7 @@ end TopologicalSpace
 
 section Liminf
 
-theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x : ι → ℝ}
+theorem exists_frequently_lt_of_liminf_ne_top {ι : Type*} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => (Real.nnabs (x n) : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R := by
   by_contra h
   simp_rw [not_exists, not_frequently, not_lt] at h
@@ -714,7 +714,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
   filter_upwards [h r] with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
 
-theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x : ι → ℝ}
+theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type*} {l : Filter ι} {x : ι → ℝ}
     (hx : liminf (fun n => (Real.nnabs (x n) : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n := by
   by_contra h
   simp_rw [not_exists, not_frequently, not_lt] at h
@@ -723,7 +723,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
   filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
 
-theorem exists_upcrossings_of_not_bounded_under {ι : Type _} {l : Filter ι} {x : ι → ℝ}
+theorem exists_upcrossings_of_not_bounded_under {ι : Type*} {l : Filter ι} {x : ι → ℝ}
     (hf : liminf (fun i => (Real.nnabs (x i) : ℝ≥0∞)) l ≠ ∞)
     (hbdd : ¬IsBoundedUnder (· ≤ ·) l fun i => |x i|) :
     ∃ a b : ℚ, a < b ∧ (∃ᶠ i in l, x i < a) ∧ ∃ᶠ i in l, ↑b < x i := by
@@ -790,7 +790,7 @@ protected theorem tsum_eq_iSup_sum : ∑' a, f a = ⨆ s : Finset α, ∑ a in s
   ENNReal.hasSum.tsum_eq
 #align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
 
-protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
+protected theorem tsum_eq_iSup_sum' {ι : Type*} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     ∑' a, f a = ⨆ i, ∑ a in s i, f a := by
   rw [ENNReal.tsum_eq_iSup_sum]
   symm
@@ -798,12 +798,12 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
   exact (Finset.sum_mono_set f).iSup_comp_eq hs
 #align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
 
-protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
+protected theorem tsum_sigma {β : α → Type*} (f : ∀ a, β a → ℝ≥0∞) :
     ∑' p : Σa, β a, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_sigma' (fun _ => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
 
-protected theorem tsum_sigma' {β : α → Type _} (f : (Σa, β a) → ℝ≥0∞) :
+protected theorem tsum_sigma' {β : α → Type*} (f : (Σa, β a) → ℝ≥0∞) :
     ∑' p : Σa, β a, f p = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun _ => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
@@ -879,7 +879,7 @@ protected theorem tsum_top [Nonempty α] : ∑' _ : α, ∞ = ∞ :=
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
 
-theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
+theorem tsum_const_eq_top_of_ne_zero {α : Type*} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
     ∑' _ : α, c = ∞ := by
   have A : Tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) atTop (𝓝 (∞ * c)) := by
     apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top
@@ -914,7 +914,7 @@ protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
 
 @[simp]
-theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _ : a = b, f b) = f a :=
+theorem tsum_iSup_eq {α : Type*} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _ : a = b, f b) = f a :=
   (tsum_eq_single a fun _ h => by simp [h.symm]).trans <| by simp
 #align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
 
@@ -932,12 +932,12 @@ theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
   exact ENNReal.summable.hasSum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
-theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) (x : α) :
+theorem toNNReal_apply_of_tsum_ne_top {α : Type*} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) (x : α) :
     (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
   coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
 #align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
 
-theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) :
+theorem summable_toNNReal_of_tsum_ne_top {α : Type*} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) :
     Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, toNNReal_apply_of_tsum_ne_top hf] using hf
 #align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
@@ -959,7 +959,7 @@ theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : ∑' x,
 
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
-theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
+theorem tendsto_tsum_compl_atTop_zero {α : Type*} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto (fun s : Finset α => ∑' b : { x // x ∉ s }, f b) atTop (𝓝 0) := by
   lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
   convert ENNReal.tendsto_coe.2 (NNReal.tendsto_tsum_compl_atTop_zero f)
@@ -967,7 +967,7 @@ theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf
   exact NNReal.summable_comp_injective (tsum_coe_ne_top_iff_summable.1 hf) Subtype.coe_injective
 #align ennreal.tendsto_tsum_compl_at_top_zero ENNReal.tendsto_tsum_compl_atTop_zero
 
-protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x : α} :
+protected theorem tsum_apply {ι α : Type*} {f : ι → α → ℝ≥0∞} {x : α} :
     (∑' i, f i) x = ∑' i, f i x :=
   tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
 #align ennreal.tsum_apply ENNReal.tsum_apply
@@ -993,23 +993,23 @@ theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
   tsum_comp_le_tsum_of_injective (inclusion_injective h) _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
-theorem tsum_iUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (t : ι → Set α) :
+theorem tsum_iUnion_le_tsum {ι : Type*} (f : α → ℝ≥0∞) (t : ι → Set α) :
     ∑' x : ⋃ i, t i, f x ≤ ∑' i, ∑' x : t i, f x :=
   calc ∑' x : ⋃ i, t i, f x ≤ ∑' x : Σ i, t i, f x.2 :=
     tsum_le_tsum_comp_of_surjective (sigmaToiUnion_surjective t) _
   _ = ∑' i, ∑' x : t i, f x := ENNReal.tsum_sigma' _
 
-theorem tsum_biUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
+theorem tsum_biUnion_le_tsum {ι : Type*} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
     ∑' x : ⋃ i ∈ s , t i, f x ≤ ∑' i : s, ∑' x : t i, f x :=
   calc ∑' x : ⋃ i ∈ s, t i, f x = ∑' x : ⋃ i : s, t i, f x := tsum_congr_subtype _ <| by simp
   _ ≤ ∑' i : s, ∑' x : t i, f x := tsum_iUnion_le_tsum _ _
 
-theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
+theorem tsum_biUnion_le {ι : Type*} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x :=
   (tsum_biUnion_le_tsum f s.toSet t).trans_eq (Finset.tsum_subtype s fun i => ∑' x : t i, f x)
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
-theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
+theorem tsum_iUnion_le {ι : Type*} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
   rw [← tsum_fintype]
   exact tsum_iUnion_le_tsum f t
@@ -1034,7 +1034,7 @@ theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (h
 
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
-theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞)
+theorem finite_const_le_of_tsum_ne_top {ι : Type*} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞)
     {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : { i : ι | ε ≤ a i }.Finite := by
   by_contra h
   have := Infinite.to_subtype h
@@ -1045,7 +1045,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
 
 /-- Markov's inequality for `Finset.card` and `tsum` in `ℝ≥0∞`. -/
-theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
+theorem finset_card_const_le_le_of_tsum_le {ι : Type*} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
     (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
     ∃ hf : { i : ι | ε ≤ a i }.Finite, ↑hf.toFinset.card ≤ c / ε := by
   have hf : { i : ι | ε ≤ a i }.Finite :=
@@ -1159,13 +1159,13 @@ theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
   _root_.tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
 #align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_le
 
-theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
+theorem tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
     (hi : Function.Injective i) : (∑' x, f (i x)) ≤ ∑' x, f x :=
   tsum_le_tsum_of_inj i hi (fun _ _ => zero_le _) (fun _ => le_rfl) (summable_comp_injective hf hi)
     hf
 #align nnreal.tsum_comp_le_tsum_of_inj NNReal.tsum_comp_le_tsum_of_inj
 
-theorem summable_sigma {β : α → Type _} {f : (Σ x, β x) → ℝ≥0} :
+theorem summable_sigma {β : α → Type*} {f : (Σ x, β x) → ℝ≥0} :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
   constructor
   · simp only [← NNReal.summable_coe, NNReal.coe_tsum]
@@ -1286,7 +1286,7 @@ theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (
 
 end ENNReal
 
-theorem tsum_comp_le_tsum_of_inj {β : Type _} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a)
+theorem tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a)
     {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f := by
   lift f to α → ℝ≥0 using hn
   rw [NNReal.summable_coe] at hf
@@ -1339,7 +1339,7 @@ theorem summable_iff_not_tendsto_nat_atTop_of_nonneg {f : ℕ → ℝ} (hf : ∀
   rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf]
 #align summable_iff_not_tendsto_nat_at_top_of_nonneg summable_iff_not_tendsto_nat_atTop_of_nonneg
 
-theorem summable_sigma_of_nonneg {β : α → Type _} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
+theorem summable_sigma_of_nonneg {β : α → Type*} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) :
     Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by
   lift f to (Σx, β x) → ℝ≥0 using hf
   exact_mod_cast NNReal.summable_sigma
@@ -1349,7 +1349,7 @@ theorem summable_prod_of_nonneg {f : (α × β) → ℝ} (hf : 0 ≤ f) :
     Summable f ↔ (∀ x, Summable fun y ↦ f (x, y)) ∧ Summable fun x ↦ ∑' y, f (x, y) :=
   (Equiv.sigmaEquivProd _ _).summable_iff.symm.trans <| summable_sigma_of_nonneg fun _ ↦ hf _
 
-theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
+theorem summable_of_sum_le {ι : Type*} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, ∑ x in u, f x ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
     tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun _ ⟨u, hu⟩ => hu ▸ h u⟩⟩
@@ -1493,7 +1493,7 @@ theorem EMetric.diam_closure (s : Set α) : diam (closure s) = diam s := by
 #align emetric.diam_closure EMetric.diam_closure
 
 @[simp]
-theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
+theorem Metric.diam_closure {α : Type*} [PseudoMetricSpace α] (s : Set α) :
     Metric.diam (closure s) = diam s := by simp only [Metric.diam, EMetric.diam_closure]
 #align metric.diam_closure Metric.diam_closure
 
feat: Summable.countable_support (#6473)

A step towards showing that Pmfs have countable support.

Thanks Eric Rodriguez and Kevin Buzzard for helping on zulip.

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -1117,6 +1117,12 @@ theorem summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summa
     hp.summable
 #align nnreal.summable_of_le NNReal.summable_of_le
 
+/-- Summable non-negative functions have countable support -/
+theorem _root_.Summable.countable_support_nnreal (f : α → ℝ≥0) (h : Summable f) :
+    f.support.Countable := by
+  rw [← NNReal.summable_coe] at h
+  simpa [support] using h.countable_support
+
 /-- A series of non-negative real numbers converges to `r` in the sense of `HasSum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
@@ -1302,6 +1308,12 @@ theorem Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n =>
   simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
 #align summable.to_nnreal Summable.toNNReal
 
+/-- Finitely summable non-negative functions have countable support -/
+theorem _root_.Summable.countable_support_ennreal {f : α → ℝ≥0∞} (h : ∑' (i : α), f i ≠ ⊤) :
+    f.support.Countable := by
+  lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top h
+  simpa [support] using (ENNReal.tsum_coe_ne_top_iff_summable.1 h).countable_support_nnreal
+
 /-- A series of non-negative real numbers converges to `r` in the sense of `HasSum` if and only if
 the sequence of partial sum converges to `r`. -/
 theorem hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f i) (r : ℝ) :
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit ec4b2eeb50364487f80421c0b4c41328a611f30d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.Instances.NNReal
 import Mathlib.Topology.Algebra.Order.MonotoneContinuity
@@ -15,6 +10,8 @@ import Mathlib.Topology.Algebra.Order.LiminfLimsup
 import Mathlib.Topology.Algebra.Order.T5
 import Mathlib.Topology.MetricSpace.Lipschitz
 
+#align_import topology.instances.ennreal from "leanprover-community/mathlib"@"ec4b2eeb50364487f80421c0b4c41328a611f30d"
+
 /-!
 # Topology on extended non-negative reals
 -/
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -1004,7 +1004,7 @@ theorem tsum_iUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (t : ι → Se
 
 theorem tsum_biUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
     ∑' x : ⋃ i ∈ s , t i, f x ≤ ∑' i : s, ∑' x : t i, f x :=
-  calc ∑' x : ⋃ i ∈ s, t i, f x = ∑' x : ⋃ i : s,  t i, f x := tsum_congr_subtype _ <| by simp
+  calc ∑' x : ⋃ i ∈ s, t i, f x = ∑' x : ⋃ i : s, t i, f x := tsum_congr_subtype _ <| by simp
   _ ≤ ∑' i : s, ∑' x : t i, f x := tsum_iUnion_le_tsum _ _
 
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
fix: ∑' precedence (#5615)
  • Also remove most superfluous parentheses around big operators (, and variants).
  • roughly the used regex: ([^a-zA-Zα-ωΑ-Ω'𝓝ℳ₀𝕂ₛ)]) \(([∑∏][^()∑∏]*,[^()∑∏:]*)\) ([⊂⊆=<≤]) replaced by $1 $2 $3
Diff
@@ -789,12 +789,12 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ
   exact ENNReal.summable.hasSum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
-protected theorem tsum_eq_iSup_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
+protected theorem tsum_eq_iSup_sum : ∑' a, f a = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
 #align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
 
 protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
-    (∑' a, f a) = ⨆ i, ∑ a in s i, f a := by
+    ∑' a, f a = ⨆ i, ∑ a in s i, f a := by
   rw [ENNReal.tsum_eq_iSup_sum]
   symm
   change ⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i) = ⨆ s : Finset α, ∑ a in s, f a
@@ -802,41 +802,41 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
 #align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
 
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
-    (∑' p : Σa, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
+    ∑' p : Σa, β a, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_sigma' (fun _ => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma ENNReal.tsum_sigma
 
 protected theorem tsum_sigma' {β : α → Type _} (f : (Σa, β a) → ℝ≥0∞) :
-    (∑' p : Σa, β a, f p) = ∑' (a) (b), f ⟨a, b⟩ :=
+    ∑' p : Σa, β a, f p = ∑' (a) (b), f ⟨a, b⟩ :=
   tsum_sigma' (fun _ => ENNReal.summable) ENNReal.summable
 #align ennreal.tsum_sigma' ENNReal.tsum_sigma'
 
-protected theorem tsum_prod {f : α → β → ℝ≥0∞} : (∑' p : α × β, f p.1 p.2) = ∑' (a) (b), f a b :=
+protected theorem tsum_prod {f : α → β → ℝ≥0∞} : ∑' p : α × β, f p.1 p.2 = ∑' (a) (b), f a b :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod ENNReal.tsum_prod
 
-protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : (∑' p : α × β, f p) = ∑' (a) (b), f (a, b) :=
+protected theorem tsum_prod' {f : α × β → ℝ≥0∞} : ∑' p : α × β, f p = ∑' (a) (b), f (a, b) :=
   tsum_prod' ENNReal.summable fun _ => ENNReal.summable
 #align ennreal.tsum_prod' ENNReal.tsum_prod'
 
-protected theorem tsum_comm {f : α → β → ℝ≥0∞} : (∑' a, ∑' b, f a b) = ∑' b, ∑' a, f a b :=
+protected theorem tsum_comm {f : α → β → ℝ≥0∞} : ∑' a, ∑' b, f a b = ∑' b, ∑' a, f a b :=
   tsum_comm' ENNReal.summable (fun _ => ENNReal.summable) fun _ => ENNReal.summable
 #align ennreal.tsum_comm ENNReal.tsum_comm
 
-protected theorem tsum_add : (∑' a, f a + g a) = (∑' a, f a) + ∑' a, g a :=
+protected theorem tsum_add : ∑' a, (f a + g a) = ∑' a, f a + ∑' a, g a :=
   tsum_add ENNReal.summable ENNReal.summable
 #align ennreal.tsum_add ENNReal.tsum_add
 
-protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : (∑' a, f a) ≤ ∑' a, g a :=
+protected theorem tsum_le_tsum (h : ∀ a, f a ≤ g a) : ∑' a, f a ≤ ∑' a, g a :=
   tsum_le_tsum h ENNReal.summable ENNReal.summable
 #align ennreal.tsum_le_tsum ENNReal.tsum_le_tsum
 
-protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x in s, f x) ≤ ∑' x, f x :=
+protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : ∑ x in s, f x ≤ ∑' x, f x :=
   sum_le_tsum s (fun _ _ => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
 protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
-    (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
+    ∑' i : ℕ, f i = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
   ENNReal.tsum_eq_iSup_sum' _ fun t =>
     let ⟨n, hn⟩ := t.exists_nat_subset_range
     let ⟨k, _, hk⟩ := exists_le_of_tendsto_atTop hN 0 n
@@ -844,17 +844,17 @@ protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (
 #align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'
 
 protected theorem tsum_eq_iSup_nat {f : ℕ → ℝ≥0∞} :
-    (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
+    ∑' i : ℕ, f i = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
   ENNReal.tsum_eq_iSup_sum' _ Finset.exists_nat_subset_range
 #align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_nat
 
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
-    (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
+    ∑' i, f i = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
   ENNReal.summable.hasSum.tendsto_sum_nat.liminf_eq.symm
 #align ennreal.tsum_eq_liminf_sum_nat ENNReal.tsum_eq_liminf_sum_nat
 
 protected theorem tsum_eq_limsup_sum_nat {f : ℕ → ℝ≥0∞} :
-    (∑' i, f i) = limsup (fun n => ∑ i in Finset.range n, f i) atTop :=
+    ∑' i, f i = limsup (fun n => ∑ i in Finset.range n, f i) atTop :=
   ENNReal.summable.hasSum.tendsto_sum_nat.limsup_eq.symm
 
 protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
@@ -862,28 +862,28 @@ protected theorem le_tsum (a : α) : f a ≤ ∑' a, f a :=
 #align ennreal.le_tsum ENNReal.le_tsum
 
 @[simp]
-protected theorem tsum_eq_zero : (∑' i, f i) = 0 ↔ ∀ i, f i = 0 :=
+protected theorem tsum_eq_zero : ∑' i, f i = 0 ↔ ∀ i, f i = 0 :=
   tsum_eq_zero_iff ENNReal.summable
 #align ennreal.tsum_eq_zero ENNReal.tsum_eq_zero
 
-protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞
+protected theorem tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → ∑' a, f a = ∞
   | ⟨a, ha⟩ => top_unique <| ha ▸ ENNReal.le_tsum a
 #align ennreal.tsum_eq_top_of_eq_top ENNReal.tsum_eq_top_of_eq_top
 
-protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞) (j : α) :
+protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞) (j : α) :
     a j < ∞ := by
   contrapose! tsum_ne_top with h
   exact ENNReal.tsum_eq_top_of_eq_top ⟨j, top_unique h⟩
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
 @[simp]
-protected theorem tsum_top [Nonempty α] : (∑' _ : α, ∞) = ∞ :=
+protected theorem tsum_top [Nonempty α] : ∑' _ : α, ∞ = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
 
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
-    (∑' _ : α, c) = ∞ := by
+    ∑' _ : α, c = ∞ := by
   have A : Tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) atTop (𝓝 (∞ * c)) := by
     apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top
     simp only [true_or_iff, top_ne_zero, Ne.def, not_false_iff]
@@ -893,11 +893,11 @@ theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞
   simpa [hc] using le_of_tendsto' A B
 #align ennreal.tsum_const_eq_top_of_ne_zero ENNReal.tsum_const_eq_top_of_ne_zero
 
-protected theorem ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
+protected theorem ne_top_of_tsum_ne_top (h : ∑' a, f a ≠ ∞) (a : α) : f a ≠ ∞ := fun ha =>
   h <| ENNReal.tsum_eq_top_of_eq_top ⟨a, ha⟩
 #align ennreal.ne_top_of_tsum_ne_top ENNReal.ne_top_of_tsum_ne_top
 
-protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i := by
+protected theorem tsum_mul_left : ∑' i, a * f i = a * ∑' i, f i := by
   by_cases hf : ∀ i, f i = 0
   · simp [hf]
   · rw [← ENNReal.tsum_eq_zero] at hf
@@ -907,12 +907,12 @@ protected theorem tsum_mul_left : (∑' i, a * f i) = a * ∑' i, f i := by
     exact HasSum.tsum_eq this
 #align ennreal.tsum_mul_left ENNReal.tsum_mul_left
 
-protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
+protected theorem tsum_mul_right : ∑' i, f i * a = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
 protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
-    (∑' i, a • f i) = a • ∑' i, f i := by
+    ∑' i, a • f i = a • ∑' i, f i := by
   simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • (1 : ℝ≥0∞)) _
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
 
@@ -935,17 +935,17 @@ theorem tendsto_nat_tsum (f : ℕ → ℝ≥0∞) :
   exact ENNReal.summable.hasSum
 #align ennreal.tendsto_nat_tsum ENNReal.tendsto_nat_tsum
 
-theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) (x : α) :
+theorem toNNReal_apply_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) (x : α) :
     (((ENNReal.toNNReal ∘ f) x : ℝ≥0) : ℝ≥0∞) = f x :=
   coe_toNNReal <| ENNReal.ne_top_of_tsum_ne_top hf _
 #align ennreal.to_nnreal_apply_of_tsum_ne_top ENNReal.toNNReal_apply_of_tsum_ne_top
 
-theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' i, f i) ≠ ∞) :
+theorem summable_toNNReal_of_tsum_ne_top {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' i, f i ≠ ∞) :
     Summable (ENNReal.toNNReal ∘ f) := by
   simpa only [← tsum_coe_ne_top_iff_summable, toNNReal_apply_of_tsum_ne_top hf] using hf
 #align ennreal.summable_to_nnreal_of_tsum_ne_top ENNReal.summable_toNNReal_of_tsum_ne_top
 
-theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
+theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto f cofinite (𝓝 0) := by
   have f_ne_top : ∀ n, f n ≠ ∞ := ENNReal.ne_top_of_tsum_ne_top hf
   have h_f_coe : f = fun n => ((f n).toNNReal : ENNReal) :=
@@ -954,7 +954,7 @@ theorem tendsto_cofinite_zero_of_tsum_ne_top {α} {f : α → ℝ≥0∞} (hf :
   exact NNReal.tendsto_cofinite_zero_of_summable (summable_toNNReal_of_tsum_ne_top hf)
 #align ennreal.tendsto_cofinite_zero_of_tsum_ne_top ENNReal.tendsto_cofinite_zero_of_tsum_ne_top
 
-theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
+theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto f atTop (𝓝 0) := by
   rw [← Nat.cofinite_eq_atTop]
   exact tendsto_cofinite_zero_of_tsum_ne_top hf
@@ -962,7 +962,7 @@ theorem tendsto_atTop_zero_of_tsum_ne_top {f : ℕ → ℝ≥0∞} (hf : (∑' x
 
 /-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
 space. This does not need a summability assumption, as otherwise all sums are zero. -/
-theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : (∑' x, f x) ≠ ∞) :
+theorem tendsto_tsum_compl_atTop_zero {α : Type _} {f : α → ℝ≥0∞} (hf : ∑' x, f x ≠ ∞) :
     Tendsto (fun s : Finset α => ∑' b : { x // x ∉ s }, f b) atTop (𝓝 0) := by
   lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
   convert ENNReal.tendsto_coe.2 (NNReal.tendsto_tsum_compl_atTop_zero f)
@@ -975,69 +975,69 @@ protected theorem tsum_apply {ι α : Type _} {f : ι → α → ℝ≥0∞} {x
   tsum_apply <| Pi.summable.mpr fun _ => ENNReal.summable
 #align ennreal.tsum_apply ENNReal.tsum_apply
 
-theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : (∑' i, g i) ≠ ∞) (h₂ : g ≤ f) :
-    (∑' i, f i - g i) = (∑' i, f i) - ∑' i, g i :=
+theorem tsum_sub {f : ℕ → ℝ≥0∞} {g : ℕ → ℝ≥0∞} (h₁ : ∑' i, g i ≠ ∞) (h₂ : g ≤ f) :
+    ∑' i, (f i - g i) = ∑' i, f i - ∑' i, g i :=
   have : ∀ i, f i - g i + g i = f i := fun i => tsub_add_cancel_of_le (h₂ i)
   ENNReal.eq_sub_of_add_eq h₁ <| by simp only [← ENNReal.tsum_add, this]
 #align ennreal.tsum_sub ENNReal.tsum_sub
 
 theorem tsum_comp_le_tsum_of_injective {f : α → β} (hf : Injective f) (g : β → ℝ≥0∞) :
-    (∑' x, g (f x)) ≤ ∑' y, g y :=
+    ∑' x, g (f x) ≤ ∑' y, g y :=
   tsum_le_tsum_of_inj f hf (fun _ _ => zero_le _) (fun _ => le_rfl) ENNReal.summable
     ENNReal.summable
 
 theorem tsum_le_tsum_comp_of_surjective {f : α → β} (hf : Surjective f) (g : β → ℝ≥0∞) :
-    (∑' y, g y) ≤ ∑' x, g (f x) :=
-  calc (∑' y, g y) = ∑' y, g (f (surjInv hf y)) := by simp only [surjInv_eq hf]
+    ∑' y, g y ≤ ∑' x, g (f x) :=
+  calc ∑' y, g y = ∑' y, g (f (surjInv hf y)) := by simp only [surjInv_eq hf]
   _ ≤ ∑' x, g (f x) := tsum_comp_le_tsum_of_injective (injective_surjInv hf) _
 
 theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
-    (∑' x : s, f x) ≤ ∑' x : t, f x :=
+    ∑' x : s, f x ≤ ∑' x : t, f x :=
   tsum_comp_le_tsum_of_injective (inclusion_injective h) _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
 theorem tsum_iUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (t : ι → Set α) :
-    (∑' x : ⋃ i, t i, f x) ≤ ∑' i, ∑' x : t i, f x :=
-  calc (∑' x : ⋃ i, t i, f x) ≤ ∑' x : Σ i, t i, f x.2 :=
+    ∑' x : ⋃ i, t i, f x ≤ ∑' i, ∑' x : t i, f x :=
+  calc ∑' x : ⋃ i, t i, f x ≤ ∑' x : Σ i, t i, f x.2 :=
     tsum_le_tsum_comp_of_surjective (sigmaToiUnion_surjective t) _
   _ = ∑' i, ∑' x : t i, f x := ENNReal.tsum_sigma' _
 
 theorem tsum_biUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
-    (∑' x : ⋃ i ∈ s , t i, f x) ≤ ∑' i : s, ∑' x : t i, f x :=
-  calc (∑' x : ⋃ i ∈ s, t i, f x) = ∑' x : ⋃ i : s,  t i, f x := tsum_congr_subtype _ <| by simp
+    ∑' x : ⋃ i ∈ s , t i, f x ≤ ∑' i : s, ∑' x : t i, f x :=
+  calc ∑' x : ⋃ i ∈ s, t i, f x = ∑' x : ⋃ i : s,  t i, f x := tsum_congr_subtype _ <| by simp
   _ ≤ ∑' i : s, ∑' x : t i, f x := tsum_iUnion_le_tsum _ _
 
 theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
-    (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x :=
+    ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i in s, ∑' x : t i, f x :=
   (tsum_biUnion_le_tsum f s.toSet t).trans_eq (Finset.tsum_subtype s fun i => ∑' x : t i, f x)
 #align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
 theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
-    (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
+    ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by
   rw [← tsum_fintype]
   exact tsum_iUnion_le_tsum f t
 #align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
-    (∑' x : ↑(s ∪ t), f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
-  calc (∑' x : ↑(s ∪ t), f x) = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_subtype _ union_eq_iUnion
+    ∑' x : ↑(s ∪ t), f x ≤ ∑' x : s, f x + ∑' x : t, f x :=
+  calc ∑' x : ↑(s ∪ t), f x = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_subtype _ union_eq_iUnion
   _ ≤ _ := by simpa using tsum_iUnion_le f (cond · s t)
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
-    (∑' x, f x) = f b + ∑' x, ite (x = b) 0 (f x) :=
+    ∑' x, f x = f b + ∑' x, ite (x = b) 0 (f x) :=
   tsum_eq_add_tsum_ite' b ENNReal.summable
 #align ennreal.tsum_eq_add_tsum_ite ENNReal.tsum_eq_add_tsum_ite
 
-theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : (∑' n, f n) = ∞) (hf0 : f 0 ≠ ∞) :
-    (∑' n, f (n + 1)) = ∞ := by
+theorem tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (hf0 : f 0 ≠ ∞) :
+    ∑' n, f (n + 1) = ∞ := by
   rw [tsum_eq_zero_add' ENNReal.summable, add_eq_top] at hf
   exact hf.resolve_left hf0
 #align ennreal.tsum_add_one_eq_top ENNReal.tsum_add_one_eq_top
 
 /-- A sum of extended nonnegative reals which is finite can have only finitely many terms
 above any positive threshold.-/
-theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : (∑' i, a i) ≠ ∞)
+theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞)
     {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : { i : ι | ε ≤ a i }.Finite := by
   by_contra h
   have := Infinite.to_subtype h
@@ -1049,7 +1049,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
 
 /-- Markov's inequality for `Finset.card` and `tsum` in `ℝ≥0∞`. -/
 theorem finset_card_const_le_le_of_tsum_le {ι : Type _} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞)
-    (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
+    (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) :
     ∃ hf : { i : ι | ε ≤ a i }.Finite, ↑hf.toFinset.card ≤ c / ε := by
   have hf : { i : ι | ε ≤ a i }.Finite :=
     finite_const_le_of_tsum_ne_top (ne_top_of_le_ne_top c_ne_top tsum_le_c) ε_ne_zero
@@ -1080,14 +1080,14 @@ theorem tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} :
   tsum_coe_ne_top_iff_summable_coe.not_right
 #align ennreal.tsum_coe_eq_top_iff_not_summable_coe ENNReal.tsum_coe_eq_top_iff_not_summable_coe
 
-theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) :
+theorem hasSum_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) :
     HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) := by
   lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hsum
   simp only [coe_toReal, ← NNReal.coe_tsum, NNReal.hasSum_coe]
   exact (tsum_coe_ne_top_iff_summable.1 hsum).hasSum
 #align ennreal.has_sum_to_real ENNReal.hasSum_toReal
 
-theorem summable_toReal {f : α → ℝ≥0∞} (hsum : (∑' x, f x) ≠ ∞) : Summable fun x => (f x).toReal :=
+theorem summable_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) : Summable fun x => (f x).toReal :=
   (hasSum_toReal hsum).summable
 #align ennreal.summable_to_real ENNReal.summable_toReal
 
@@ -1095,7 +1095,7 @@ end ENNReal
 
 namespace NNReal
 
-theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : (∑' b, f b) = (∑' b, (f b : ℝ≥0∞)).toNNReal := by
+theorem tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : ∑' b, f b = (∑' b, (f b : ℝ≥0∞)).toNNReal := by
   by_cases h : Summable f
   · rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe]
   · have A := tsum_eq_zero_of_not_summable h
@@ -1145,14 +1145,14 @@ theorem summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
 #align nnreal.summable_iff_not_tendsto_nat_at_top NNReal.summable_iff_not_tendsto_nat_atTop
 
 theorem summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f := by
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : Summable f := by
   refine summable_iff_not_tendsto_nat_atTop.2 fun H => ?_
   rcases exists_lt_of_tendsto_atTop H 0 c with ⟨n, -, hn⟩
   exact lt_irrefl _ (hn.trans_le (h n))
 #align nnreal.summable_of_sum_range_le NNReal.summable_of_sum_range_le
 
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   _root_.tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
 #align nnreal.tsum_le_of_sum_range_le NNReal.tsum_le_of_sum_range_le
 
@@ -1212,12 +1212,12 @@ theorem hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum
 #align nnreal.has_sum_strict_mono NNReal.hasSum_strict_mono
 
 theorem tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i)
-    (hg : Summable g) : (∑' n, f n) < ∑' n, g n :=
+    (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
   hasSum_lt h hi (summable_of_le h hg).hasSum hg.hasSum
 #align nnreal.tsum_lt_tsum NNReal.tsum_lt_tsum
 
 @[mono]
-theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : (∑' n, f n) < ∑' n, g n :=
+theorem tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : ∑' n, f n < ∑' n, g n :=
   let ⟨hle, _i, hi⟩ := Pi.lt_def.mp h
   tsum_lt_tsum hle hi hg
 #align nnreal.tsum_strict_mono NNReal.tsum_strict_mono
@@ -1228,7 +1228,7 @@ theorem tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i)
 #align nnreal.tsum_pos NNReal.tsum_pos
 
 theorem tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) :
-    (∑' x, f x) = f i + ∑' x, ite (x = i) 0 (f x) := by
+    ∑' x, f x = f i + ∑' x, ite (x = i) 0 (f x) := by
   refine' tsum_eq_add_tsum_ite' i (NNReal.summable_of_le (fun i' => _) hf)
   rw [Function.update_apply]
   split_ifs <;> simp only [zero_le', le_rfl]
@@ -1249,7 +1249,7 @@ theorem tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) :
   simp only [ENNReal.toReal, tsum_toNNReal_eq hf, NNReal.coe_tsum]
 #align ennreal.tsum_to_real_eq ENNReal.tsum_toReal_eq
 
-theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞) :
+theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : ∑' i, f i ≠ ∞) :
     Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) := by
   lift f to ℕ → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf
   replace hf : Summable f := tsum_coe_ne_top_iff_summable.1 hf
@@ -1258,7 +1258,7 @@ theorem tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : (∑' i, f i) ≠ ∞
 #align ennreal.tendsto_sum_nat_add ENNReal.tendsto_sum_nat_add
 
 theorem tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   _root_.tsum_le_of_sum_range_le ENNReal.summable h
 #align ennreal.tsum_le_of_sum_range_le ENNReal.tsum_le_of_sum_range_le
 
@@ -1277,7 +1277,7 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
 theorem tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ⊤) (h : ∀ a : α, f a ≤ g a)
-    (hi : f i < g i) : (∑' x, f x) < ∑' x, g x :=
+    (hi : f i < g i) : ∑' x, f x < ∑' x, g x :=
   hasSum_lt h hi hfi ENNReal.summable.hasSum ENNReal.summable.hasSum
 #align ennreal.tsum_lt_tsum ENNReal.tsum_lt_tsum
 
@@ -1341,20 +1341,20 @@ theorem summable_prod_of_nonneg {f : (α × β) → ℝ} (hf : 0 ≤ f) :
   (Equiv.sigmaEquivProd _ _).summable_iff.symm.trans <| summable_sigma_of_nonneg fun _ ↦ hf _
 
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
-    (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
+    (h : ∀ u : Finset ι, ∑ x in u, f x ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
     tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun _ ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
 
 theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : Summable f := by
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : Summable f := by
   refine (summable_iff_not_tendsto_nat_atTop_of_nonneg hf).2 fun H => ?_
   rcases exists_lt_of_tendsto_atTop H 0 c with ⟨n, -, hn⟩
   exact lt_irrefl _ (hn.trans_le (h n))
 #align summable_of_sum_range_le summable_of_sum_range_le
 
 theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
-    (h : ∀ n, (∑ i in Finset.range n, f i) ≤ c) : (∑' n, f n) ≤ c :=
+    (h : ∀ n, ∑ i in Finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
   _root_.tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
 #align real.tsum_le_of_sum_range_le Real.tsum_le_of_sum_range_le
 
@@ -1362,7 +1362,7 @@ theorem Real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0
 series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
 then the series of `f` is strictly smaller than the series of `g`. -/
 theorem tsum_lt_tsum_of_nonneg {i : ℕ} {f g : ℕ → ℝ} (h0 : ∀ b : ℕ, 0 ≤ f b)
-    (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : (∑' n, f n) < ∑' n, g n :=
+    (h : ∀ b : ℕ, f b ≤ g b) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n :=
   tsum_lt_tsum h hi (summable_of_nonneg_of_le h0 h hg) hg
 #align tsum_lt_tsum_of_nonneg tsum_lt_tsum_of_nonneg
 
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -261,7 +261,7 @@ theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε
   (hasBasis_nhds_of_ne_top xt).eq_biInf
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
-theorem biInf_le_nhds : ∀ x : ℝ≥0∞, (⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε))) ≤ 𝓝 x
+theorem biInf_le_nhds : ∀ x : ℝ≥0∞, ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) ≤ 𝓝 x
   | ⊤ => iInf₂_le_of_le 1 one_pos <| by
     simpa only [← coe_one, top_sub_coe, top_add, Icc_self, principal_singleton] using pure_le_nhds _
   | (x : ℝ≥0) => (nhds_of_ne_top coe_ne_top).ge
@@ -483,9 +483,9 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
-theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
-    (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i := by
-  by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0
+theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0)
+    (h0 : a = 0 → Nonempty ι) : ⨅ i, a * f i = a * ⨅ i, f i := by
+  by_cases H : a = ⊤ ∧ ⨅ i, f i = 0
   · rcases h H.1 H.2 with ⟨i, hi⟩
     rw [H.2, mul_zero, ← bot_eq_zero, iInf_eq_bot]
     exact fun b hb => ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩
@@ -498,17 +498,17 @@ theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = 
 #align ennreal.infi_mul_left' ENNReal.iInf_mul_left'
 
 theorem iInf_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
-    (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
+    (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0) : ⨅ i, a * f i = a * ⨅ i, f i :=
   iInf_mul_left' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_left ENNReal.iInf_mul_left
 
-theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
-    (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
+theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0)
+    (h0 : a = 0 → Nonempty ι) : ⨅ i, f i * a = (⨅ i, f i) * a := by
   simpa only [mul_comm a] using iInf_mul_left' h h0
 #align ennreal.infi_mul_right' ENNReal.iInf_mul_right'
 
 theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
-    (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
+    (h : a = ⊤ → ⨅ i, f i = 0 → ∃ i, f i = 0) : ⨅ i, f i * a = (⨅ i, f i) * a :=
   iInf_mul_right' h fun _ => ‹Nonempty ι›
 #align ennreal.infi_mul_right ENNReal.iInf_mul_right
 
@@ -797,7 +797,7 @@ protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : 
     (∑' a, f a) = ⨆ i, ∑ a in s i, f a := by
   rw [ENNReal.tsum_eq_iSup_sum]
   symm
-  change (⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i)) = ⨆ s : Finset α, ∑ a in s, f a
+  change ⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i) = ⨆ s : Finset α, ∑ a in s, f a
   exact (Finset.sum_mono_set f).iSup_comp_eq hs
 #align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
 
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -1272,7 +1272,7 @@ theorem hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : 
     lift g to α → ℝ≥0 using hg'
     lift sf to ℝ≥0 using hsf
     lift sg to ℝ≥0 using hsg
-    simp only [coe_le_coe, coe_lt_coe] at h hi⊢
+    simp only [coe_le_coe, coe_lt_coe] at h hi ⊢
     exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
 #align ennreal.has_sum_lt ENNReal.hasSum_lt
 
@@ -1295,7 +1295,7 @@ theorem summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf
     (hf : Summable f) : Summable g := by
   lift f to β → ℝ≥0 using fun b => (hg b).trans (hgf b)
   lift g to β → ℝ≥0 using hg
-  rw [NNReal.summable_coe] at hf⊢
+  rw [NNReal.summable_coe] at hf ⊢
   exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
 #align summable_of_nonneg_of_le summable_of_nonneg_of_le
 
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -1134,7 +1134,7 @@ theorem not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} :
   constructor
   · intro h
     refine' ((tendsto_of_monotone _).resolve_right h).comp _
-    exacts[Finset.sum_mono_set _, tendsto_finset_range]
+    exacts [Finset.sum_mono_set _, tendsto_finset_range]
   · rintro hnat ⟨r, hr⟩
     exact not_tendsto_nhds_of_tendsto_atTop hnat _ (hasSum_iff_tendsto_nat.1 hr)
 #align nnreal.not_summable_iff_tendsto_nat_at_top NNReal.not_summable_iff_tendsto_nat_atTop
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -148,7 +148,7 @@ def ltTopHomeomorphNNReal : { a | a < ∞ } ≃ₜ ℝ≥0 := by
   simp only [mem_setOf_eq, lt_top_iff_ne_top]
 #align ennreal.lt_top_homeomorph_nnreal ENNReal.ltTopHomeomorphNNReal
 
-theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_h : a ≠ ∞), 𝓟 (Ioi a) :=
+theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) :=
   nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
 #align ennreal.nhds_top ENNReal.nhds_top
 
@@ -193,7 +193,7 @@ theorem tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) :=
   tendsto_coe_nhds_top.2 tendsto_real_toNNReal_atTop
 #align ennreal.tendsto_of_real_at_top ENNReal.tendsto_ofReal_atTop
 
-theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_h : a ≠ 0), 𝓟 (Iio a) :=
+theorem nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) :=
   nhds_bot_order.trans <| by simp [pos_iff_ne_zero, Iio]
 #align ennreal.nhds_zero ENNReal.nhds_zero
 
@@ -566,13 +566,13 @@ theorem iSup_add {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : iSup s +
 #align ennreal.supr_add ENNReal.iSup_add
 
 theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
-    (⨆ (i) (_hi : p i), f i) + a = ⨆ (i) (_hi : p i), f i + a := by
+    (⨆ (i) (_ : p i), f i) + a = ⨆ (i) (_ : p i), f i + a := by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h
   simp only [iSup_subtype', iSup_add]
 #align ennreal.bsupr_add' ENNReal.biSup_add'
 
 theorem add_biSup' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
-    (a + ⨆ (i) (_hi : p i), f i) = ⨆ (i) (_hi : p i), a + f i := by
+    (a + ⨆ (i) (_ : p i), f i) = ⨆ (i) (_ : p i), a + f i := by
   simp only [add_comm a, biSup_add' h]
 #align ennreal.add_bsupr' ENNReal.add_biSup'
 
@@ -601,7 +601,7 @@ theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι
 
 theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i, p i → ∀ j, q j → f i + g j ≤ a) :
-    ((⨆ (i) (_hi : p i), f i) + ⨆ (j) (_hj : q j), g j) ≤ a := by
+    ((⨆ (i) (_ : p i), f i) + ⨆ (j) (_ : q j), g j) ≤ a := by
   simp_rw [biSup_add' hp, add_biSup' hq]
   exact iSup₂_le fun i hi => iSup₂_le (h i hi)
 #align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'
@@ -877,17 +877,17 @@ protected theorem lt_top_of_tsum_ne_top {a : α → ℝ≥0∞} (tsum_ne_top : (
 #align ennreal.lt_top_of_tsum_ne_top ENNReal.lt_top_of_tsum_ne_top
 
 @[simp]
-protected theorem tsum_top [Nonempty α] : (∑' _i : α, ∞) = ∞ :=
+protected theorem tsum_top [Nonempty α] : (∑' _ : α, ∞) = ∞ :=
   let ⟨a⟩ := ‹Nonempty α›
   ENNReal.tsum_eq_top_of_eq_top ⟨a, rfl⟩
 #align ennreal.tsum_top ENNReal.tsum_top
 
 theorem tsum_const_eq_top_of_ne_zero {α : Type _} [Infinite α] {c : ℝ≥0∞} (hc : c ≠ 0) :
-    (∑' _a : α, c) = ∞ := by
+    (∑' _ : α, c) = ∞ := by
   have A : Tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) atTop (𝓝 (∞ * c)) := by
     apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top
     simp only [true_or_iff, top_ne_zero, Ne.def, not_false_iff]
-  have B : ∀ n : ℕ, (n : ℝ≥0∞) * c ≤ ∑' _a : α, c := fun n => by
+  have B : ∀ n : ℕ, (n : ℝ≥0∞) * c ≤ ∑' _ : α, c := fun n => by
     rcases Infinite.exists_subset_card_eq α n with ⟨s, hs⟩
     simpa [hs] using @ENNReal.sum_le_tsum α (fun _ => c) s
   simpa [hc] using le_of_tendsto' A B
@@ -917,7 +917,7 @@ protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ
 #align ennreal.tsum_const_smul ENNReal.tsum_const_smul
 
 @[simp]
-theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _h : a = b, f b) = f a :=
+theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _ : a = b, f b) = f a :=
   (tsum_eq_single a fun _ h => by simp [h.symm]).trans <| by simp
 #align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
 
@@ -1042,7 +1042,7 @@ theorem finite_const_le_of_tsum_ne_top {ι : Type _} {a : ι → ℝ≥0∞} (ts
   by_contra h
   have := Infinite.to_subtype h
   refine tsum_ne_top (top_unique ?_)
-  calc ⊤ = ∑' _i : { i | ε ≤ a i }, ε := (tsum_const_eq_top_of_ne_zero ε_ne_zero).symm
+  calc ⊤ = ∑' _ : { i | ε ≤ a i }, ε := (tsum_const_eq_top_of_ne_zero ε_ne_zero).symm
   _ ≤ ∑' i, a i := tsum_le_tsum_of_inj (↑) Subtype.val_injective (fun _ _ => zero_le _)
     (fun i => i.2) ENNReal.summable ENNReal.summable
 #align ennreal.finite_const_le_of_tsum_ne_top ENNReal.finite_const_le_of_tsum_ne_top
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -694,7 +694,7 @@ theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠
     ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' := by
   have : NeZero y := ⟨hy⟩
   have : NeZero z := ⟨hz⟩
-  have A : Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 + p.2) (𝓝[<] y ×ᶠ 𝓝[<] z) (𝓝 (y + z)) := by
+  have A : Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 + p.2) (𝓝[<] y ×ˢ 𝓝[<] z) (𝓝 (y + z)) := by
     apply Tendsto.mono_left _ (Filter.prod_mono nhdsWithin_le_nhds nhdsWithin_le_nhds)
     rw [← nhds_prod_eq]
     exact tendsto_add
chore: forward-port leanprover-community/mathlib#18980 (#3956)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module topology.instances.ennreal
-! leanprover-community/mathlib commit 90ac7a91781abbb5f0206888d68bd095f88c4229
+! leanprover-community/mathlib commit ec4b2eeb50364487f80421c0b4c41328a611f30d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -656,6 +656,18 @@ theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f
   rw [mul_comm, mul_iSup]; congr; funext; rw [mul_comm]
 #align ennreal.supr_mul ENNReal.iSup_mul
 
+theorem smul_iSup {ι : Sort _} {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (f : ι → ℝ≥0∞)
+    (c : R) : (c • ⨆ i, f i) = ⨆ i, c • f i := by
+  -- Porting note: replaced `iSup _` with `iSup f`
+  simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup f), ENNReal.mul_iSup]
+#align ennreal.smul_supr ENNReal.smul_iSup
+
+theorem smul_sSup {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (s : Set ℝ≥0∞) (c : R) :
+    c • sSup s = ⨆ i ∈ s, c • i := by
+  -- Porting note: replaced `_` with `s`
+  simp_rw [← smul_one_mul c (sSup s), ENNReal.mul_sSup, smul_one_mul]
+#align ennreal.smul_Sup ENNReal.smul_sSup
+
 theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
   iSup_mul
 #align ennreal.supr_div ENNReal.iSup_div
@@ -899,6 +911,11 @@ protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
   simp [mul_comm, ENNReal.tsum_mul_left]
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
+protected theorem tsum_const_smul {R} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (a : R) :
+    (∑' i, a • f i) = a • ∑' i, f i := by
+  simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • (1 : ℝ≥0∞)) _
+#align ennreal.tsum_const_smul ENNReal.tsum_const_smul
+
 @[simp]
 theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _h : a = b, f b) = f a :=
   (tsum_eq_single a fun _ h => by simp [h.symm]).trans <| by simp
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -153,7 +153,7 @@ theorem nhds_top : 𝓝 ∞ = ⨅ (a) (_h : a ≠ ∞), 𝓟 (Ioi a) :=
 #align ennreal.nhds_top ENNReal.nhds_top
 
 theorem nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi ↑r) :=
-  nhds_top.trans <| infᵢ_ne_top _
+  nhds_top.trans <| iInf_ne_top _
 #align ennreal.nhds_top' ENNReal.nhds_top'
 
 theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :=
@@ -162,7 +162,7 @@ theorem nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a :
 
 theorem tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} :
     Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by
-  simp only [nhds_top', tendsto_infᵢ, tendsto_principal, mem_Ioi]
+  simp only [nhds_top', tendsto_iInf, tendsto_principal, mem_Ioi]
 #align ennreal.tendsto_nhds_top_iff_nnreal ENNReal.tendsto_nhds_top_iff_nnreal
 
 theorem tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} :
@@ -258,25 +258,25 @@ theorem Icc_mem_nhds (xt : x ≠ ∞) (ε0 : ε ≠ 0) : Icc (x - ε) (x + ε) 
 #align ennreal.Icc_mem_nhds ENNReal.Icc_mem_nhds
 
 theorem nhds_of_ne_top (xt : x ≠ ⊤) : 𝓝 x = ⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
-  (hasBasis_nhds_of_ne_top xt).eq_binfᵢ
+  (hasBasis_nhds_of_ne_top xt).eq_biInf
 #align ennreal.nhds_of_ne_top ENNReal.nhds_of_ne_top
 
-theorem binfᵢ_le_nhds : ∀ x : ℝ≥0∞, (⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε))) ≤ 𝓝 x
-  | ⊤ => infᵢ₂_le_of_le 1 one_pos <| by
+theorem biInf_le_nhds : ∀ x : ℝ≥0∞, (⨅ ε > 0, 𝓟 (Icc (x - ε) (x + ε))) ≤ 𝓝 x
+  | ⊤ => iInf₂_le_of_le 1 one_pos <| by
     simpa only [← coe_one, top_sub_coe, top_add, Icc_self, principal_singleton] using pure_le_nhds _
   | (x : ℝ≥0) => (nhds_of_ne_top coe_ne_top).ge
 
 -- porting note: new lemma
 protected theorem tendsto_nhds_of_Icc {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞}
     (h : ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε)) : Tendsto u f (𝓝 a) := by
-  refine Tendsto.mono_right ?_ (binfᵢ_le_nhds _)
-  simpa only [tendsto_infᵢ, tendsto_principal]
+  refine Tendsto.mono_right ?_ (biInf_le_nhds _)
+  simpa only [tendsto_iInf, tendsto_principal]
 
 /-- Characterization of neighborhoods for `ℝ≥0∞` numbers. See also `tendsto_order`
 for a version with strict inequalities. -/
 protected theorem tendsto_nhds {f : Filter α} {u : α → ℝ≥0∞} {a : ℝ≥0∞} (ha : a ≠ ⊤) :
     Tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, u x ∈ Icc (a - ε) (a + ε) := by
-  simp only [nhds_of_ne_top ha, tendsto_infᵢ, tendsto_principal]
+  simp only [nhds_of_ne_top ha, tendsto_iInf, tendsto_principal]
 #align ennreal.tendsto_nhds ENNReal.tendsto_nhds
 
 protected theorem tendsto_nhds_zero {f : Filter α} {u : α → ℝ≥0∞} :
@@ -483,42 +483,42 @@ theorem le_of_forall_lt_one_mul_le {x y : ℝ≥0∞} (h : ∀ a < 1, a * x ≤
   exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h)
 #align ennreal.le_of_forall_lt_one_mul_le ENNReal.le_of_forall_lt_one_mul_le
 
-theorem infᵢ_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
+theorem iInf_mul_left' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, a * f i) = a * ⨅ i, f i := by
   by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0
   · rcases h H.1 H.2 with ⟨i, hi⟩
-    rw [H.2, mul_zero, ← bot_eq_zero, infᵢ_eq_bot]
+    rw [H.2, mul_zero, ← bot_eq_zero, iInf_eq_bot]
     exact fun b hb => ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩
   · rw [not_and_or] at H
     cases isEmpty_or_nonempty ι
-    · rw [infᵢ_of_empty, infᵢ_of_empty, mul_top]
+    · rw [iInf_of_empty, iInf_of_empty, mul_top]
       exact mt h0 (not_nonempty_iff.2 ‹_›)
-    · exact (ENNReal.mul_left_mono.map_infᵢ_of_continuousAt'
+    · exact (ENNReal.mul_left_mono.map_iInf_of_continuousAt'
         (ENNReal.continuousAt_const_mul H)).symm
-#align ennreal.infi_mul_left' ENNReal.infᵢ_mul_left'
+#align ennreal.infi_mul_left' ENNReal.iInf_mul_left'
 
-theorem infᵢ_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
+theorem iInf_mul_left {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i :=
-  infᵢ_mul_left' h fun _ => ‹Nonempty ι›
-#align ennreal.infi_mul_left ENNReal.infᵢ_mul_left
+  iInf_mul_left' h fun _ => ‹Nonempty ι›
+#align ennreal.infi_mul_left ENNReal.iInf_mul_left
 
-theorem infᵢ_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
+theorem iInf_mul_right' {ι} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0)
     (h0 : a = 0 → Nonempty ι) : (⨅ i, f i * a) = (⨅ i, f i) * a := by
-  simpa only [mul_comm a] using infᵢ_mul_left' h h0
-#align ennreal.infi_mul_right' ENNReal.infᵢ_mul_right'
+  simpa only [mul_comm a] using iInf_mul_left' h h0
+#align ennreal.infi_mul_right' ENNReal.iInf_mul_right'
 
-theorem infᵢ_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
+theorem iInf_mul_right {ι} [Nonempty ι] {f : ι → ℝ≥0∞} {a : ℝ≥0∞}
     (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a :=
-  infᵢ_mul_right' h fun _ => ‹Nonempty ι›
-#align ennreal.infi_mul_right ENNReal.infᵢ_mul_right
+  iInf_mul_right' h fun _ => ‹Nonempty ι›
+#align ennreal.infi_mul_right ENNReal.iInf_mul_right
 
-theorem inv_map_infᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (infᵢ x)⁻¹ = ⨆ i, (x i)⁻¹ :=
-  OrderIso.invENNReal.map_infᵢ x
-#align ennreal.inv_map_infi ENNReal.inv_map_infᵢ
+theorem inv_map_iInf {ι : Sort _} {x : ι → ℝ≥0∞} : (iInf x)⁻¹ = ⨆ i, (x i)⁻¹ :=
+  OrderIso.invENNReal.map_iInf x
+#align ennreal.inv_map_infi ENNReal.inv_map_iInf
 
-theorem inv_map_supᵢ {ι : Sort _} {x : ι → ℝ≥0∞} : (supᵢ x)⁻¹ = ⨅ i, (x i)⁻¹ :=
-  OrderIso.invENNReal.map_supᵢ x
-#align ennreal.inv_map_supr ENNReal.inv_map_supᵢ
+theorem inv_map_iSup {ι : Sort _} {x : ι → ℝ≥0∞} : (iSup x)⁻¹ = ⨅ i, (x i)⁻¹ :=
+  OrderIso.invENNReal.map_iSup x
+#align ennreal.inv_map_supr ENNReal.inv_map_iSup
 
 theorem inv_limsup {ι : Sort _} {x : ι → ℝ≥0∞} {l : Filter ι} :
     (limsup x l)⁻¹ = liminf (fun i => (x i)⁻¹) l :=
@@ -560,115 +560,115 @@ protected theorem tendsto_inv_nat_nhds_zero : Tendsto (fun n : ℕ => (n : ℝ
   ENNReal.inv_top ▸ ENNReal.tendsto_inv_iff.2 tendsto_nat_nhds_top
 #align ennreal.tendsto_inv_nat_nhds_zero ENNReal.tendsto_inv_nat_nhds_zero
 
-theorem supᵢ_add {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : supᵢ s + a = ⨆ b, s b + a :=
-  Monotone.map_supᵢ_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
+theorem iSup_add {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : iSup s + a = ⨆ b, s b + a :=
+  Monotone.map_iSup_of_continuousAt' (continuousAt_id.add continuousAt_const) <|
     monotone_id.add monotone_const
-#align ennreal.supr_add ENNReal.supᵢ_add
+#align ennreal.supr_add ENNReal.iSup_add
 
-theorem bsupᵢ_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+theorem biSup_add' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (⨆ (i) (_hi : p i), f i) + a = ⨆ (i) (_hi : p i), f i + a := by
   haveI : Nonempty { i // p i } := nonempty_subtype.2 h
-  simp only [supᵢ_subtype', supᵢ_add]
-#align ennreal.bsupr_add' ENNReal.bsupᵢ_add'
+  simp only [iSup_subtype', iSup_add]
+#align ennreal.bsupr_add' ENNReal.biSup_add'
 
-theorem add_bsupᵢ' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
+theorem add_biSup' {ι : Sort _} {p : ι → Prop} (h : ∃ i, p i) {f : ι → ℝ≥0∞} :
     (a + ⨆ (i) (_hi : p i), f i) = ⨆ (i) (_hi : p i), a + f i := by
-  simp only [add_comm a, bsupᵢ_add' h]
-#align ennreal.add_bsupr' ENNReal.add_bsupᵢ'
+  simp only [add_comm a, biSup_add' h]
+#align ennreal.add_bsupr' ENNReal.add_biSup'
 
-theorem bsupᵢ_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
+theorem biSup_add {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (⨆ i ∈ s, f i) + a = ⨆ i ∈ s, f i + a :=
-  bsupᵢ_add' hs
-#align ennreal.bsupr_add ENNReal.bsupᵢ_add
+  biSup_add' hs
+#align ennreal.bsupr_add ENNReal.biSup_add
 
-theorem add_bsupᵢ {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
+theorem add_biSup {ι} {s : Set ι} (hs : s.Nonempty) {f : ι → ℝ≥0∞} :
     (a + ⨆ i ∈ s, f i) = ⨆ i ∈ s, a + f i :=
-  add_bsupᵢ' hs
-#align ennreal.add_bsupr ENNReal.add_bsupᵢ
+  add_biSup' hs
+#align ennreal.add_bsupr ENNReal.add_biSup
 
-theorem supₛ_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : supₛ s + a = ⨆ b ∈ s, b + a := by
-  rw [supₛ_eq_supᵢ, bsupᵢ_add hs]
-#align ennreal.Sup_add ENNReal.supₛ_add
+theorem sSup_add {s : Set ℝ≥0∞} (hs : s.Nonempty) : sSup s + a = ⨆ b ∈ s, b + a := by
+  rw [sSup_eq_iSup, biSup_add hs]
+#align ennreal.Sup_add ENNReal.sSup_add
 
-theorem add_supᵢ {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + supᵢ s = ⨆ b, a + s b := by
-  rw [add_comm, supᵢ_add]; simp [add_comm]
-#align ennreal.add_supr ENNReal.add_supᵢ
+theorem add_iSup {ι : Sort _} {s : ι → ℝ≥0∞} [Nonempty ι] : a + iSup s = ⨆ b, a + s b := by
+  rw [add_comm, iSup_add]; simp [add_comm]
+#align ennreal.add_supr ENNReal.add_iSup
 
-theorem supᵢ_add_supᵢ_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
-    {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : supᵢ f + supᵢ g ≤ a := by
-  simp_rw [supᵢ_add, add_supᵢ]; exact supᵢ₂_le h
-#align ennreal.supr_add_supr_le ENNReal.supᵢ_add_supᵢ_le
+theorem iSup_add_iSup_le {ι ι' : Sort _} [Nonempty ι] [Nonempty ι'] {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞}
+    {a : ℝ≥0∞} (h : ∀ i j, f i + g j ≤ a) : iSup f + iSup g ≤ a := by
+  simp_rw [iSup_add, add_iSup]; exact iSup₂_le h
+#align ennreal.supr_add_supr_le ENNReal.iSup_add_iSup_le
 
-theorem bsupᵢ_add_bsupᵢ_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
+theorem biSup_add_biSup_le' {ι ι'} {p : ι → Prop} {q : ι' → Prop} (hp : ∃ i, p i) (hq : ∃ j, q j)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i, p i → ∀ j, q j → f i + g j ≤ a) :
     ((⨆ (i) (_hi : p i), f i) + ⨆ (j) (_hj : q j), g j) ≤ a := by
-  simp_rw [bsupᵢ_add' hp, add_bsupᵢ' hq]
-  exact supᵢ₂_le fun i hi => supᵢ₂_le (h i hi)
-#align ennreal.bsupr_add_bsupr_le' ENNReal.bsupᵢ_add_bsupᵢ_le'
+  simp_rw [biSup_add' hp, add_biSup' hq]
+  exact iSup₂_le fun i hi => iSup₂_le (h i hi)
+#align ennreal.bsupr_add_bsupr_le' ENNReal.biSup_add_biSup_le'
 
-theorem bsupᵢ_add_bsupᵢ_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
+theorem biSup_add_biSup_le {ι ι'} {s : Set ι} {t : Set ι'} (hs : s.Nonempty) (ht : t.Nonempty)
     {f : ι → ℝ≥0∞} {g : ι' → ℝ≥0∞} {a : ℝ≥0∞} (h : ∀ i ∈ s, ∀ j ∈ t, f i + g j ≤ a) :
     ((⨆ i ∈ s, f i) + ⨆ j ∈ t, g j) ≤ a :=
-  bsupᵢ_add_bsupᵢ_le' hs ht h
-#align ennreal.bsupr_add_bsupr_le ENNReal.bsupᵢ_add_bsupᵢ_le
+  biSup_add_biSup_le' hs ht h
+#align ennreal.bsupr_add_bsupr_le ENNReal.biSup_add_biSup_le
 
-theorem supᵢ_add_supᵢ {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
-    supᵢ f + supᵢ g = ⨆ a, f a + g a := by
+theorem iSup_add_iSup {ι : Sort _} {f g : ι → ℝ≥0∞} (h : ∀ i j, ∃ k, f i + g j ≤ f k + g k) :
+    iSup f + iSup g = ⨆ a, f a + g a := by
   cases isEmpty_or_nonempty ι
-  · simp only [supᵢ_of_empty, bot_eq_zero, zero_add]
-  · refine' le_antisymm _ (supᵢ_le fun a => add_le_add (le_supᵢ _ _) (le_supᵢ _ _))
-    refine' supᵢ_add_supᵢ_le fun i j => _
+  · simp only [iSup_of_empty, bot_eq_zero, zero_add]
+  · refine' le_antisymm _ (iSup_le fun a => add_le_add (le_iSup _ _) (le_iSup _ _))
+    refine' iSup_add_iSup_le fun i j => _
     rcases h i j with ⟨k, hk⟩
-    exact le_supᵢ_of_le k hk
-#align ennreal.supr_add_supr ENNReal.supᵢ_add_supᵢ
+    exact le_iSup_of_le k hk
+#align ennreal.supr_add_supr ENNReal.iSup_add_iSup
 
-theorem supᵢ_add_supᵢ_of_monotone {ι : Type _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
-    (hg : Monotone g) : supᵢ f + supᵢ g = ⨆ a, f a + g a :=
-  supᵢ_add_supᵢ fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
-#align ennreal.supr_add_supr_of_monotone ENNReal.supᵢ_add_supᵢ_of_monotone
+theorem iSup_add_iSup_of_monotone {ι : Type _} [SemilatticeSup ι] {f g : ι → ℝ≥0∞} (hf : Monotone f)
+    (hg : Monotone g) : iSup f + iSup g = ⨆ a, f a + g a :=
+  iSup_add_iSup fun i j => ⟨i ⊔ j, add_le_add (hf <| le_sup_left) (hg <| le_sup_right)⟩
+#align ennreal.supr_add_supr_of_monotone ENNReal.iSup_add_iSup_of_monotone
 
-theorem finset_sum_supᵢ_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
-    (hf : ∀ a, Monotone (f a)) : (∑ a in s, supᵢ (f a)) = ⨆ n, ∑ a in s, f a n := by
+theorem finset_sum_iSup_nat {α} {ι} [SemilatticeSup ι] {s : Finset α} {f : α → ι → ℝ≥0∞}
+    (hf : ∀ a, Monotone (f a)) : (∑ a in s, iSup (f a)) = ⨆ n, ∑ a in s, f a n := by
   refine' Finset.induction_on s _ _
   · simp
   · intro a s has ih
     simp only [Finset.sum_insert has]
-    rw [ih, supᵢ_add_supᵢ_of_monotone (hf a)]
+    rw [ih, iSup_add_iSup_of_monotone (hf a)]
     intro i j h
     exact Finset.sum_le_sum fun a _ => hf a h
-#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_supᵢ_nat
+#align ennreal.finset_sum_supr_nat ENNReal.finset_sum_iSup_nat
 
-theorem mul_supᵢ {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * supᵢ f = ⨆ i, a * f i := by
+theorem mul_iSup {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : a * iSup f = ⨆ i, a * f i := by
   by_cases hf : ∀ i, f i = 0
   · obtain rfl : f = fun _ => 0
     exact funext hf
-    simp only [supᵢ_zero_eq_zero, mul_zero]
-  · refine' (monotone_id.const_mul' _).map_supᵢ_of_continuousAt _ (mul_zero a)
+    simp only [iSup_zero_eq_zero, mul_zero]
+  · refine' (monotone_id.const_mul' _).map_iSup_of_continuousAt _ (mul_zero a)
     refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)
-    exact mt supᵢ_eq_zero.1 hf
-#align ennreal.mul_supr ENNReal.mul_supᵢ
+    exact mt iSup_eq_zero.1 hf
+#align ennreal.mul_supr ENNReal.mul_iSup
 
-theorem mul_supₛ {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * supₛ s = ⨆ i ∈ s, a * i := by
-  simp only [supₛ_eq_supᵢ, mul_supᵢ]
-#align ennreal.mul_Sup ENNReal.mul_supₛ
+theorem mul_sSup {s : Set ℝ≥0∞} {a : ℝ≥0∞} : a * sSup s = ⨆ i ∈ s, a * i := by
+  simp only [sSup_eq_iSup, mul_iSup]
+#align ennreal.mul_Sup ENNReal.mul_sSup
 
-theorem supᵢ_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f * a = ⨆ i, f i * a := by
-  rw [mul_comm, mul_supᵢ]; congr; funext; rw [mul_comm]
-#align ennreal.supr_mul ENNReal.supᵢ_mul
+theorem iSup_mul {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f * a = ⨆ i, f i * a := by
+  rw [mul_comm, mul_iSup]; congr; funext; rw [mul_comm]
+#align ennreal.supr_mul ENNReal.iSup_mul
 
-theorem supᵢ_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : supᵢ f / a = ⨆ i, f i / a :=
-  supᵢ_mul
-#align ennreal.supr_div ENNReal.supᵢ_div
+theorem iSup_div {ι : Sort _} {f : ι → ℝ≥0∞} {a : ℝ≥0∞} : iSup f / a = ⨆ i, f i / a :=
+  iSup_mul
+#align ennreal.supr_div ENNReal.iSup_div
 
 protected theorem tendsto_coe_sub {b : ℝ≥0∞} :
     Tendsto (fun b : ℝ≥0∞ => ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
   continuous_nnreal_sub.tendsto _
 #align ennreal.tendsto_coe_sub ENNReal.tendsto_coe_sub
 
-theorem sub_supᵢ {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
+theorem sub_iSup {ι : Sort _} [Nonempty ι] {b : ι → ℝ≥0∞} (hr : a < ⊤) :
     (a - ⨆ i, b i) = ⨅ i, a - b i :=
-  antitone_const_tsub.map_supᵢ_of_continuousAt' (continuous_sub_left hr.ne).continuousAt
-#align ennreal.sub_supr ENNReal.sub_supᵢ
+  antitone_const_tsub.map_iSup_of_continuousAt' (continuous_sub_left hr.ne).continuousAt
+#align ennreal.sub_supr ENNReal.sub_iSup
 
 theorem exists_countable_dense_no_zero_top :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s := by
@@ -700,7 +700,7 @@ theorem exists_frequently_lt_of_liminf_ne_top {ι : Type _} {l : Filter ι} {x :
     (hx : liminf (fun n => (Real.nnabs (x n) : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, x n < R := by
   by_contra h
   simp_rw [not_exists, not_frequently, not_lt] at h
-  refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_liminfₛ_of_le (by isBoundedDefault) ?_)
+  refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_limsInf_of_le (by isBoundedDefault) ?_)
   simp only [eventually_map, ENNReal.coe_le_coe]
   filter_upwards [h r] with i hi using hi.trans (le_abs_self (x i))
 #align ennreal.exists_frequently_lt_of_liminf_ne_top ENNReal.exists_frequently_lt_of_liminf_ne_top
@@ -709,7 +709,7 @@ theorem exists_frequently_lt_of_liminf_ne_top' {ι : Type _} {l : Filter ι} {x
     (hx : liminf (fun n => (Real.nnabs (x n) : ℝ≥0∞)) l ≠ ∞) : ∃ R, ∃ᶠ n in l, R < x n := by
   by_contra h
   simp_rw [not_exists, not_frequently, not_lt] at h
-  refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_liminfₛ_of_le (by isBoundedDefault) ?_)
+  refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_limsInf_of_le (by isBoundedDefault) ?_)
   simp only [eventually_map, ENNReal.coe_le_coe]
   filter_upwards [h (-r)]with i hi using(le_neg.1 hi).trans (neg_le_abs_self _)
 #align ennreal.exists_frequently_lt_of_liminf_ne_top' ENNReal.exists_frequently_lt_of_liminf_ne_top'
@@ -761,7 +761,7 @@ protected theorem coe_tsum {f : α → ℝ≥0} : Summable f → ↑(tsum f) = 
 #align ennreal.coe_tsum ENNReal.coe_tsum
 
 protected theorem hasSum : HasSum f (⨆ s : Finset α, ∑ a in s, f a) :=
-  tendsto_atTop_supᵢ fun _ _ => Finset.sum_le_sum_of_subset
+  tendsto_atTop_iSup fun _ _ => Finset.sum_le_sum_of_subset
 #align ennreal.has_sum ENNReal.hasSum
 
 @[simp]
@@ -777,17 +777,17 @@ theorem tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b : ℝ
   exact ENNReal.summable.hasSum
 #align ennreal.tsum_coe_ne_top_iff_summable ENNReal.tsum_coe_ne_top_iff_summable
 
-protected theorem tsum_eq_supᵢ_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
+protected theorem tsum_eq_iSup_sum : (∑' a, f a) = ⨆ s : Finset α, ∑ a in s, f a :=
   ENNReal.hasSum.tsum_eq
-#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_supᵢ_sum
+#align ennreal.tsum_eq_supr_sum ENNReal.tsum_eq_iSup_sum
 
-protected theorem tsum_eq_supᵢ_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
+protected theorem tsum_eq_iSup_sum' {ι : Type _} (s : ι → Finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
     (∑' a, f a) = ⨆ i, ∑ a in s i, f a := by
-  rw [ENNReal.tsum_eq_supᵢ_sum]
+  rw [ENNReal.tsum_eq_iSup_sum]
   symm
   change (⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i)) = ⨆ s : Finset α, ∑ a in s, f a
-  exact (Finset.sum_mono_set f).supᵢ_comp_eq hs
-#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_supᵢ_sum'
+  exact (Finset.sum_mono_set f).iSup_comp_eq hs
+#align ennreal.tsum_eq_supr_sum' ENNReal.tsum_eq_iSup_sum'
 
 protected theorem tsum_sigma {β : α → Type _} (f : ∀ a, β a → ℝ≥0∞) :
     (∑' p : Σa, β a, f p.1 p.2) = ∑' (a) (b), f a b :=
@@ -823,18 +823,18 @@ protected theorem sum_le_tsum {f : α → ℝ≥0∞} (s : Finset α) : (∑ x i
   sum_le_tsum s (fun _ _ => zero_le _) ENNReal.summable
 #align ennreal.sum_le_tsum ENNReal.sum_le_tsum
 
-protected theorem tsum_eq_supᵢ_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
+protected theorem tsum_eq_iSup_nat' {f : ℕ → ℝ≥0∞} {N : ℕ → ℕ} (hN : Tendsto N atTop atTop) :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range (N i), f a :=
-  ENNReal.tsum_eq_supᵢ_sum' _ fun t =>
+  ENNReal.tsum_eq_iSup_sum' _ fun t =>
     let ⟨n, hn⟩ := t.exists_nat_subset_range
     let ⟨k, _, hk⟩ := exists_le_of_tendsto_atTop hN 0 n
     ⟨k, Finset.Subset.trans hn (Finset.range_mono hk)⟩
-#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_supᵢ_nat'
+#align ennreal.tsum_eq_supr_nat' ENNReal.tsum_eq_iSup_nat'
 
-protected theorem tsum_eq_supᵢ_nat {f : ℕ → ℝ≥0∞} :
+protected theorem tsum_eq_iSup_nat {f : ℕ → ℝ≥0∞} :
     (∑' i : ℕ, f i) = ⨆ i : ℕ, ∑ a in Finset.range i, f a :=
-  ENNReal.tsum_eq_supᵢ_sum' _ Finset.exists_nat_subset_range
-#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_supᵢ_nat
+  ENNReal.tsum_eq_iSup_sum' _ Finset.exists_nat_subset_range
+#align ennreal.tsum_eq_supr_nat ENNReal.tsum_eq_iSup_nat
 
 protected theorem tsum_eq_liminf_sum_nat {f : ℕ → ℝ≥0∞} :
     (∑' i, f i) = liminf (fun n => ∑ i in Finset.range n, f i) atTop :=
@@ -900,14 +900,14 @@ protected theorem tsum_mul_right : (∑' i, f i * a) = (∑' i, f i) * a := by
 #align ennreal.tsum_mul_right ENNReal.tsum_mul_right
 
 @[simp]
-theorem tsum_supᵢ_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _h : a = b, f b) = f a :=
+theorem tsum_iSup_eq {α : Type _} (a : α) {f : α → ℝ≥0∞} : (∑' b : α, ⨆ _h : a = b, f b) = f a :=
   (tsum_eq_single a fun _ h => by simp [h.symm]).trans <| by simp
-#align ennreal.tsum_supr_eq ENNReal.tsum_supᵢ_eq
+#align ennreal.tsum_supr_eq ENNReal.tsum_iSup_eq
 
 theorem hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0∞} (r : ℝ≥0∞) :
     HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i in Finset.range n, f i) atTop (𝓝 r) := by
   refine' ⟨HasSum.tendsto_sum_nat, fun h => _⟩
-  rw [← supᵢ_eq_of_tendsto _ h, ← ENNReal.tsum_eq_supᵢ_nat]
+  rw [← iSup_eq_of_tendsto _ h, ← ENNReal.tsum_eq_iSup_nat]
   · exact ENNReal.summable.hasSum
   · exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst)
 #align ennreal.has_sum_iff_tendsto_nat ENNReal.hasSum_iff_tendsto_nat
@@ -979,32 +979,32 @@ theorem tsum_mono_subtype (f : α → ℝ≥0∞) {s t : Set α} (h : s ⊆ t) :
   tsum_comp_le_tsum_of_injective (inclusion_injective h) _
 #align ennreal.tsum_mono_subtype ENNReal.tsum_mono_subtype
 
-theorem tsum_unionᵢ_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (t : ι → Set α) :
+theorem tsum_iUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑' i, ∑' x : t i, f x :=
   calc (∑' x : ⋃ i, t i, f x) ≤ ∑' x : Σ i, t i, f x.2 :=
-    tsum_le_tsum_comp_of_surjective (sigmaToUnionᵢ_surjective t) _
+    tsum_le_tsum_comp_of_surjective (sigmaToiUnion_surjective t) _
   _ = ∑' i, ∑' x : t i, f x := ENNReal.tsum_sigma' _
 
-theorem tsum_bunionᵢ_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
+theorem tsum_biUnion_le_tsum {ι : Type _} (f : α → ℝ≥0∞) (s : Set ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s , t i, f x) ≤ ∑' i : s, ∑' x : t i, f x :=
   calc (∑' x : ⋃ i ∈ s, t i, f x) = ∑' x : ⋃ i : s,  t i, f x := tsum_congr_subtype _ <| by simp
-  _ ≤ ∑' i : s, ∑' x : t i, f x := tsum_unionᵢ_le_tsum _ _
+  _ ≤ ∑' i : s, ∑' x : t i, f x := tsum_iUnion_le_tsum _ _
 
-theorem tsum_bunionᵢ_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
+theorem tsum_biUnion_le {ι : Type _} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) :
     (∑' x : ⋃ i ∈ s, t i, f x) ≤ ∑ i in s, ∑' x : t i, f x :=
-  (tsum_bunionᵢ_le_tsum f s.toSet t).trans_eq (Finset.tsum_subtype s fun i => ∑' x : t i, f x)
-#align ennreal.tsum_bUnion_le ENNReal.tsum_bunionᵢ_le
+  (tsum_biUnion_le_tsum f s.toSet t).trans_eq (Finset.tsum_subtype s fun i => ∑' x : t i, f x)
+#align ennreal.tsum_bUnion_le ENNReal.tsum_biUnion_le
 
-theorem tsum_unionᵢ_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
+theorem tsum_iUnion_le {ι : Type _} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) :
     (∑' x : ⋃ i, t i, f x) ≤ ∑ i, ∑' x : t i, f x := by
   rw [← tsum_fintype]
-  exact tsum_unionᵢ_le_tsum f t
-#align ennreal.tsum_Union_le ENNReal.tsum_unionᵢ_le
+  exact tsum_iUnion_le_tsum f t
+#align ennreal.tsum_Union_le ENNReal.tsum_iUnion_le
 
 theorem tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) :
     (∑' x : ↑(s ∪ t), f x) ≤ (∑' x : s, f x) + ∑' x : t, f x :=
-  calc (∑' x : ↑(s ∪ t), f x) = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_subtype _ union_eq_unionᵢ
-  _ ≤ _ := by simpa using tsum_unionᵢ_le f (cond · s t)
+  calc (∑' x : ↑(s ∪ t), f x) = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_subtype _ union_eq_iUnion
+  _ ≤ _ := by simpa using tsum_iUnion_le f (cond · s t)
 #align ennreal.tsum_union_le ENNReal.tsum_union_le
 
 theorem tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) :
@@ -1326,7 +1326,7 @@ theorem summable_prod_of_nonneg {f : (α × β) → ℝ} (hf : 0 ≤ f) :
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
-    tendsto_atTop_csupᵢ (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun _ ⟨u, hu⟩ => hu ▸ h u⟩⟩
+    tendsto_atTop_ciSup (Finset.sum_mono_set_of_nonneg hf) ⟨c, fun _ ⟨u, hu⟩ => hu ▸ h u⟩⟩
 #align summable_of_sum_le summable_of_sum_le
 
 theorem summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
@@ -1474,7 +1474,7 @@ theorem Metric.diam_closure {α : Type _} [PseudoMetricSpace α] (s : Set α) :
 theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0)
     (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } := by
   simp only [LipschitzOnWith, setOf_forall]
-  refine' isClosed_binterᵢ fun x _ => isClosed_binterᵢ fun y _ => isClosed_le _ _
+  refine' isClosed_biInter fun x _ => isClosed_biInter fun y _ => isClosed_le _ _
   exacts [.edist (continuous_apply x) (continuous_apply y), continuous_const]
 #align is_closed_set_of_lipschitz_on_with isClosed_setOf_lipschitzOnWith
 
@@ -1485,41 +1485,41 @@ theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMet
 
 namespace Real
 
-/-- For a bounded set `s : Set ℝ`, its `EMetric.diam` is equal to `supₛ s - infₛ s` reinterpreted as
+/-- For a bounded set `s : Set ℝ`, its `EMetric.diam` is equal to `sSup s - sInf s` reinterpreted as
 `ℝ≥0∞`. -/
 theorem ediam_eq {s : Set ℝ} (h : Bounded s) :
-    EMetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) := by
+    EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) := by
   rcases eq_empty_or_nonempty s with (rfl | hne)
   · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
-  · have := Real.subset_Icc_infₛ_supₛ_of_bounded h
+  · have := Real.subset_Icc_sInf_sSup_of_bounded h
     exact Real.dist_le_of_mem_Icc (this hx) (this hy)
   · apply ENNReal.ofReal_le_of_le_toReal
     rw [← Metric.diam, ← Metric.diam_closure]
     have h' := Real.bounded_iff_bddBelow_bddAbove.1 h
-    calc supₛ s - infₛ s ≤ dist (supₛ s) (infₛ s) := le_abs_self _
-    _ ≤ Metric.diam (closure s) := dist_le_diam_of_mem h.closure (csupₛ_mem_closure hne h'.2)
-        (cinfₛ_mem_closure hne h'.1)
+    calc sSup s - sInf s ≤ dist (sSup s) (sInf s) := le_abs_self _
+    _ ≤ Metric.diam (closure s) := dist_le_diam_of_mem h.closure (csSup_mem_closure hne h'.2)
+        (csInf_mem_closure hne h'.1)
 #align real.ediam_eq Real.ediam_eq
 
-/-- For a bounded set `s : Set ℝ`, its `Metric.diam` is equal to `supₛ s - infₛ s`. -/
-theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = supₛ s - infₛ s := by
+/-- For a bounded set `s : Set ℝ`, its `Metric.diam` is equal to `sSup s - sInf s`. -/
+theorem diam_eq {s : Set ℝ} (h : Bounded s) : Metric.diam s = sSup s - sInf s := by
   rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal]
   rw [Real.bounded_iff_bddBelow_bddAbove] at h
-  exact sub_nonneg.2 (Real.infₛ_le_supₛ s h.1 h.2)
+  exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2)
 #align real.diam_eq Real.diam_eq
 
 @[simp]
 theorem ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) := by
   rcases le_or_lt b a with (h | h)
   · simp [h]
-  · rw [Real.ediam_eq (bounded_Ioo _ _), csupₛ_Ioo h, cinfₛ_Ioo h]
+  · rw [Real.ediam_eq (bounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h]
 #align real.ediam_Ioo Real.ediam_Ioo
 
 @[simp]
 theorem ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) := by
   rcases le_or_lt a b with (h | h)
-  · rw [Real.ediam_eq (bounded_Icc _ _), csupₛ_Icc h, cinfₛ_Icc h]
+  · rw [Real.ediam_eq (bounded_Icc _ _), csSup_Icc h, csInf_Icc h]
   · simp [h, h.le]
 #align real.ediam_Icc Real.ediam_Icc
 
chore: tidy various files (#2950)
Diff
@@ -387,7 +387,8 @@ protected theorem Tendsto.mul_const {f : Filter α} {m : α → ℝ≥0∞} {a b
 theorem tendsto_finset_prod_of_ne_top {ι : Type _} {f : ι → α → ℝ≥0∞} {x : Filter α} {a : ι → ℝ≥0∞}
     (s : Finset ι) (h : ∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) (h' : ∀ i ∈ s, a i ≠ ∞) :
     Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) := by
-  induction' s using Finset.induction with a s has IH; · simp [tendsto_const_nhds]
+  induction' s using Finset.induction with a s has IH
+  · simp [tendsto_const_nhds]
   simp only [Finset.prod_insert has]
   apply Tendsto.mul (h _ (Finset.mem_insert_self _ _))
   · right
@@ -1488,7 +1489,8 @@ namespace Real
 `ℝ≥0∞`. -/
 theorem ediam_eq {s : Set ℝ} (h : Bounded s) :
     EMetric.diam s = ENNReal.ofReal (supₛ s - infₛ s) := by
-  rcases eq_empty_or_nonempty s with (rfl | hne); · simp
+  rcases eq_empty_or_nonempty s with (rfl | hne)
+  · simp
   refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _
   · have := Real.subset_Icc_infₛ_supₛ_of_bounded h
     exact Real.dist_le_of_mem_Icc (this hx) (this hy)
@@ -1570,5 +1572,3 @@ theorem edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → 
 #align edist_le_tsum_of_edist_le_of_tendsto₀ edist_le_tsum_of_edist_le_of_tendsto₀
 
 end
-
---section
feat: port Analysis.Normed.Field.InfiniteSum (#2860)
Diff
@@ -1318,6 +1318,10 @@ theorem summable_sigma_of_nonneg {β : α → Type _} {f : (Σ x, β x) → ℝ}
   exact_mod_cast NNReal.summable_sigma
 #align summable_sigma_of_nonneg summable_sigma_of_nonneg
 
+theorem summable_prod_of_nonneg {f : (α × β) → ℝ} (hf : 0 ≤ f) :
+    Summable f ↔ (∀ x, Summable fun y ↦ f (x, y)) ∧ Summable fun x ↦ ∑' y, f (x, y) :=
+  (Equiv.sigmaEquivProd _ _).summable_iff.symm.trans <| summable_sigma_of_nonneg fun _ ↦ hf _
+
 theorem summable_of_sum_le {ι : Type _} {f : ι → ℝ} {c : ℝ} (hf : 0 ≤ f)
     (h : ∀ u : Finset ι, (∑ x in u, f x) ≤ c) : Summable f :=
   ⟨⨆ u : Finset ι, ∑ x in u, f x,
feat: port Topology.Instances.Ereal (#2796)

API changes

  • Add ENNReal.range_coe, ENNReal.range_coe', and ENNReal.coe_strictMono.
  • Add instances for DenselyOrdered EReal, T5Space EReal, ContinuousNeg EReal, and CanLift EReal ENNReal _ _.
  • Add EReal.range_coe, EReal.range_coe_eq_Ioo, EReal.range_coe_ennreal.
  • Add EReal.denseRange_ratCast, EReal.nhds_top_basis, EReal.nhds_bot_basis.
  • Deprecate EReal.negHomeo and EReal.continuous_neg.
  • Generalize orderTopology_of_ordConnected to StrictMono.induced_topology_eq_preorder and StrictMono.embedding_of_ordConnected, use it to prove that some coercions are embeddings.
  • Prove TopologicalSpace.SecondCountableTopology.of_separableSpace_orderTopology and helper lemmas Dense.topology_eq_generateFrom, Dense.Ioi_eq_bunionᵢ, and Dense.Iio_eq_bunionᵢ.
Diff
@@ -50,11 +50,8 @@ instance : NormalSpace ℝ≥0∞ := inferInstance
 instance : SecondCountableTopology ℝ≥0∞ :=
   orderIsoUnitIntervalBirational.toHomeomorph.embedding.secondCountableTopology
 
-theorem embedding_coe : Embedding ((↑) : ℝ≥0 → ℝ≥0∞) := by
-  refine ⟨⟨OrderTopology.topology_eq_generate_intervals.trans ?_⟩, fun _ _ => coe_eq_coe.1⟩
-  refine (induced_topology_eq_preorder coe_lt_coe (fun h _ => ?_) fun h _ => ?_).symm <;>
-    rcases lt_iff_exists_nnreal_btwn.1 h with ⟨a, h₁, h₂⟩
-  exacts [⟨a, coe_lt_coe.1 h₂, h₁.le⟩, ⟨a, coe_lt_coe.1 h₁, h₂.le⟩]
+theorem embedding_coe : Embedding ((↑) : ℝ≥0 → ℝ≥0∞) :=
+  coe_strictMono.embedding_of_ordConnected <| by rw [range_coe']; exact ordConnected_Iio
 #align ennreal.embedding_coe ENNReal.embedding_coe
 
 theorem isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ⊤ } := isOpen_ne
@@ -66,9 +63,7 @@ theorem isOpen_Ico_zero : IsOpen (Ico 0 b) := by
 #align ennreal.is_open_Ico_zero ENNReal.isOpen_Ico_zero
 
 theorem openEmbedding_coe : OpenEmbedding ((↑) : ℝ≥0 → ℝ≥0∞) :=
-  ⟨embedding_coe, by
-    convert isOpen_ne_top
-    ext (x | _) <;> simp [none_eq_top, some_eq_coe]⟩
+  ⟨embedding_coe, by rw [range_coe']; exact isOpen_Iio⟩
 #align ennreal.open_embedding_coe ENNReal.openEmbedding_coe
 
 theorem coe_range_mem_nhds : range ((↑) : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) :=
feat: port Topology.Instances.ENNReal (#2734)

API changes:

  • Add HasSum.sum_range_add, sum_add_tsum_nat_add', and tsum_eq_zero_add'. We had these (or stronger) results for topological groups. These versions works for monoids.
  • Rename tendsto_atTop_csupr to tendsto_atTop_csupᵢ, tendsto_atBot_csupr to tendsto_atBot_csupᵢ, tendsto_atBot_cinfi to tendsto_atBot_cinfᵢ, and tendsto_atTop_cinfi to tendsto_atTop_cinfᵢ.
  • Add a shortcut instance for T5Space ENNReal.
  • Add ENNReal.nhdsWithin_Ioi_one_neBot, ENNReal.nhdsWithin_Ioi_nat_neBot, ENNReal.nhdsWithin_Ioi_ofNat_nebot, and ENNReal.nhdsWithin_Iio_neBot.
  • Add ENNReal.hasBasis_nhds_of_ne_top and ENNReal.hasBasis_nhds_of_ne_top'.
  • Add ENNReal.binfᵢ_le_nhds and ENNReal.tendsto_nhds_of_Icc.
  • Use Real.nnabs instead of nnnorm to avoid dependency on analysis.normed.group.basic (forward-port of leanprover-community/mathlib#18562).
  • Add ENNReal.tsum_eq_limsup_sum_nat.
  • Add ENNReal.tsum_comp_le_tsum_of_injective, ENNReal.tsum_le_tsum_comp_of_surjective, use them to golf some proofs.
  • Add ENNReal.tsum_bunionᵢ_le_tsum, ENNReal.tsum_unionᵢ_le_tsum. We had versions of these lemmas for finite collections. The proofs for infinite collections are simpler.

Most of these changes were done to fix some long proofs: it was easier for me (@urkud) to add supporting lemmas and golf the proof than to fix the original code.

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Yury Kudryashov <urkud@urkud.name>

Dependencies 10 + 529

530 files ported (98.1%)
230497 lines ported (97.7%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file