topology.metric_space.contractingMathlib.Topology.MetricSpace.Contracting

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -441,7 +441,7 @@ theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K (f^[n]))
   set x := hf.fixed_point (f^[n])
   have hx : (f^[n]) x = x := hf.fixed_point_is_fixed_pt
   have := hf.to_lipschitz_with.dist_le_mul x (f x)
-  rw [← iterate_succ_apply, iterate_succ_apply', hx] at this 
+  rw [← iterate_succ_apply, iterate_succ_apply', hx] at this
   contrapose! this
   have := dist_pos.2 (Ne.symm this)
   simpa only [NNReal.coe_one, one_mul, NNReal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left
Diff
@@ -98,7 +98,7 @@ theorem edist_le_of_fixedPoint (hf : ContractingWith K f) {x y} (h : edist x y 
 theorem eq_or_edist_eq_top_of_fixedPoints (hf : ContractingWith K f) {x y} (hx : IsFixedPt f x)
     (hy : IsFixedPt f y) : x = y ∨ edist x y = ∞ :=
   by
-  refine' or_iff_not_imp_right.2 fun h => edist_le_zero.1 _
+  refine' Classical.or_iff_not_imp_right.2 fun h => edist_le_zero.1 _
   simpa only [hx.eq, edist_self, add_zero, ENNReal.zero_div] using hf.edist_le_of_fixed_point h hy
 #align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixedPoints
 -/
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2019 Rohan Mitta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudryashov
 -/
-import Mathbin.Analysis.SpecificLimits.Basic
-import Mathbin.Data.Setoid.Basic
-import Mathbin.Dynamics.FixedPoints.Topology
+import Analysis.SpecificLimits.Basic
+import Data.Setoid.Basic
+import Dynamics.FixedPoints.Topology
 
 #align_import topology.metric_space.contracting from "leanprover-community/mathlib"@"25a9423c6b2c8626e91c688bfd6c1d0a986a3e6e"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2019 Rohan Mitta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudryashov
-
-! This file was ported from Lean 3 source module topology.metric_space.contracting
-! leanprover-community/mathlib commit 25a9423c6b2c8626e91c688bfd6c1d0a986a3e6e
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.SpecificLimits.Basic
 import Mathbin.Data.Setoid.Basic
 import Mathbin.Dynamics.FixedPoints.Topology
 
+#align_import topology.metric_space.contracting from "leanprover-community/mathlib"@"25a9423c6b2c8626e91c688bfd6c1d0a986a3e6e"
+
 /-!
 # Contracting maps
 
Diff
@@ -61,16 +61,23 @@ theorem toLipschitzWith (hf : ContractingWith K f) : LipschitzWith K f :=
 #align contracting_with.to_lipschitz_with ContractingWith.toLipschitzWith
 -/
 
+#print ContractingWith.one_sub_K_pos' /-
 theorem one_sub_K_pos' (hf : ContractingWith K f) : (0 : ℝ≥0∞) < 1 - K := by simp [hf.1]
 #align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'
+-/
 
+#print ContractingWith.one_sub_K_ne_zero /-
 theorem one_sub_K_ne_zero (hf : ContractingWith K f) : (1 : ℝ≥0∞) - K ≠ 0 :=
   ne_of_gt hf.one_sub_K_pos'
 #align contracting_with.one_sub_K_ne_zero ContractingWith.one_sub_K_ne_zero
+-/
 
+#print ContractingWith.one_sub_K_ne_top /-
 theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ := by norm_cast; exact ENNReal.coe_ne_top
 #align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_top
+-/
 
+#print ContractingWith.edist_inequality /-
 theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞) :
     edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) :=
   suffices edist x y ≤ edist x (f x) + edist y (f y) + K * edist x y by
@@ -81,18 +88,23 @@ theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞
     _ = edist x (f x) + edist y (f y) + edist (f x) (f y) := by rw [edist_comm y, add_right_comm]
     _ ≤ edist x (f x) + edist y (f y) + K * edist x y := add_le_add le_rfl (hf.2 _ _)
 #align contracting_with.edist_inequality ContractingWith.edist_inequality
+-/
 
+#print ContractingWith.edist_le_of_fixedPoint /-
 theorem edist_le_of_fixedPoint (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞)
     (hy : IsFixedPt f y) : edist x y ≤ edist x (f x) / (1 - K) := by
   simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h
 #align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPoint
+-/
 
+#print ContractingWith.eq_or_edist_eq_top_of_fixedPoints /-
 theorem eq_or_edist_eq_top_of_fixedPoints (hf : ContractingWith K f) {x y} (hx : IsFixedPt f x)
     (hy : IsFixedPt f y) : x = y ∨ edist x y = ∞ :=
   by
   refine' or_iff_not_imp_right.2 fun h => edist_le_zero.1 _
   simpa only [hx.eq, edist_self, add_zero, ENNReal.zero_div] using hf.edist_le_of_fixed_point h hy
 #align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixedPoints
+-/
 
 #print ContractingWith.restrict /-
 /-- If a map `f` is `contracting_with K`, and `s` is a forward-invariant set, then
@@ -103,8 +115,7 @@ theorem restrict (hf : ContractingWith K f) {s : Set α} (hs : MapsTo f s s) :
 #align contracting_with.restrict ContractingWith.restrict
 -/
 
-include cs
-
+#print ContractingWith.exists_fixedPoint /-
 /-- Banach fixed-point theorem, contraction mapping theorem, `emetric_space` version.
 A contracting map on a complete metric space has a fixed point.
 We include more conclusions in this theorem to avoid proving them again later.
@@ -124,9 +135,11 @@ theorem exists_fixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x (f x
     edist_le_of_edist_le_geometric_of_tendsto K (edist x (f x))
       (hf.toLipschitzWith.edist_iterate_succ_le_geometric x) hy⟩
 #align contracting_with.exists_fixed_point ContractingWith.exists_fixedPoint
+-/
 
 variable (f)
 
+#print ContractingWith.efixedPoint /-
 -- avoid `efixed_point _` in pretty printer
 /-- Let `x` be a point of a complete emetric space. Suppose that `f` is a contracting map,
 and `edist x (f x) ≠ ∞`. Then `efixed_point` is the unique fixed point of `f`
@@ -134,36 +147,48 @@ in `emetric.ball x ∞`. -/
 noncomputable def efixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x (f x) ≠ ∞) : α :=
   Classical.choose <| hf.exists_fixedPoint x hx
 #align contracting_with.efixed_point ContractingWith.efixedPoint
+-/
 
 variable {f}
 
+#print ContractingWith.efixedPoint_isFixedPt /-
 theorem efixedPoint_isFixedPt (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint f hf x hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).1
 #align contracting_with.efixed_point_is_fixed_pt ContractingWith.efixedPoint_isFixedPt
+-/
 
+#print ContractingWith.tendsto_iterate_efixedPoint /-
 theorem tendsto_iterate_efixedPoint (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| efixedPoint f hf x hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.1
 #align contracting_with.tendsto_iterate_efixed_point ContractingWith.tendsto_iterate_efixedPoint
+-/
 
+#print ContractingWith.apriori_edist_iterate_efixedPoint_le /-
 theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
     (hx : edist x (f x) ≠ ∞) (n : ℕ) :
     edist ((f^[n]) x) (efixedPoint f hf x hx) ≤ edist x (f x) * K ^ n / (1 - K) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_le
+-/
 
+#print ContractingWith.edist_efixedPoint_le /-
 theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - K) := by
   convert hf.apriori_edist_iterate_efixed_point_le hx 0; simp only [pow_zero, mul_one]
 #align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_le
+-/
 
+#print ContractingWith.edist_efixedPoint_lt_top /-
 theorem edist_efixedPoint_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) < ∞ :=
   (hf.edist_efixedPoint_le hx).trans_lt
     (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_top
+-/
 
+#print ContractingWith.efixedPoint_eq_of_edist_lt_top /-
 theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞)
     {y : α} (hy : edist y (f y) ≠ ∞) (h : edist x y ≠ ∞) :
     efixedPoint f hf x hx = efixedPoint f hf y hy :=
@@ -176,9 +201,9 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
   trans y
   exacts [lt_top_iff_ne_top.2 h, hf.edist_efixed_point_lt_top hy]
 #align contracting_with.efixed_point_eq_of_edist_lt_top ContractingWith.efixedPoint_eq_of_edist_lt_top
+-/
 
-omit cs
-
+#print ContractingWith.exists_fixedPoint' /-
 /-- Banach fixed-point theorem for maps contracting on a complete subset. -/
 theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
@@ -195,9 +220,11 @@ theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s
   · convert hle n
     rw [maps_to.iterate_restrict, eq_comm, maps_to.coe_restrict_apply, Subtype.coe_mk]
 #align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'
+-/
 
 variable (f)
 
+#print ContractingWith.efixedPoint' /-
 -- avoid `efixed_point _` in pretty printer
 /-- Let `s` be a complete forward-invariant set of a self-map `f`. If `f` contracts on `s`
 and `x ∈ s` satisfies `edist x (f x) ≠ ∞`, then `efixed_point'` is the unique fixed point
@@ -207,34 +234,44 @@ noncomputable def efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f
     α :=
   Classical.choose <| hf.exists_fixedPoint' hsc hsf hxs hx
 #align contracting_with.efixed_point' ContractingWith.efixedPoint'
+-/
 
 variable {f}
 
+#print ContractingWith.efixedPoint_mem' /-
 theorem efixedPoint_mem' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     efixedPoint' f hsc hsf hf x hxs hx ∈ s :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).fst
 #align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'
+-/
 
+#print ContractingWith.efixedPoint_isFixedPt' /-
 theorem efixedPoint_isFixedPt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.1
 #align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_isFixedPt'
+-/
 
+#print ContractingWith.tendsto_iterate_efixedPoint' /-
 theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.2.1
 #align contracting_with.tendsto_iterate_efixed_point' ContractingWith.tendsto_iterate_efixedPoint'
+-/
 
+#print ContractingWith.apriori_edist_iterate_efixedPoint_le' /-
 theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞)
     (n : ℕ) :
     edist ((f^[n]) x) (efixedPoint' f hsc hsf hf x hxs hx) ≤ edist x (f x) * K ^ n / (1 - K) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'
+-/
 
+#print ContractingWith.edist_efixedPoint_le' /-
 theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) ≤ edist x (f x) / (1 - K) :=
@@ -242,14 +279,18 @@ theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f
   convert hf.apriori_edist_iterate_efixed_point_le' hsc hsf hxs hx 0
   rw [pow_zero, mul_one]
 #align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'
+-/
 
+#print ContractingWith.edist_efixedPoint_lt_top' /-
 theorem edist_efixedPoint_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) < ∞ :=
   (hf.edist_efixedPoint_le' hsc hsf hxs hx).trans_lt
     (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'
+-/
 
+#print ContractingWith.efixedPoint_eq_of_edist_lt_top' /-
 /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`,
 and `x ∈ s` is at a finite distance from `y ∈ t`, then the `efixed_point'` constructed by `x`
 is the same as the `efixed_point'` constructed by `y`.
@@ -272,6 +313,7 @@ theorem efixedPoint_eq_of_edist_lt_top' (hf : ContractingWith K f) {s : Set α}
   exact lt_top_iff_ne_top.2 hxy
   apply edist_efixed_point_lt_top'
 #align contracting_with.efixed_point_eq_of_edist_lt_top' ContractingWith.efixedPoint_eq_of_edist_lt_top'
+-/
 
 end ContractingWith
 
@@ -279,16 +321,19 @@ namespace ContractingWith
 
 variable [MetricSpace α] {K : ℝ≥0} {f : α → α} (hf : ContractingWith K f)
 
-include hf
-
+#print ContractingWith.one_sub_K_pos /-
 theorem one_sub_K_pos (hf : ContractingWith K f) : (0 : ℝ) < 1 - K :=
   sub_pos.2 hf.1
 #align contracting_with.one_sub_K_pos ContractingWith.one_sub_K_pos
+-/
 
+#print ContractingWith.dist_le_mul /-
 theorem dist_le_mul (x y : α) : dist (f x) (f y) ≤ K * dist x y :=
   hf.toLipschitzWith.dist_le_mul x y
 #align contracting_with.dist_le_mul ContractingWith.dist_le_mul
+-/
 
+#print ContractingWith.dist_inequality /-
 theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - K) :=
   suffices dist x y ≤ dist x (f x) + dist y (f y) + K * dist x y by
     rwa [le_div_iff hf.one_sub_K_pos, mul_comm, sub_mul, one_mul, sub_le_iff_le_add]
@@ -296,10 +341,13 @@ theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1
     dist x y ≤ dist x (f x) + dist y (f y) + dist (f x) (f y) := dist_triangle4_right _ _ _ _
     _ ≤ dist x (f x) + dist y (f y) + K * dist x y := add_le_add_left (hf.dist_le_mul _ _) _
 #align contracting_with.dist_inequality ContractingWith.dist_inequality
+-/
 
+#print ContractingWith.dist_le_of_fixedPoint /-
 theorem dist_le_of_fixedPoint (x) {y} (hy : IsFixedPt f y) : dist x y ≤ dist x (f x) / (1 - K) := by
   simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y
 #align contracting_with.dist_le_of_fixed_point ContractingWith.dist_le_of_fixedPoint
+-/
 
 #print ContractingWith.fixedPoint_unique' /-
 theorem fixedPoint_unique' {x y} (hx : IsFixedPt f x) (hy : IsFixedPt f y) : x = y :=
@@ -307,6 +355,7 @@ theorem fixedPoint_unique' {x y} (hx : IsFixedPt f x) (hy : IsFixedPt f y) : x =
 #align contracting_with.fixed_point_unique' ContractingWith.fixedPoint_unique'
 -/
 
+#print ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le' /-
 /-- Let `f` be a contracting map with constant `K`; let `g` be another map uniformly
 `C`-close to `f`. If `x` and `y` are their fixed points, then `dist x y ≤ C / (1 - K)`. -/
 theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFixedPt f x)
@@ -317,6 +366,7 @@ theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFix
     _ = dist (f y) (g y) / (1 - K) := by rw [hy.eq, dist_comm]
     _ ≤ C / (1 - K) := (div_le_div_right hf.one_sub_K_pos).2 (hfg y)
 #align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'
+-/
 
 noncomputable section
 
@@ -346,21 +396,27 @@ theorem fixedPoint_unique {x} (hx : IsFixedPt f x) : x = fixedPoint f hf :=
 #align contracting_with.fixed_point_unique ContractingWith.fixedPoint_unique
 -/
 
+#print ContractingWith.dist_fixedPoint_le /-
 theorem dist_fixedPoint_le (x) : dist x (fixedPoint f hf) ≤ dist x (f x) / (1 - K) :=
   hf.dist_le_of_fixedPoint x hf.fixedPoint_isFixedPt
 #align contracting_with.dist_fixed_point_le ContractingWith.dist_fixedPoint_le
+-/
 
+#print ContractingWith.aposteriori_dist_iterate_fixedPoint_le /-
 /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/
 theorem aposteriori_dist_iterate_fixedPoint_le (x n) :
     dist ((f^[n]) x) (fixedPoint f hf) ≤ dist ((f^[n]) x) ((f^[n + 1]) x) / (1 - K) := by
   rw [iterate_succ']; apply hf.dist_fixed_point_le
 #align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_le
+-/
 
+#print ContractingWith.apriori_dist_iterate_fixedPoint_le /-
 theorem apriori_dist_iterate_fixedPoint_le (x n) :
     dist ((f^[n]) x) (fixedPoint f hf) ≤ dist x (f x) * K ^ n / (1 - K) :=
   le_trans (hf.aposteriori_dist_iterate_fixedPoint_le x n) <|
     (div_le_div_right hf.one_sub_K_pos).2 <| hf.toLipschitzWith.dist_iterate_succ_le_geometric x n
 #align contracting_with.apriori_dist_iterate_fixed_point_le ContractingWith.apriori_dist_iterate_fixedPoint_le
+-/
 
 #print ContractingWith.tendsto_iterate_fixedPoint /-
 theorem tendsto_iterate_fixedPoint (x) :
@@ -372,12 +428,12 @@ theorem tendsto_iterate_fixedPoint (x) :
 #align contracting_with.tendsto_iterate_fixed_point ContractingWith.tendsto_iterate_fixedPoint
 -/
 
+#print ContractingWith.fixedPoint_lipschitz_in_map /-
 theorem fixedPoint_lipschitz_in_map {g : α → α} (hg : ContractingWith K g) {C}
     (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist (fixedPoint f hf) (fixedPoint g hg) ≤ C / (1 - K) :=
   hf.dist_fixedPoint_fixedPoint_of_dist_le' g hf.fixedPoint_isFixedPt hg.fixedPoint_isFixedPt hfg
 #align contracting_with.fixed_point_lipschitz_in_map ContractingWith.fixedPoint_lipschitz_in_map
-
-omit hf
+-/
 
 #print ContractingWith.isFixedPt_fixedPoint_iterate /-
 /-- If a map `f` has a contracting iterate `f^[n]`, then the fixed point of `f^[n]` is also a fixed
Diff
@@ -80,7 +80,6 @@ theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞
     edist x y ≤ edist x (f x) + edist (f x) (f y) + edist (f y) y := edist_triangle4 _ _ _ _
     _ = edist x (f x) + edist y (f y) + edist (f x) (f y) := by rw [edist_comm y, add_right_comm]
     _ ≤ edist x (f x) + edist y (f y) + K * edist x y := add_le_add le_rfl (hf.2 _ _)
-    
 #align contracting_with.edist_inequality ContractingWith.edist_inequality
 
 theorem edist_le_of_fixedPoint (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞)
@@ -296,7 +295,6 @@ theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1
   calc
     dist x y ≤ dist x (f x) + dist y (f y) + dist (f x) (f y) := dist_triangle4_right _ _ _ _
     _ ≤ dist x (f x) + dist y (f y) + K * dist x y := add_le_add_left (hf.dist_le_mul _ _) _
-    
 #align contracting_with.dist_inequality ContractingWith.dist_inequality
 
 theorem dist_le_of_fixedPoint (x) {y} (hy : IsFixedPt f y) : dist x y ≤ dist x (f x) / (1 - K) := by
@@ -318,7 +316,6 @@ theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFix
     _ ≤ dist y (f y) / (1 - K) := (hf.dist_le_of_fixedPoint y hx)
     _ = dist (f y) (g y) / (1 - K) := by rw [hy.eq, dist_comm]
     _ ≤ C / (1 - K) := (div_le_div_right hf.one_sub_K_pos).2 (hfg y)
-    
 #align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'
 
 noncomputable section
Diff
@@ -191,7 +191,7 @@ theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s
   haveI := hsc.complete_space_coe
   rcases hf.exists_fixed_point ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩
   refine' ⟨y, y.2, Subtype.ext_iff_val.1 hfy, _, fun n => _⟩
-  · convert(continuous_subtype_coe.tendsto _).comp h_tendsto; ext n
+  · convert (continuous_subtype_coe.tendsto _).comp h_tendsto; ext n
     simp only [(· ∘ ·), maps_to.iterate_restrict, maps_to.coe_restrict_apply, Subtype.coe_mk]
   · convert hle n
     rw [maps_to.iterate_restrict, eq_comm, maps_to.coe_restrict_apply, Subtype.coe_mk]
Diff
@@ -175,7 +175,7 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
   change edist_lt_top_setoid.rel _ _
   trans x; · symm; exact hf.edist_efixed_point_lt_top hx
   trans y
-  exacts[lt_top_iff_ne_top.2 h, hf.edist_efixed_point_lt_top hy]
+  exacts [lt_top_iff_ne_top.2 h, hf.edist_efixed_point_lt_top hy]
 #align contracting_with.efixed_point_eq_of_edist_lt_top ContractingWith.efixedPoint_eq_of_edist_lt_top
 
 omit cs
@@ -391,7 +391,7 @@ theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K (f^[n]))
   set x := hf.fixed_point (f^[n])
   have hx : (f^[n]) x = x := hf.fixed_point_is_fixed_pt
   have := hf.to_lipschitz_with.dist_le_mul x (f x)
-  rw [← iterate_succ_apply, iterate_succ_apply', hx] at this
+  rw [← iterate_succ_apply, iterate_succ_apply', hx] at this 
   contrapose! this
   have := dist_pos.2 (Ne.symm this)
   simpa only [NNReal.coe_one, one_mul, NNReal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left
Diff
@@ -36,7 +36,7 @@ contracting map, fixed point, Banach fixed point theorem
 -/
 
 
-open NNReal Topology Classical ENNReal
+open scoped NNReal Topology Classical ENNReal
 
 open Filter Function
 
Diff
@@ -61,40 +61,16 @@ theorem toLipschitzWith (hf : ContractingWith K f) : LipschitzWith K f :=
 #align contracting_with.to_lipschitz_with ContractingWith.toLipschitzWith
 -/
 
-/- warning: contracting_with.one_sub_K_pos' -> ContractingWith.one_sub_K_pos' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'ₓ'. -/
 theorem one_sub_K_pos' (hf : ContractingWith K f) : (0 : ℝ≥0∞) < 1 - K := by simp [hf.1]
 #align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'
 
-/- warning: contracting_with.one_sub_K_ne_zero -> ContractingWith.one_sub_K_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_zero ContractingWith.one_sub_K_ne_zeroₓ'. -/
 theorem one_sub_K_ne_zero (hf : ContractingWith K f) : (1 : ℝ≥0∞) - K ≠ 0 :=
   ne_of_gt hf.one_sub_K_pos'
 #align contracting_with.one_sub_K_ne_zero ContractingWith.one_sub_K_ne_zero
 
-/- warning: contracting_with.one_sub_K_ne_top -> ContractingWith.one_sub_K_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_topₓ'. -/
 theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ := by norm_cast; exact ENNReal.coe_ne_top
 #align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_top
 
-/- warning: contracting_with.edist_inequality -> ContractingWith.edist_inequality is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.edist_inequality ContractingWith.edist_inequalityₓ'. -/
 theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞) :
     edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) :=
   suffices edist x y ≤ edist x (f x) + edist y (f y) + K * edist x y by
@@ -107,23 +83,11 @@ theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞
     
 #align contracting_with.edist_inequality ContractingWith.edist_inequality
 
-/- warning: contracting_with.edist_le_of_fixed_point -> ContractingWith.edist_le_of_fixedPoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPointₓ'. -/
 theorem edist_le_of_fixedPoint (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞)
     (hy : IsFixedPt f y) : edist x y ≤ edist x (f x) / (1 - K) := by
   simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h
 #align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPoint
 
-/- warning: contracting_with.eq_or_edist_eq_top_of_fixed_points -> ContractingWith.eq_or_edist_eq_top_of_fixedPoints is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α f y) -> (Or (Eq.{succ u1} α x y) (Eq.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α f y) -> (Or (Eq.{succ u1} α x y) (Eq.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixedPointsₓ'. -/
 theorem eq_or_edist_eq_top_of_fixedPoints (hf : ContractingWith K f) {x y} (hx : IsFixedPt f x)
     (hy : IsFixedPt f y) : x = y ∨ edist x y = ∞ :=
   by
@@ -142,12 +106,6 @@ theorem restrict (hf : ContractingWith K f) {s : Set α} (hs : MapsTo f s s) :
 
 include cs
 
-/- warning: contracting_with.exists_fixed_point -> ContractingWith.exists_fixedPoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point ContractingWith.exists_fixedPointₓ'. -/
 /-- Banach fixed-point theorem, contraction mapping theorem, `emetric_space` version.
 A contracting map on a complete metric space has a fixed point.
 We include more conclusions in this theorem to avoid proving them again later.
@@ -170,12 +128,6 @@ theorem exists_fixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x (f x
 
 variable (f)
 
-/- warning: contracting_with.efixed_point -> ContractingWith.efixedPoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} (f : α -> α), (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} (f : α -> α), (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> α)
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point ContractingWith.efixedPointₓ'. -/
 -- avoid `efixed_point _` in pretty printer
 /-- Let `x` be a point of a complete emetric space. Suppose that `f` is a contracting map,
 and `edist x (f x) ≠ ∞`. Then `efixed_point` is the unique fixed point of `f`
@@ -186,69 +138,33 @@ noncomputable def efixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x
 
 variable {f}
 
-/- warning: contracting_with.efixed_point_is_fixed_pt -> ContractingWith.efixedPoint_isFixedPt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_is_fixed_pt ContractingWith.efixedPoint_isFixedPtₓ'. -/
 theorem efixedPoint_isFixedPt (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint f hf x hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).1
 #align contracting_with.efixed_point_is_fixed_pt ContractingWith.efixedPoint_isFixedPt
 
-/- warning: contracting_with.tendsto_iterate_efixed_point -> ContractingWith.tendsto_iterate_efixedPoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx))
-Case conversion may be inaccurate. Consider using '#align contracting_with.tendsto_iterate_efixed_point ContractingWith.tendsto_iterate_efixedPointₓ'. -/
 theorem tendsto_iterate_efixedPoint (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| efixedPoint f hf x hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.1
 #align contracting_with.tendsto_iterate_efixed_point ContractingWith.tendsto_iterate_efixedPoint
 
-/- warning: contracting_with.apriori_edist_iterate_efixed_point_le -> ContractingWith.apriori_edist_iterate_efixedPoint_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_leₓ'. -/
 theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
     (hx : edist x (f x) ≠ ∞) (n : ℕ) :
     edist ((f^[n]) x) (efixedPoint f hf x hx) ≤ edist x (f x) * K ^ n / (1 - K) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_le
 
-/- warning: contracting_with.edist_efixed_point_le -> ContractingWith.edist_efixedPoint_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_leₓ'. -/
 theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - K) := by
   convert hf.apriori_edist_iterate_efixed_point_le hx 0; simp only [pow_zero, mul_one]
 #align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_le
 
-/- warning: contracting_with.edist_efixed_point_lt_top -> ContractingWith.edist_efixedPoint_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_topₓ'. -/
 theorem edist_efixedPoint_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) < ∞ :=
   (hf.edist_efixedPoint_le hx).trans_lt
     (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_top
 
-/- warning: contracting_with.efixed_point_eq_of_edist_lt_top -> ContractingWith.efixedPoint_eq_of_edist_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) {y : α} (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf y hy))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) {y : α} (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf y hy))
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_eq_of_edist_lt_top ContractingWith.efixedPoint_eq_of_edist_lt_topₓ'. -/
 theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞)
     {y : α} (hy : edist y (f y) ≠ ∞) (h : edist x y ≠ ∞) :
     efixedPoint f hf x hx = efixedPoint f hf y hy :=
@@ -264,9 +180,6 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
 
 omit cs
 
-/- warning: contracting_with.exists_fixed_point' -> ContractingWith.exists_fixedPoint' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'ₓ'. -/
 /-- Banach fixed-point theorem for maps contracting on a complete subset. -/
 theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
@@ -286,12 +199,6 @@ theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s
 
 variable (f)
 
-/- warning: contracting_with.efixed_point' -> ContractingWith.efixedPoint' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} (f : α -> α) {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> α))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} (f : α -> α) {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> α))
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point' ContractingWith.efixedPoint'ₓ'. -/
 -- avoid `efixed_point _` in pretty printer
 /-- Let `s` be a complete forward-invariant set of a self-map `f`. If `f` contracts on `s`
 and `x ∈ s` satisfies `edist x (f x) ≠ ∞`, then `efixed_point'` is the unique fixed point
@@ -304,48 +211,24 @@ noncomputable def efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f
 
 variable {f}
 
-/- warning: contracting_with.efixed_point_mem' -> ContractingWith.efixedPoint_mem' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx) s
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx) s
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'ₓ'. -/
 theorem efixedPoint_mem' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     efixedPoint' f hsc hsf hf x hxs hx ∈ s :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).fst
 #align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'
 
-/- warning: contracting_with.efixed_point_is_fixed_pt' -> ContractingWith.efixedPoint_isFixedPt' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_isFixedPt'ₓ'. -/
 theorem efixedPoint_isFixedPt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.1
 #align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_isFixedPt'
 
-/- warning: contracting_with.tendsto_iterate_efixed_point' -> ContractingWith.tendsto_iterate_efixedPoint' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx))
-Case conversion may be inaccurate. Consider using '#align contracting_with.tendsto_iterate_efixed_point' ContractingWith.tendsto_iterate_efixedPoint'ₓ'. -/
 theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.2.1
 #align contracting_with.tendsto_iterate_efixed_point' ContractingWith.tendsto_iterate_efixedPoint'
 
-/- warning: contracting_with.apriori_edist_iterate_efixed_point_le' -> ContractingWith.apriori_edist_iterate_efixedPoint_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'ₓ'. -/
 theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞)
     (n : ℕ) :
@@ -353,12 +236,6 @@ theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s)
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'
 
-/- warning: contracting_with.edist_efixed_point_le' -> ContractingWith.edist_efixedPoint_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'ₓ'. -/
 theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) ≤ edist x (f x) / (1 - K) :=
@@ -367,12 +244,6 @@ theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f
   rw [pow_zero, mul_one]
 #align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'
 
-/- warning: contracting_with.edist_efixed_point_lt_top' -> ContractingWith.edist_efixedPoint_lt_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'ₓ'. -/
 theorem edist_efixedPoint_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) < ∞ :=
@@ -380,9 +251,6 @@ theorem edist_efixedPoint_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : MapsT
     (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'
 
-/- warning: contracting_with.efixed_point_eq_of_edist_lt_top' -> ContractingWith.efixedPoint_eq_of_edist_lt_top' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_eq_of_edist_lt_top' ContractingWith.efixedPoint_eq_of_edist_lt_top'ₓ'. -/
 /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`,
 and `x ∈ s` is at a finite distance from `y ∈ t`, then the `efixed_point'` constructed by `x`
 is the same as the `efixed_point'` constructed by `y`.
@@ -414,32 +282,14 @@ variable [MetricSpace α] {K : ℝ≥0} {f : α → α} (hf : ContractingWith K
 
 include hf
 
-/- warning: contracting_with.one_sub_K_pos -> ContractingWith.one_sub_K_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_pos ContractingWith.one_sub_K_posₓ'. -/
 theorem one_sub_K_pos (hf : ContractingWith K f) : (0 : ℝ) < 1 - K :=
   sub_pos.2 hf.1
 #align contracting_with.one_sub_K_pos ContractingWith.one_sub_K_pos
 
-/- warning: contracting_with.dist_le_mul -> ContractingWith.dist_le_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f x) (f y)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f x) (f y)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal K) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.dist_le_mul ContractingWith.dist_le_mulₓ'. -/
 theorem dist_le_mul (x y : α) : dist (f x) (f y) ≤ K * dist x y :=
   hf.toLipschitzWith.dist_le_mul x y
 #align contracting_with.dist_le_mul ContractingWith.dist_le_mul
 
-/- warning: contracting_with.dist_inequality -> ContractingWith.dist_inequality is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.dist_inequality ContractingWith.dist_inequalityₓ'. -/
 theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - K) :=
   suffices dist x y ≤ dist x (f x) + dist y (f y) + K * dist x y by
     rwa [le_div_iff hf.one_sub_K_pos, mul_comm, sub_mul, one_mul, sub_le_iff_le_add]
@@ -449,12 +299,6 @@ theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1
     
 #align contracting_with.dist_inequality ContractingWith.dist_inequality
 
-/- warning: contracting_with.dist_le_of_fixed_point -> ContractingWith.dist_le_of_fixedPoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) {y : α}, (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) {y : α}, (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.dist_le_of_fixed_point ContractingWith.dist_le_of_fixedPointₓ'. -/
 theorem dist_le_of_fixedPoint (x) {y} (hy : IsFixedPt f y) : dist x y ≤ dist x (f x) / (1 - K) := by
   simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y
 #align contracting_with.dist_le_of_fixed_point ContractingWith.dist_le_of_fixedPoint
@@ -465,12 +309,6 @@ theorem fixedPoint_unique' {x y} (hx : IsFixedPt f x) (hy : IsFixedPt f y) : x =
 #align contracting_with.fixed_point_unique' ContractingWith.fixedPoint_unique'
 -/
 
-/- warning: contracting_with.dist_fixed_point_fixed_point_of_dist_le' -> ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (g : α -> α) {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α g y) -> (forall {C : Real}, (forall (z : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (g : α -> α) {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α g y) -> (forall {C : Real}, (forall (z : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K))))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'ₓ'. -/
 /-- Let `f` be a contracting map with constant `K`; let `g` be another map uniformly
 `C`-close to `f`. If `x` and `y` are their fixed points, then `dist x y ≤ C / (1 - K)`. -/
 theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFixedPt f x)
@@ -511,34 +349,16 @@ theorem fixedPoint_unique {x} (hx : IsFixedPt f x) : x = fixedPoint f hf :=
 #align contracting_with.fixed_point_unique ContractingWith.fixedPoint_unique
 -/
 
-/- warning: contracting_with.dist_fixed_point_le -> ContractingWith.dist_fixedPoint_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.dist_fixed_point_le ContractingWith.dist_fixedPoint_leₓ'. -/
 theorem dist_fixedPoint_le (x) : dist x (fixedPoint f hf) ≤ dist x (f x) / (1 - K) :=
   hf.dist_le_of_fixedPoint x hf.fixedPoint_isFixedPt
 #align contracting_with.dist_fixed_point_le ContractingWith.dist_fixedPoint_le
 
-/- warning: contracting_with.aposteriori_dist_iterate_fixed_point_le -> ContractingWith.aposteriori_dist_iterate_fixedPoint_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (Nat.iterate.{succ u1} α f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (Nat.iterate.{succ u1} α f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_leₓ'. -/
 /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/
 theorem aposteriori_dist_iterate_fixedPoint_le (x n) :
     dist ((f^[n]) x) (fixedPoint f hf) ≤ dist ((f^[n]) x) ((f^[n + 1]) x) / (1 - K) := by
   rw [iterate_succ']; apply hf.dist_fixed_point_le
 #align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_le
 
-/- warning: contracting_with.apriori_dist_iterate_fixed_point_le -> ContractingWith.apriori_dist_iterate_fixedPoint_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.instMonoidReal)) (NNReal.toReal K) n)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
-Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_dist_iterate_fixed_point_le ContractingWith.apriori_dist_iterate_fixedPoint_leₓ'. -/
 theorem apriori_dist_iterate_fixedPoint_le (x n) :
     dist ((f^[n]) x) (fixedPoint f hf) ≤ dist x (f x) * K ^ n / (1 - K) :=
   le_trans (hf.aposteriori_dist_iterate_fixedPoint_le x n) <|
@@ -555,12 +375,6 @@ theorem tendsto_iterate_fixedPoint (x) :
 #align contracting_with.tendsto_iterate_fixed_point ContractingWith.tendsto_iterate_fixedPoint
 -/
 
-/- warning: contracting_with.fixed_point_lipschitz_in_map -> ContractingWith.fixedPoint_lipschitz_in_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] {g : α -> α} (hg : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K g) {C : Real}, (forall (z : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3) (ContractingWith.fixedPoint.{u1} α _inst_1 K g hg _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] {g : α -> α} (hg : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K g) {C : Real}, (forall (z : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3) (ContractingWith.fixedPoint.{u1} α _inst_1 K g hg _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K))))
-Case conversion may be inaccurate. Consider using '#align contracting_with.fixed_point_lipschitz_in_map ContractingWith.fixedPoint_lipschitz_in_mapₓ'. -/
 theorem fixedPoint_lipschitz_in_map {g : α → α} (hg : ContractingWith K g) {C}
     (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist (fixedPoint f hf) (fixedPoint g hg) ≤ C / (1 - K) :=
   hf.dist_fixedPoint_fixedPoint_of_dist_le' g hf.fixedPoint_isFixedPt hg.fixedPoint_isFixedPt hfg
Diff
@@ -86,10 +86,7 @@ lean 3 declaration is
 but is expected to have type
   forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_topₓ'. -/
-theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ :=
-  by
-  norm_cast
-  exact ENNReal.coe_ne_top
+theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ := by norm_cast; exact ENNReal.coe_ne_top
 #align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_top
 
 /- warning: contracting_with.edist_inequality -> ContractingWith.edist_inequality is a dubious translation:
@@ -230,10 +227,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_leₓ'. -/
 theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
-    edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - K) :=
-  by
-  convert hf.apriori_edist_iterate_efixed_point_le hx 0
-  simp only [pow_zero, mul_one]
+    edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - K) := by
+  convert hf.apriori_edist_iterate_efixed_point_le hx 0; simp only [pow_zero, mul_one]
 #align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_le
 
 /- warning: contracting_with.edist_efixed_point_lt_top -> ContractingWith.edist_efixedPoint_lt_top is a dubious translation:
@@ -262,9 +257,7 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
       (hf.eq_or_edist_eq_top_of_fixed_points _ _).elim id fun h' => False.elim (ne_of_lt _ h') <;>
     try apply efixed_point_is_fixed_pt
   change edist_lt_top_setoid.rel _ _
-  trans x;
-  · symm
-    exact hf.edist_efixed_point_lt_top hx
+  trans x; · symm; exact hf.edist_efixed_point_lt_top hx
   trans y
   exacts[lt_top_iff_ne_top.2 h, hf.edist_efixed_point_lt_top hy]
 #align contracting_with.efixed_point_eq_of_edist_lt_top ContractingWith.efixedPoint_eq_of_edist_lt_top
@@ -285,8 +278,7 @@ theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s
   haveI := hsc.complete_space_coe
   rcases hf.exists_fixed_point ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩
   refine' ⟨y, y.2, Subtype.ext_iff_val.1 hfy, _, fun n => _⟩
-  · convert(continuous_subtype_coe.tendsto _).comp h_tendsto
-    ext n
+  · convert(continuous_subtype_coe.tendsto _).comp h_tendsto; ext n
     simp only [(· ∘ ·), maps_to.iterate_restrict, maps_to.coe_restrict_apply, Subtype.coe_mk]
   · convert hle n
     rw [maps_to.iterate_restrict, eq_comm, maps_to.coe_restrict_apply, Subtype.coe_mk]
@@ -408,9 +400,7 @@ theorem efixedPoint_eq_of_edist_lt_top' (hf : ContractingWith K f) {s : Set α}
       (hf.eq_or_edist_eq_top_of_fixed_points _ _).elim id fun h' => False.elim (ne_of_lt _ h') <;>
     try apply efixed_point_is_fixed_pt'
   change edist_lt_top_setoid.rel _ _
-  trans x;
-  · symm
-    apply edist_efixed_point_lt_top'
+  trans x; · symm; apply edist_efixed_point_lt_top'
   trans y
   exact lt_top_iff_ne_top.2 hxy
   apply edist_efixed_point_lt_top'
@@ -539,10 +529,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_leₓ'. -/
 /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/
 theorem aposteriori_dist_iterate_fixedPoint_le (x n) :
-    dist ((f^[n]) x) (fixedPoint f hf) ≤ dist ((f^[n]) x) ((f^[n + 1]) x) / (1 - K) :=
-  by
-  rw [iterate_succ']
-  apply hf.dist_fixed_point_le
+    dist ((f^[n]) x) (fixedPoint f hf) ≤ dist ((f^[n]) x) ((f^[n + 1]) x) / (1 - K) := by
+  rw [iterate_succ']; apply hf.dist_fixed_point_le
 #align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_le
 
 /- warning: contracting_with.apriori_dist_iterate_fixed_point_le -> ContractingWith.apriori_dist_iterate_fixedPoint_le is a dubious translation:
Diff
@@ -272,10 +272,7 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
 omit cs
 
 /- warning: contracting_with.exists_fixed_point' -> ContractingWith.exists_fixedPoint' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'ₓ'. -/
 /-- Banach fixed-point theorem for maps contracting on a complete subset. -/
 theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
@@ -392,10 +389,7 @@ theorem edist_efixedPoint_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : MapsT
 #align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'
 
 /- warning: contracting_with.efixed_point_eq_of_edist_lt_top' -> ContractingWith.efixedPoint_eq_of_edist_lt_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hfs : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) {t : Set.{u1} α} (htc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) t) (htf : Set.MapsTo.{u1, u1} α α f t t) (hft : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f t t htf)) {y : α} (hyt : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hfs x hxs hx) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f t htc htf hft y hyt hy)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hfs : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) {t : Set.{u1} α} (htc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) t) (htf : Set.MapsTo.{u1, u1} α α f t t) (hft : ContractingWith.{u1} (Set.Elem.{u1} α t) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f t t htf)) {y : α} (hyt : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hfs x hxs hx) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f t htc htf hft y hyt hy)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_eq_of_edist_lt_top' ContractingWith.efixedPoint_eq_of_edist_lt_top'ₓ'. -/
 /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`,
 and `x ∈ s` is at a finite distance from `y ∈ t`, then the `efixed_point'` constructed by `x`
Diff
@@ -63,7 +63,7 @@ theorem toLipschitzWith (hf : ContractingWith K f) : LipschitzWith K f :=
 
 /- warning: contracting_with.one_sub_K_pos' -> ContractingWith.one_sub_K_pos' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'ₓ'. -/
@@ -94,7 +94,7 @@ theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ :=
 
 /- warning: contracting_with.edist_inequality -> ContractingWith.edist_inequality is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_inequality ContractingWith.edist_inequalityₓ'. -/
@@ -112,7 +112,7 @@ theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞
 
 /- warning: contracting_with.edist_le_of_fixed_point -> ContractingWith.edist_le_of_fixedPoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPointₓ'. -/
@@ -147,7 +147,7 @@ include cs
 
 /- warning: contracting_with.exists_fixed_point -> ContractingWith.exists_fixedPoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point ContractingWith.exists_fixedPointₓ'. -/
@@ -213,7 +213,7 @@ theorem tendsto_iterate_efixedPoint (hf : ContractingWith K f) {x : α} (hx : ed
 
 /- warning: contracting_with.apriori_edist_iterate_efixed_point_le -> ContractingWith.apriori_edist_iterate_efixedPoint_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_leₓ'. -/
@@ -225,7 +225,7 @@ theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
 
 /- warning: contracting_with.edist_efixed_point_le -> ContractingWith.edist_efixedPoint_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_leₓ'. -/
@@ -238,7 +238,7 @@ theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (
 
 /- warning: contracting_with.edist_efixed_point_lt_top -> ContractingWith.edist_efixedPoint_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_topₓ'. -/
@@ -273,7 +273,7 @@ omit cs
 
 /- warning: contracting_with.exists_fixed_point' -> ContractingWith.exists_fixedPoint' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'ₓ'. -/
@@ -353,7 +353,7 @@ theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : Ma
 
 /- warning: contracting_with.apriori_edist_iterate_efixed_point_le' -> ContractingWith.apriori_edist_iterate_efixedPoint_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'ₓ'. -/
@@ -366,7 +366,7 @@ theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s)
 
 /- warning: contracting_with.edist_efixed_point_le' -> ContractingWith.edist_efixedPoint_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'ₓ'. -/
@@ -380,7 +380,7 @@ theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f
 
 /- warning: contracting_with.edist_efixed_point_lt_top' -> ContractingWith.edist_efixedPoint_lt_top' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'ₓ'. -/
Diff
@@ -65,7 +65,7 @@ theorem toLipschitzWith (hf : ContractingWith K f) : LipschitzWith K f :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'ₓ'. -/
 theorem one_sub_K_pos' (hf : ContractingWith K f) : (0 : ℝ≥0∞) < 1 - K := by simp [hf.1]
 #align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'
@@ -74,7 +74,7 @@ theorem one_sub_K_pos' (hf : ContractingWith K f) : (0 : ℝ≥0∞) < 1 - K :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_zero ContractingWith.one_sub_K_ne_zeroₓ'. -/
 theorem one_sub_K_ne_zero (hf : ContractingWith K f) : (1 : ℝ≥0∞) - K ≠ 0 :=
   ne_of_gt hf.one_sub_K_pos'
@@ -84,7 +84,7 @@ theorem one_sub_K_ne_zero (hf : ContractingWith K f) : (1 : ℝ≥0∞) - K ≠
 lean 3 declaration is
   forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
-  forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+  forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_topₓ'. -/
 theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ :=
   by
@@ -96,7 +96,7 @@ theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_inequality ContractingWith.edist_inequalityₓ'. -/
 theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞) :
     edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) :=
@@ -114,7 +114,7 @@ theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPointₓ'. -/
 theorem edist_le_of_fixedPoint (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞)
     (hy : IsFixedPt f y) : edist x y ≤ edist x (f x) / (1 - K) := by
@@ -149,7 +149,7 @@ include cs
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point ContractingWith.exists_fixedPointₓ'. -/
 /-- Banach fixed-point theorem, contraction mapping theorem, `emetric_space` version.
 A contracting map on a complete metric space has a fixed point.
@@ -215,7 +215,7 @@ theorem tendsto_iterate_efixedPoint (hf : ContractingWith K f) {x : α} (hx : ed
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_leₓ'. -/
 theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
     (hx : edist x (f x) ≠ ∞) (n : ℕ) :
@@ -227,7 +227,7 @@ theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_leₓ'. -/
 theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - K) :=
@@ -275,7 +275,7 @@ omit cs
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))))
 Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'ₓ'. -/
 /-- Banach fixed-point theorem for maps contracting on a complete subset. -/
 theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
@@ -355,7 +355,7 @@ theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : Ma
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'ₓ'. -/
 theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞)
@@ -368,7 +368,7 @@ theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s)
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
 Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'ₓ'. -/
 theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
Diff
@@ -327,17 +327,17 @@ theorem efixedPoint_mem' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).fst
 #align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'
 
-/- warning: contracting_with.efixed_point_is_fixed_pt' -> ContractingWith.efixedPoint_is_fixed_pt' is a dubious translation:
+/- warning: contracting_with.efixed_point_is_fixed_pt' -> ContractingWith.efixedPoint_isFixedPt' is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)
-Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_is_fixed_pt'ₓ'. -/
-theorem efixedPoint_is_fixed_pt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_isFixedPt'ₓ'. -/
+theorem efixedPoint_isFixedPt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.1
-#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_is_fixed_pt'
+#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_isFixedPt'
 
 /- warning: contracting_with.tendsto_iterate_efixed_point' -> ContractingWith.tendsto_iterate_efixedPoint' is a dubious translation:
 lean 3 declaration is
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module topology.metric_space.contracting
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 25a9423c6b2c8626e91c688bfd6c1d0a986a3e6e
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Dynamics.FixedPoints.Topology
 /-!
 # Contracting maps
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 A Lipschitz continuous self-map with Lipschitz constant `K < 1` is called a *contracting map*.
 In this file we prove the Banach fixed point theorem, some explicit estimates on the rate
 of convergence, and some properties of the map sending a contracting map to its fixed point.
Diff
@@ -39,10 +39,12 @@ open Filter Function
 
 variable {α : Type _}
 
+#print ContractingWith /-
 /-- A map is said to be `contracting_with K`, if `K < 1` and `f` is `lipschitz_with K`. -/
 def ContractingWith [EMetricSpace α] (K : ℝ≥0) (f : α → α) :=
   K < 1 ∧ LipschitzWith K f
 #align contracting_with ContractingWith
+-/
 
 namespace ContractingWith
 
@@ -50,23 +52,49 @@ variable [EMetricSpace α] [cs : CompleteSpace α] {K : ℝ≥0} {f : α → α}
 
 open Emetric Set
 
-theorem to_lipschitzWith (hf : ContractingWith K f) : LipschitzWith K f :=
+#print ContractingWith.toLipschitzWith /-
+theorem toLipschitzWith (hf : ContractingWith K f) : LipschitzWith K f :=
   hf.2
-#align contracting_with.to_lipschitz_with ContractingWith.to_lipschitzWith
+#align contracting_with.to_lipschitz_with ContractingWith.toLipschitzWith
+-/
 
+/- warning: contracting_with.one_sub_K_pos' -> ContractingWith.one_sub_K_pos' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'ₓ'. -/
 theorem one_sub_K_pos' (hf : ContractingWith K f) : (0 : ℝ≥0∞) < 1 - K := by simp [hf.1]
 #align contracting_with.one_sub_K_pos' ContractingWith.one_sub_K_pos'
 
+/- warning: contracting_with.one_sub_K_ne_zero -> ContractingWith.one_sub_K_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_zero ContractingWith.one_sub_K_ne_zeroₓ'. -/
 theorem one_sub_K_ne_zero (hf : ContractingWith K f) : (1 : ℝ≥0∞) - K ≠ 0 :=
   ne_of_gt hf.one_sub_K_pos'
 #align contracting_with.one_sub_K_ne_zero ContractingWith.one_sub_K_ne_zero
 
+/- warning: contracting_with.one_sub_K_ne_top -> ContractingWith.one_sub_K_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {K : NNReal}, Ne.{1} ENNReal (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_topₓ'. -/
 theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ :=
   by
   norm_cast
   exact ENNReal.coe_ne_top
 #align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_top
 
+/- warning: contracting_with.edist_inequality -> ContractingWith.edist_inequality is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.edist_inequality ContractingWith.edist_inequalityₓ'. -/
 theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞) :
     edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) :=
   suffices edist x y ≤ edist x (f x) + edist y (f y) + K * edist x y by
@@ -79,75 +107,125 @@ theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞
     
 #align contracting_with.edist_inequality ContractingWith.edist_inequality
 
-theorem edist_le_of_fixed_point (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞)
+/- warning: contracting_with.edist_le_of_fixed_point -> ContractingWith.edist_le_of_fixedPoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPointₓ'. -/
+theorem edist_le_of_fixedPoint (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞)
     (hy : IsFixedPt f y) : edist x y ≤ edist x (f x) / (1 - K) := by
   simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h
-#align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixed_point
-
-theorem eq_or_edist_eq_top_of_fixed_points (hf : ContractingWith K f) {x y} (hx : IsFixedPt f x)
+#align contracting_with.edist_le_of_fixed_point ContractingWith.edist_le_of_fixedPoint
+
+/- warning: contracting_with.eq_or_edist_eq_top_of_fixed_points -> ContractingWith.eq_or_edist_eq_top_of_fixedPoints is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α f y) -> (Or (Eq.{succ u1} α x y) (Eq.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α f y) -> (Or (Eq.{succ u1} α x y) (Eq.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixedPointsₓ'. -/
+theorem eq_or_edist_eq_top_of_fixedPoints (hf : ContractingWith K f) {x y} (hx : IsFixedPt f x)
     (hy : IsFixedPt f y) : x = y ∨ edist x y = ∞ :=
   by
   refine' or_iff_not_imp_right.2 fun h => edist_le_zero.1 _
   simpa only [hx.eq, edist_self, add_zero, ENNReal.zero_div] using hf.edist_le_of_fixed_point h hy
-#align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixed_points
+#align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixedPoints
 
+#print ContractingWith.restrict /-
 /-- If a map `f` is `contracting_with K`, and `s` is a forward-invariant set, then
 restriction of `f` to `s` is `contracting_with K` as well. -/
 theorem restrict (hf : ContractingWith K f) {s : Set α} (hs : MapsTo f s s) :
     ContractingWith K (hs.restrict f s s) :=
   ⟨hf.1, fun x y => hf.2 x y⟩
 #align contracting_with.restrict ContractingWith.restrict
+-/
 
 include cs
 
+/- warning: contracting_with.exists_fixed_point -> ContractingWith.exists_fixedPoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point ContractingWith.exists_fixedPointₓ'. -/
 /-- Banach fixed-point theorem, contraction mapping theorem, `emetric_space` version.
 A contracting map on a complete metric space has a fixed point.
 We include more conclusions in this theorem to avoid proving them again later.
 
 The main API for this theorem are the functions `efixed_point` and `fixed_point`,
 and lemmas about these functions. -/
-theorem exists_fixed_point (hf : ContractingWith K f) (x : α) (hx : edist x (f x) ≠ ∞) :
+theorem exists_fixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x (f x) ≠ ∞) :
     ∃ y,
       IsFixedPt f y ∧
         Tendsto (fun n => (f^[n]) x) atTop (𝓝 y) ∧
           ∀ n : ℕ, edist ((f^[n]) x) y ≤ edist x (f x) * K ^ n / (1 - K) :=
   have : CauchySeq fun n => (f^[n]) x :=
     cauchySeq_of_edist_le_geometric K (edist x (f x)) (ENNReal.coe_lt_one_iff.2 hf.1) hx
-      (hf.to_lipschitzWith.edist_iterate_succ_le_geometric x)
+      (hf.toLipschitzWith.edist_iterate_succ_le_geometric x)
   let ⟨y, hy⟩ := cauchySeq_tendsto_of_complete this
   ⟨y, isFixedPt_of_tendsto_iterate hy hf.2.Continuous.ContinuousAt, hy,
     edist_le_of_edist_le_geometric_of_tendsto K (edist x (f x))
-      (hf.to_lipschitzWith.edist_iterate_succ_le_geometric x) hy⟩
-#align contracting_with.exists_fixed_point ContractingWith.exists_fixed_point
+      (hf.toLipschitzWith.edist_iterate_succ_le_geometric x) hy⟩
+#align contracting_with.exists_fixed_point ContractingWith.exists_fixedPoint
 
 variable (f)
 
+/- warning: contracting_with.efixed_point -> ContractingWith.efixedPoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} (f : α -> α), (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} (f : α -> α), (ContractingWith.{u1} α _inst_1 K f) -> (forall (x : α), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> α)
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point ContractingWith.efixedPointₓ'. -/
 -- avoid `efixed_point _` in pretty printer
 /-- Let `x` be a point of a complete emetric space. Suppose that `f` is a contracting map,
 and `edist x (f x) ≠ ∞`. Then `efixed_point` is the unique fixed point of `f`
 in `emetric.ball x ∞`. -/
 noncomputable def efixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x (f x) ≠ ∞) : α :=
-  Classical.choose <| hf.exists_fixed_point x hx
+  Classical.choose <| hf.exists_fixedPoint x hx
 #align contracting_with.efixed_point ContractingWith.efixedPoint
 
 variable {f}
 
+/- warning: contracting_with.efixed_point_is_fixed_pt -> ContractingWith.efixedPoint_isFixedPt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_is_fixed_pt ContractingWith.efixedPoint_isFixedPtₓ'. -/
 theorem efixedPoint_isFixedPt (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint f hf x hx) :=
-  (Classical.choose_spec <| hf.exists_fixed_point x hx).1
+  (Classical.choose_spec <| hf.exists_fixedPoint x hx).1
 #align contracting_with.efixed_point_is_fixed_pt ContractingWith.efixedPoint_isFixedPt
 
+/- warning: contracting_with.tendsto_iterate_efixed_point -> ContractingWith.tendsto_iterate_efixedPoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx))
+Case conversion may be inaccurate. Consider using '#align contracting_with.tendsto_iterate_efixed_point ContractingWith.tendsto_iterate_efixedPointₓ'. -/
 theorem tendsto_iterate_efixedPoint (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| efixedPoint f hf x hx) :=
-  (Classical.choose_spec <| hf.exists_fixed_point x hx).2.1
+  (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.1
 #align contracting_with.tendsto_iterate_efixed_point ContractingWith.tendsto_iterate_efixedPoint
 
+/- warning: contracting_with.apriori_edist_iterate_efixed_point_le -> ContractingWith.apriori_edist_iterate_efixedPoint_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_leₓ'. -/
 theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
     (hx : edist x (f x) ≠ ∞) (n : ℕ) :
     edist ((f^[n]) x) (efixedPoint f hf x hx) ≤ edist x (f x) * K ^ n / (1 - K) :=
-  (Classical.choose_spec <| hf.exists_fixed_point x hx).2.2 n
+  (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_le
 
+/- warning: contracting_with.edist_efixed_point_le -> ContractingWith.edist_efixedPoint_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_leₓ'. -/
 theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - K) :=
   by
@@ -155,12 +233,24 @@ theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (
   simp only [pow_zero, mul_one]
 #align contracting_with.edist_efixed_point_le ContractingWith.edist_efixedPoint_le
 
+/- warning: contracting_with.edist_efixed_point_lt_top -> ContractingWith.edist_efixedPoint_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_topₓ'. -/
 theorem edist_efixedPoint_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) < ∞ :=
   (hf.edist_efixedPoint_le hx).trans_lt
     (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_top
 
+/- warning: contracting_with.efixed_point_eq_of_edist_lt_top -> ContractingWith.efixedPoint_eq_of_edist_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) {y : α} (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf y hy))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] [cs : CompleteSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α _inst_1 K f) {x : α} (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) {y : α} (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf x hx) (ContractingWith.efixedPoint.{u1} α _inst_1 cs K f hf y hy))
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_eq_of_edist_lt_top ContractingWith.efixedPoint_eq_of_edist_lt_topₓ'. -/
 theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞)
     {y : α} (hy : edist y (f y) ≠ ∞) (h : edist x y ≠ ∞) :
     efixedPoint f hf x hx = efixedPoint f hf y hy :=
@@ -178,8 +268,14 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
 
 omit cs
 
+/- warning: contracting_with.exists_fixed_point' -> ContractingWith.exists_fixedPoint' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall {x : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (And (Function.IsFixedPt.{u1} α f y) (And (Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) y)) (forall (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) y) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K))))))))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'ₓ'. -/
 /-- Banach fixed-point theorem for maps contracting on a complete subset. -/
-theorem exists_fixed_point' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     ∃ y ∈ s,
       IsFixedPt f y ∧
@@ -194,10 +290,16 @@ theorem exists_fixed_point' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s
     simp only [(· ∘ ·), maps_to.iterate_restrict, maps_to.coe_restrict_apply, Subtype.coe_mk]
   · convert hle n
     rw [maps_to.iterate_restrict, eq_comm, maps_to.coe_restrict_apply, Subtype.coe_mk]
-#align contracting_with.exists_fixed_point' ContractingWith.exists_fixed_point'
+#align contracting_with.exists_fixed_point' ContractingWith.exists_fixedPoint'
 
 variable (f)
 
+/- warning: contracting_with.efixed_point' -> ContractingWith.efixedPoint' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} (f : α -> α) {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> α))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} (f : α -> α) {s : Set.{u1} α}, (IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) -> (forall (hsf : Set.MapsTo.{u1, u1} α α f s s), (ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> α))
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point' ContractingWith.efixedPoint'ₓ'. -/
 -- avoid `efixed_point _` in pretty printer
 /-- Let `s` be a complete forward-invariant set of a self-map `f`. If `f` contracts on `s`
 and `x ∈ s` satisfies `edist x (f x) ≠ ∞`, then `efixed_point'` is the unique fixed point
@@ -205,58 +307,100 @@ of the restriction of `f` to `s ∩ emetric.ball x ∞`. -/
 noncomputable def efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) (x : α) (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     α :=
-  Classical.choose <| hf.exists_fixed_point' hsc hsf hxs hx
+  Classical.choose <| hf.exists_fixedPoint' hsc hsf hxs hx
 #align contracting_with.efixed_point' ContractingWith.efixedPoint'
 
 variable {f}
 
-theorem efixed_point_mem' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+/- warning: contracting_with.efixed_point_mem' -> ContractingWith.efixedPoint_mem' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx) s
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx) s
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'ₓ'. -/
+theorem efixedPoint_mem' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     efixedPoint' f hsc hsf hf x hxs hx ∈ s :=
-  (Classical.choose_spec <| hf.exists_fixed_point' hsc hsf hxs hx).fst
-#align contracting_with.efixed_point_mem' ContractingWith.efixed_point_mem'
-
-theorem efixed_point_is_fixed_pt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+  (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).fst
+#align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'
+
+/- warning: contracting_with.efixed_point_is_fixed_pt' -> ContractingWith.efixedPoint_is_fixed_pt' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Function.IsFixedPt.{u1} α f (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_is_fixed_pt'ₓ'. -/
+theorem efixedPoint_is_fixed_pt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint' f hsc hsf hf x hxs hx) :=
-  (Classical.choose_spec <| hf.exists_fixed_point' hsc hsf hxs hx).snd.1
-#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixed_point_is_fixed_pt'
-
+  (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.1
+#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_is_fixed_pt'
+
+/- warning: contracting_with.tendsto_iterate_efixed_point' -> ContractingWith.tendsto_iterate_efixedPoint' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), Filter.Tendsto.{0, u1} Nat α (fun (n : Nat) => Nat.iterate.{succ u1} α f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} α (UniformSpace.toTopologicalSpace.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1))) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx))
+Case conversion may be inaccurate. Consider using '#align contracting_with.tendsto_iterate_efixed_point' ContractingWith.tendsto_iterate_efixedPoint'ₓ'. -/
 theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| efixedPoint' f hsc hsf hf x hxs hx) :=
-  (Classical.choose_spec <| hf.exists_fixed_point' hsc hsf hxs hx).snd.2.1
+  (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.2.1
 #align contracting_with.tendsto_iterate_efixed_point' ContractingWith.tendsto_iterate_efixedPoint'
 
-theorem apriori_edist_iterate_efixed_point_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+/- warning: contracting_with.apriori_edist_iterate_efixed_point_le' -> ContractingWith.apriori_edist_iterate_efixedPoint_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (n : Nat), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} ENNReal Nat ENNReal (instHPow.{0, 0} ENNReal Nat (Monoid.Pow.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) (ENNReal.some K) n)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'ₓ'. -/
+theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞)
     (n : ℕ) :
     edist ((f^[n]) x) (efixedPoint' f hsc hsf hf x hxs hx) ≤ edist x (f x) * K ^ n / (1 - K) :=
-  (Classical.choose_spec <| hf.exists_fixed_point' hsc hsf hxs hx).snd.2.2 n
-#align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixed_point_le'
-
-theorem edist_efixed_point_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+  (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).snd.2.2 n
+#align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'
+
+/- warning: contracting_with.edist_efixed_point_le' -> ContractingWith.edist_efixedPoint_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.some K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'ₓ'. -/
+theorem edist_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) ≤ edist x (f x) / (1 - K) :=
   by
   convert hf.apriori_edist_iterate_efixed_point_le' hsc hsf hxs hx 0
   rw [pow_zero, mul_one]
-#align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixed_point_le'
-
-theorem edist_efixed_point_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+#align contracting_with.edist_efixed_point_le' ContractingWith.edist_efixedPoint_le'
+
+/- warning: contracting_with.edist_efixed_point_lt_top' -> ContractingWith.edist_efixedPoint_lt_top' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α} {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hf : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hf x hxs hx)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'ₓ'. -/
+theorem edist_efixedPoint_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) < ∞ :=
-  (hf.edist_efixed_point_le' hsc hsf hxs hx).trans_lt
+  (hf.edist_efixedPoint_le' hsc hsf hxs hx).trans_lt
     (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
-#align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixed_point_lt_top'
-
+#align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixedPoint_lt_top'
+
+/- warning: contracting_with.efixed_point_eq_of_edist_lt_top' -> ContractingWith.efixedPoint_eq_of_edist_lt_top' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hfs : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) {t : Set.{u1} α} (htc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) t) (htf : Set.MapsTo.{u1, u1} α α f t t) (hft : ContractingWith.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) t) (Subtype.emetricSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f t t htf)) {y : α} (hyt : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toHasEdist.{u1} α (EMetricSpace.toPseudoEmetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hfs x hxs hx) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f t htc htf hft y hyt hy)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : EMetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α _inst_1 K f) -> (forall {s : Set.{u1} α} (hsc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) s) (hsf : Set.MapsTo.{u1, u1} α α f s s) (hfs : ContractingWith.{u1} (Set.Elem.{u1} α s) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f s s hsf)) {x : α} (hxs : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (hx : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x (f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) {t : Set.{u1} α} (htc : IsComplete.{u1} α (PseudoEMetricSpace.toUniformSpace.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) t) (htf : Set.MapsTo.{u1, u1} α α f t t) (hft : ContractingWith.{u1} (Set.Elem.{u1} α t) (instEMetricSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x t) _inst_1) K (Set.MapsTo.restrict.{u1, u1} α α f t t htf)) {y : α} (hyt : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (hy : Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) y (f y)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))), (Ne.{1} ENNReal (EDist.edist.{u1} α (PseudoEMetricSpace.toEDist.{u1} α (EMetricSpace.toPseudoEMetricSpace.{u1} α _inst_1)) x y) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} α (ContractingWith.efixedPoint'.{u1} α _inst_1 K f s hsc hsf hfs x hxs hx) (ContractingWith.efixedPoint'.{u1} α _inst_1 K f t htc htf hft y hyt hy)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.efixed_point_eq_of_edist_lt_top' ContractingWith.efixedPoint_eq_of_edist_lt_top'ₓ'. -/
 /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`,
 and `x ∈ s` is at a finite distance from `y ∈ t`, then the `efixed_point'` constructed by `x`
 is the same as the `efixed_point'` constructed by `y`.
 
 This lemma takes additional arguments stating that `f` contracts on `s` and `t` because this way
 it can be used to prove the desired equality with non-trivial proofs of these facts. -/
-theorem efixed_point_eq_of_edist_lt_top' (hf : ContractingWith K f) {s : Set α} (hsc : IsComplete s)
+theorem efixedPoint_eq_of_edist_lt_top' (hf : ContractingWith K f) {s : Set α} (hsc : IsComplete s)
     (hsf : MapsTo f s s) (hfs : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s)
     (hx : edist x (f x) ≠ ∞) {t : Set α} (htc : IsComplete t) (htf : MapsTo f t t)
     (hft : ContractingWith K <| htf.restrict f t t) {y : α} (hyt : y ∈ t) (hy : edist y (f y) ≠ ∞)
@@ -273,7 +417,7 @@ theorem efixed_point_eq_of_edist_lt_top' (hf : ContractingWith K f) {s : Set α}
   trans y
   exact lt_top_iff_ne_top.2 hxy
   apply edist_efixed_point_lt_top'
-#align contracting_with.efixed_point_eq_of_edist_lt_top' ContractingWith.efixed_point_eq_of_edist_lt_top'
+#align contracting_with.efixed_point_eq_of_edist_lt_top' ContractingWith.efixedPoint_eq_of_edist_lt_top'
 
 end ContractingWith
 
@@ -283,14 +427,32 @@ variable [MetricSpace α] {K : ℝ≥0} {f : α → α} (hf : ContractingWith K
 
 include hf
 
+/- warning: contracting_with.one_sub_K_pos -> ContractingWith.one_sub_K_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.one_sub_K_pos ContractingWith.one_sub_K_posₓ'. -/
 theorem one_sub_K_pos (hf : ContractingWith K f) : (0 : ℝ) < 1 - K :=
   sub_pos.2 hf.1
 #align contracting_with.one_sub_K_pos ContractingWith.one_sub_K_pos
 
+/- warning: contracting_with.dist_le_mul -> ContractingWith.dist_le_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f x) (f y)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f x) (f y)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal K) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.dist_le_mul ContractingWith.dist_le_mulₓ'. -/
 theorem dist_le_mul (x y : α) : dist (f x) (f y) ≤ K * dist x y :=
-  hf.to_lipschitzWith.dist_le_mul x y
+  hf.toLipschitzWith.dist_le_mul x y
 #align contracting_with.dist_le_mul ContractingWith.dist_le_mul
 
+/- warning: contracting_with.dist_inequality -> ContractingWith.dist_inequality is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) (y : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) y (f y))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.dist_inequality ContractingWith.dist_inequalityₓ'. -/
 theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - K) :=
   suffices dist x y ≤ dist x (f x) + dist y (f y) + K * dist x y by
     rwa [le_div_iff hf.one_sub_K_pos, mul_comm, sub_mul, one_mul, sub_le_iff_le_add]
@@ -300,25 +462,39 @@ theorem dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1
     
 #align contracting_with.dist_inequality ContractingWith.dist_inequality
 
-theorem dist_le_of_fixed_point (x) {y} (hy : IsFixedPt f y) : dist x y ≤ dist x (f x) / (1 - K) :=
-  by simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y
-#align contracting_with.dist_le_of_fixed_point ContractingWith.dist_le_of_fixed_point
-
-theorem fixed_point_unique' {x y} (hx : IsFixedPt f x) (hy : IsFixedPt f y) : x = y :=
-  (hf.eq_or_edist_eq_top_of_fixed_points hx hy).resolve_right (edist_ne_top _ _)
-#align contracting_with.fixed_point_unique' ContractingWith.fixed_point_unique'
+/- warning: contracting_with.dist_le_of_fixed_point -> ContractingWith.dist_le_of_fixedPoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) {y : α}, (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (x : α) {y : α}, (Function.IsFixedPt.{u1} α f y) -> (LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.dist_le_of_fixed_point ContractingWith.dist_le_of_fixedPointₓ'. -/
+theorem dist_le_of_fixedPoint (x) {y} (hy : IsFixedPt f y) : dist x y ≤ dist x (f x) / (1 - K) := by
+  simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y
+#align contracting_with.dist_le_of_fixed_point ContractingWith.dist_le_of_fixedPoint
+
+#print ContractingWith.fixedPoint_unique' /-
+theorem fixedPoint_unique' {x y} (hx : IsFixedPt f x) (hy : IsFixedPt f y) : x = y :=
+  (hf.eq_or_edist_eq_top_of_fixedPoints hx hy).resolve_right (edist_ne_top _ _)
+#align contracting_with.fixed_point_unique' ContractingWith.fixedPoint_unique'
+-/
 
+/- warning: contracting_with.dist_fixed_point_fixed_point_of_dist_le' -> ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (g : α -> α) {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α g y) -> (forall {C : Real}, (forall (z : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α}, (ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) -> (forall (g : α -> α) {x : α} {y : α}, (Function.IsFixedPt.{u1} α f x) -> (Function.IsFixedPt.{u1} α g y) -> (forall {C : Real}, (forall (z : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x y) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K))))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'ₓ'. -/
 /-- Let `f` be a contracting map with constant `K`; let `g` be another map uniformly
 `C`-close to `f`. If `x` and `y` are their fixed points, then `dist x y ≤ C / (1 - K)`. -/
-theorem dist_fixed_point_fixed_point_of_dist_le' (g : α → α) {x y} (hx : IsFixedPt f x)
+theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFixedPt f x)
     (hy : IsFixedPt g y) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist x y ≤ C / (1 - K) :=
   calc
     dist x y = dist y x := dist_comm x y
-    _ ≤ dist y (f y) / (1 - K) := (hf.dist_le_of_fixed_point y hx)
+    _ ≤ dist y (f y) / (1 - K) := (hf.dist_le_of_fixedPoint y hx)
     _ = dist (f y) (g y) / (1 - K) := by rw [hy.eq, dist_comm]
     _ ≤ C / (1 - K) := (div_le_div_right hf.one_sub_K_pos).2 (hfg y)
     
-#align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixed_point_fixed_point_of_dist_le'
+#align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'
 
 noncomputable section
 
@@ -326,26 +502,44 @@ variable [Nonempty α] [CompleteSpace α]
 
 variable (f)
 
+#print ContractingWith.fixedPoint /-
 /-- The unique fixed point of a contracting map in a nonempty complete metric space. -/
 def fixedPoint : α :=
   efixedPoint f hf _ (edist_ne_top (Classical.choice ‹Nonempty α›) _)
 #align contracting_with.fixed_point ContractingWith.fixedPoint
+-/
 
 variable {f}
 
+#print ContractingWith.fixedPoint_isFixedPt /-
 /-- The point provided by `contracting_with.fixed_point` is actually a fixed point. -/
 theorem fixedPoint_isFixedPt : IsFixedPt f (fixedPoint f hf) :=
   hf.efixedPoint_isFixedPt _
 #align contracting_with.fixed_point_is_fixed_pt ContractingWith.fixedPoint_isFixedPt
+-/
 
+#print ContractingWith.fixedPoint_unique /-
 theorem fixedPoint_unique {x} (hx : IsFixedPt f x) : x = fixedPoint f hf :=
-  hf.fixed_point_unique' hx hf.fixedPoint_isFixedPt
+  hf.fixedPoint_unique' hx hf.fixedPoint_isFixedPt
 #align contracting_with.fixed_point_unique ContractingWith.fixedPoint_unique
+-/
 
+/- warning: contracting_with.dist_fixed_point_le -> ContractingWith.dist_fixedPoint_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.dist_fixed_point_le ContractingWith.dist_fixedPoint_leₓ'. -/
 theorem dist_fixedPoint_le (x) : dist x (fixedPoint f hf) ≤ dist x (f x) / (1 - K) :=
-  hf.dist_le_of_fixed_point x hf.fixedPoint_isFixedPt
+  hf.dist_le_of_fixedPoint x hf.fixedPoint_isFixedPt
 #align contracting_with.dist_fixed_point_le ContractingWith.dist_fixedPoint_le
 
+/- warning: contracting_with.aposteriori_dist_iterate_fixed_point_le -> ContractingWith.aposteriori_dist_iterate_fixedPoint_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (Nat.iterate.{succ u1} α f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (Nat.iterate.{succ u1} α f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) x)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_leₓ'. -/
 /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/
 theorem aposteriori_dist_iterate_fixedPoint_le (x n) :
     dist ((f^[n]) x) (fixedPoint f hf) ≤ dist ((f^[n]) x) ((f^[n + 1]) x) / (1 - K) :=
@@ -354,12 +548,19 @@ theorem aposteriori_dist_iterate_fixedPoint_le (x n) :
   apply hf.dist_fixed_point_le
 #align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_le
 
+/- warning: contracting_with.apriori_dist_iterate_fixed_point_le -> ContractingWith.apriori_dist_iterate_fixedPoint_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K) n)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] (x : α) (n : Nat), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (Nat.iterate.{succ u1} α f n x) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) x (f x)) (HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.instMonoidReal)) (NNReal.toReal K) n)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K)))
+Case conversion may be inaccurate. Consider using '#align contracting_with.apriori_dist_iterate_fixed_point_le ContractingWith.apriori_dist_iterate_fixedPoint_leₓ'. -/
 theorem apriori_dist_iterate_fixedPoint_le (x n) :
     dist ((f^[n]) x) (fixedPoint f hf) ≤ dist x (f x) * K ^ n / (1 - K) :=
   le_trans (hf.aposteriori_dist_iterate_fixedPoint_le x n) <|
-    (div_le_div_right hf.one_sub_K_pos).2 <| hf.to_lipschitzWith.dist_iterate_succ_le_geometric x n
+    (div_le_div_right hf.one_sub_K_pos).2 <| hf.toLipschitzWith.dist_iterate_succ_le_geometric x n
 #align contracting_with.apriori_dist_iterate_fixed_point_le ContractingWith.apriori_dist_iterate_fixedPoint_le
 
+#print ContractingWith.tendsto_iterate_fixedPoint /-
 theorem tendsto_iterate_fixedPoint (x) :
     Tendsto (fun n => (f^[n]) x) atTop (𝓝 <| fixedPoint f hf) :=
   by
@@ -367,14 +568,22 @@ theorem tendsto_iterate_fixedPoint (x) :
   refine' (fixed_point_unique _ _).symm
   apply efixed_point_is_fixed_pt
 #align contracting_with.tendsto_iterate_fixed_point ContractingWith.tendsto_iterate_fixedPoint
+-/
 
+/- warning: contracting_with.fixed_point_lipschitz_in_map -> ContractingWith.fixedPoint_lipschitz_in_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] {g : α -> α} (hg : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K g) {C : Real}, (forall (z : α), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.hasLe (Dist.dist.{u1} α (PseudoMetricSpace.toHasDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3) (ContractingWith.fixedPoint.{u1} α _inst_1 K g hg _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) K))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MetricSpace.{u1} α] {K : NNReal} {f : α -> α} (hf : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K f) [_inst_2 : Nonempty.{succ u1} α] [_inst_3 : CompleteSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1))] {g : α -> α} (hg : ContractingWith.{u1} α (MetricSpace.toEMetricSpace.{u1} α _inst_1) K g) {C : Real}, (forall (z : α), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (f z) (g z)) C) -> (LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} α (PseudoMetricSpace.toDist.{u1} α (MetricSpace.toPseudoMetricSpace.{u1} α _inst_1)) (ContractingWith.fixedPoint.{u1} α _inst_1 K f hf _inst_2 _inst_3) (ContractingWith.fixedPoint.{u1} α _inst_1 K g hg _inst_2 _inst_3)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) C (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (NNReal.toReal K))))
+Case conversion may be inaccurate. Consider using '#align contracting_with.fixed_point_lipschitz_in_map ContractingWith.fixedPoint_lipschitz_in_mapₓ'. -/
 theorem fixedPoint_lipschitz_in_map {g : α → α} (hg : ContractingWith K g) {C}
     (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist (fixedPoint f hf) (fixedPoint g hg) ≤ C / (1 - K) :=
-  hf.dist_fixed_point_fixed_point_of_dist_le' g hf.fixedPoint_isFixedPt hg.fixedPoint_isFixedPt hfg
+  hf.dist_fixedPoint_fixedPoint_of_dist_le' g hf.fixedPoint_isFixedPt hg.fixedPoint_isFixedPt hfg
 #align contracting_with.fixed_point_lipschitz_in_map ContractingWith.fixedPoint_lipschitz_in_map
 
 omit hf
 
+#print ContractingWith.isFixedPt_fixedPoint_iterate /-
 /-- If a map `f` has a contracting iterate `f^[n]`, then the fixed point of `f^[n]` is also a fixed
 point of `f`. -/
 theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K (f^[n])) :
@@ -388,6 +597,7 @@ theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K (f^[n]))
   have := dist_pos.2 (Ne.symm this)
   simpa only [NNReal.coe_one, one_mul, NNReal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left
 #align contracting_with.is_fixed_pt_fixed_point_iterate ContractingWith.isFixedPt_fixedPoint_iterate
+-/
 
 end ContractingWith
 
Diff
@@ -189,7 +189,7 @@ theorem exists_fixed_point' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s
   haveI := hsc.complete_space_coe
   rcases hf.exists_fixed_point ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩
   refine' ⟨y, y.2, Subtype.ext_iff_val.1 hfy, _, fun n => _⟩
-  · convert (continuous_subtype_coe.tendsto _).comp h_tendsto
+  · convert(continuous_subtype_coe.tendsto _).comp h_tendsto
     ext n
     simp only [(· ∘ ·), maps_to.iterate_restrict, maps_to.coe_restrict_apply, Subtype.coe_mk]
   · convert hle n
Diff
@@ -40,13 +40,13 @@ open Filter Function
 variable {α : Type _}
 
 /-- A map is said to be `contracting_with K`, if `K < 1` and `f` is `lipschitz_with K`. -/
-def ContractingWith [EmetricSpace α] (K : ℝ≥0) (f : α → α) :=
+def ContractingWith [EMetricSpace α] (K : ℝ≥0) (f : α → α) :=
   K < 1 ∧ LipschitzWith K f
 #align contracting_with ContractingWith
 
 namespace ContractingWith
 
-variable [EmetricSpace α] [cs : CompleteSpace α] {K : ℝ≥0} {f : α → α}
+variable [EMetricSpace α] [cs : CompleteSpace α] {K : ℝ≥0} {f : α → α}
 
 open Emetric Set
 
Diff
@@ -314,7 +314,7 @@ theorem dist_fixed_point_fixed_point_of_dist_le' (g : α → α) {x y} (hx : IsF
     (hy : IsFixedPt g y) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist x y ≤ C / (1 - K) :=
   calc
     dist x y = dist y x := dist_comm x y
-    _ ≤ dist y (f y) / (1 - K) := hf.dist_le_of_fixed_point y hx
+    _ ≤ dist y (f y) / (1 - K) := (hf.dist_le_of_fixed_point y hx)
     _ = dist (f y) (g y) / (1 - K) := by rw [hy.eq, dist_comm]
     _ ≤ C / (1 - K) := (div_le_div_right hf.one_sub_K_pos).2 (hfg y)
     
Diff
@@ -33,7 +33,7 @@ contracting map, fixed point, Banach fixed point theorem
 -/
 
 
-open NNReal Topology Classical Ennreal
+open NNReal Topology Classical ENNReal
 
 open Filter Function
 
@@ -64,14 +64,14 @@ theorem one_sub_K_ne_zero (hf : ContractingWith K f) : (1 : ℝ≥0∞) - K ≠
 theorem one_sub_K_ne_top : (1 : ℝ≥0∞) - K ≠ ∞ :=
   by
   norm_cast
-  exact Ennreal.coe_ne_top
+  exact ENNReal.coe_ne_top
 #align contracting_with.one_sub_K_ne_top ContractingWith.one_sub_K_ne_top
 
 theorem edist_inequality (hf : ContractingWith K f) {x y} (h : edist x y ≠ ∞) :
     edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) :=
   suffices edist x y ≤ edist x (f x) + edist y (f y) + K * edist x y by
-    rwa [Ennreal.le_div_iff_mul_le (Or.inl hf.one_sub_K_ne_zero) (Or.inl one_sub_K_ne_top),
-      mul_comm, Ennreal.sub_mul fun _ _ => h, one_mul, tsub_le_iff_right]
+    rwa [ENNReal.le_div_iff_mul_le (Or.inl hf.one_sub_K_ne_zero) (Or.inl one_sub_K_ne_top),
+      mul_comm, ENNReal.sub_mul fun _ _ => h, one_mul, tsub_le_iff_right]
   calc
     edist x y ≤ edist x (f x) + edist (f x) (f y) + edist (f y) y := edist_triangle4 _ _ _ _
     _ = edist x (f x) + edist y (f y) + edist (f x) (f y) := by rw [edist_comm y, add_right_comm]
@@ -88,7 +88,7 @@ theorem eq_or_edist_eq_top_of_fixed_points (hf : ContractingWith K f) {x y} (hx
     (hy : IsFixedPt f y) : x = y ∨ edist x y = ∞ :=
   by
   refine' or_iff_not_imp_right.2 fun h => edist_le_zero.1 _
-  simpa only [hx.eq, edist_self, add_zero, Ennreal.zero_div] using hf.edist_le_of_fixed_point h hy
+  simpa only [hx.eq, edist_self, add_zero, ENNReal.zero_div] using hf.edist_le_of_fixed_point h hy
 #align contracting_with.eq_or_edist_eq_top_of_fixed_points ContractingWith.eq_or_edist_eq_top_of_fixed_points
 
 /-- If a map `f` is `contracting_with K`, and `s` is a forward-invariant set, then
@@ -112,7 +112,7 @@ theorem exists_fixed_point (hf : ContractingWith K f) (x : α) (hx : edist x (f
         Tendsto (fun n => (f^[n]) x) atTop (𝓝 y) ∧
           ∀ n : ℕ, edist ((f^[n]) x) y ≤ edist x (f x) * K ^ n / (1 - K) :=
   have : CauchySeq fun n => (f^[n]) x :=
-    cauchySeq_of_edist_le_geometric K (edist x (f x)) (Ennreal.coe_lt_one_iff.2 hf.1) hx
+    cauchySeq_of_edist_le_geometric K (edist x (f x)) (ENNReal.coe_lt_one_iff.2 hf.1) hx
       (hf.to_lipschitzWith.edist_iterate_succ_le_geometric x)
   let ⟨y, hy⟩ := cauchySeq_tendsto_of_complete this
   ⟨y, isFixedPt_of_tendsto_iterate hy hf.2.Continuous.ContinuousAt, hy,
@@ -158,7 +158,7 @@ theorem edist_efixedPoint_le (hf : ContractingWith K f) {x : α} (hx : edist x (
 theorem edist_efixedPoint_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint f hf x hx) < ∞ :=
   (hf.edist_efixedPoint_le hx).trans_lt
-    (Ennreal.mul_lt_top hx <| Ennreal.inv_ne_top.2 hf.one_sub_K_ne_zero)
+    (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top ContractingWith.edist_efixedPoint_lt_top
 
 theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞)
@@ -247,7 +247,7 @@ theorem edist_efixed_point_lt_top' {s : Set α} (hsc : IsComplete s) (hsf : Maps
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     edist x (efixedPoint' f hsc hsf hf x hxs hx) < ∞ :=
   (hf.edist_efixed_point_le' hsc hsf hxs hx).trans_lt
-    (Ennreal.mul_lt_top hx <| Ennreal.inv_ne_top.2 hf.one_sub_K_ne_zero)
+    (ENNReal.mul_lt_top hx <| ENNReal.inv_ne_top.2 hf.one_sub_K_ne_zero)
 #align contracting_with.edist_efixed_point_lt_top' ContractingWith.edist_efixed_point_lt_top'
 
 /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`,

Changes in mathlib4

mathlib3
mathlib4
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -294,7 +294,7 @@ theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFix
     (hy : IsFixedPt g y) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist x y ≤ C / (1 - K) :=
   calc
     dist x y = dist y x := dist_comm x y
-    _ ≤ dist y (f y) / (1 - K) := (hf.dist_le_of_fixedPoint y hx)
+    _ ≤ dist y (f y) / (1 - K) := hf.dist_le_of_fixedPoint y hx
     _ = dist (f y) (g y) / (1 - K) := by rw [hy.eq, dist_comm]
     _ ≤ C / (1 - K) := (div_le_div_right hf.one_sub_K_pos).2 (hfg y)
 #align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -300,7 +300,6 @@ theorem dist_fixedPoint_fixedPoint_of_dist_le' (g : α → α) {x y} (hx : IsFix
 #align contracting_with.dist_fixed_point_fixed_point_of_dist_le' ContractingWith.dist_fixedPoint_fixedPoint_of_dist_le'
 
 variable [Nonempty α] [CompleteSpace α]
-
 variable (f)
 
 /-- The unique fixed point of a contracting map in a nonempty complete metric space. -/
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -31,7 +31,8 @@ contracting map, fixed point, Banach fixed point theorem
 -/
 
 
-open NNReal Topology Classical ENNReal Filter Function
+open scoped Classical
+open NNReal Topology ENNReal Filter Function
 
 variable {α : Type*}
 
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -6,6 +6,7 @@ Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudr
 import Mathlib.Analysis.SpecificLimits.Basic
 import Mathlib.Data.Setoid.Basic
 import Mathlib.Dynamics.FixedPoints.Topology
+import Mathlib.Topology.MetricSpace.Lipschitz
 
 #align_import topology.metric_space.contracting from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -32,7 +32,7 @@ contracting map, fixed point, Banach fixed point theorem
 
 open NNReal Topology Classical ENNReal Filter Function
 
-variable {α : Type _}
+variable {α : Type*}
 
 /-- A map is said to be `ContractingWith K`, if `K < 1` and `f` is `LipschitzWith K`. -/
 def ContractingWith [EMetricSpace α] (K : ℝ≥0) (f : α → α) :=
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2019 Rohan Mitta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudryashov
-
-! This file was ported from Lean 3 source module topology.metric_space.contracting
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.SpecificLimits.Basic
 import Mathlib.Data.Setoid.Basic
 import Mathlib.Dynamics.FixedPoints.Topology
 
+#align_import topology.metric_space.contracting from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Contracting maps
 
fix precedence of Nat.iterate (#5589)
Diff
@@ -102,9 +102,9 @@ We include more conclusions in this theorem to avoid proving them again later.
 The main API for this theorem are the functions `efixedPoint` and `fixedPoint`,
 and lemmas about these functions. -/
 theorem exists_fixedPoint (hf : ContractingWith K f) (x : α) (hx : edist x (f x) ≠ ∞) :
-    ∃ y, IsFixedPt f y ∧ Tendsto (fun n ↦ (f^[n]) x) atTop (𝓝 y) ∧
-      ∀ n : ℕ, edist ((f^[n]) x) y ≤ edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) :=
-  have : CauchySeq fun n ↦ (f^[n]) x :=
+    ∃ y, IsFixedPt f y ∧ Tendsto (fun n ↦ f^[n] x) atTop (𝓝 y) ∧
+      ∀ n : ℕ, edist (f^[n] x) y ≤ edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) :=
+  have : CauchySeq fun n ↦ f^[n] x :=
     cauchySeq_of_edist_le_geometric K (edist x (f x)) (ENNReal.coe_lt_one_iff.2 hf.1) hx
       (hf.toLipschitzWith.edist_iterate_succ_le_geometric x)
   let ⟨y, hy⟩ := cauchySeq_tendsto_of_complete this
@@ -131,13 +131,13 @@ theorem efixedPoint_isFixedPt (hf : ContractingWith K f) {x : α} (hx : edist x
 #align contracting_with.efixed_point_is_fixed_pt ContractingWith.efixedPoint_isFixedPt
 
 theorem tendsto_iterate_efixedPoint (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ∞) :
-    Tendsto (fun n ↦ (f^[n]) x) atTop (𝓝 <| efixedPoint f hf x hx) :=
+    Tendsto (fun n ↦ f^[n] x) atTop (𝓝 <| efixedPoint f hf x hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.1
 #align contracting_with.tendsto_iterate_efixed_point ContractingWith.tendsto_iterate_efixedPoint
 
 theorem apriori_edist_iterate_efixedPoint_le (hf : ContractingWith K f) {x : α}
     (hx : edist x (f x) ≠ ∞) (n : ℕ) :
-    edist ((f^[n]) x) (efixedPoint f hf x hx) ≤ edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) :=
+    edist (f^[n] x) (efixedPoint f hf x hx) ≤ edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) :=
   (Classical.choose_spec <| hf.exists_fixedPoint x hx).2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le ContractingWith.apriori_edist_iterate_efixedPoint_le
 
@@ -169,8 +169,8 @@ theorem efixedPoint_eq_of_edist_lt_top (hf : ContractingWith K f) {x : α} (hx :
 /-- Banach fixed-point theorem for maps contracting on a complete subset. -/
 theorem exists_fixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
-    ∃ y ∈ s, IsFixedPt f y ∧ Tendsto (fun n ↦ (f^[n]) x) atTop (𝓝 y) ∧
-      ∀ n : ℕ, edist ((f^[n]) x) y ≤ edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) := by
+    ∃ y ∈ s, IsFixedPt f y ∧ Tendsto (fun n ↦ f^[n] x) atTop (𝓝 y) ∧
+      ∀ n : ℕ, edist (f^[n] x) y ≤ edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) := by
   haveI := hsc.completeSpace_coe
   rcases hf.exists_fixedPoint ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩
   refine' ⟨y, y.2, Subtype.ext_iff_val.1 hfy, _, fun n ↦ _⟩
@@ -209,14 +209,14 @@ theorem efixedPoint_isFixedPt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f
 
 theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
-    Tendsto (fun n ↦ (f^[n]) x) atTop (𝓝 <| efixedPoint' f hsc hsf hf x hxs hx) :=
+    Tendsto (fun n ↦ f^[n] x) atTop (𝓝 <| efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).2.2.1
 #align contracting_with.tendsto_iterate_efixed_point' ContractingWith.tendsto_iterate_efixedPoint'
 
 theorem apriori_edist_iterate_efixedPoint_le' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞)
     (n : ℕ) :
-    edist ((f^[n]) x) (efixedPoint' f hsc hsf hf x hxs hx) ≤
+    edist (f^[n] x) (efixedPoint' f hsc hsf hf x hxs hx) ≤
       edist x (f x) * (K : ℝ≥0∞) ^ n / (1 - K) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).2.2.2 n
 #align contracting_with.apriori_edist_iterate_efixed_point_le' ContractingWith.apriori_edist_iterate_efixedPoint_le'
@@ -326,19 +326,19 @@ theorem dist_fixedPoint_le (x) : dist x (fixedPoint f hf) ≤ dist x (f x) / (1
 
 /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/
 theorem aposteriori_dist_iterate_fixedPoint_le (x n) :
-    dist ((f^[n]) x) (fixedPoint f hf) ≤ dist ((f^[n]) x) ((f^[n + 1]) x) / (1 - K) := by
+    dist (f^[n] x) (fixedPoint f hf) ≤ dist (f^[n] x) (f^[n + 1] x) / (1 - K) := by
   rw [iterate_succ']
   apply hf.dist_fixedPoint_le
 #align contracting_with.aposteriori_dist_iterate_fixed_point_le ContractingWith.aposteriori_dist_iterate_fixedPoint_le
 
 theorem apriori_dist_iterate_fixedPoint_le (x n) :
-    dist ((f^[n]) x) (fixedPoint f hf) ≤ dist x (f x) * (K : ℝ) ^ n / (1 - K) :=
+    dist (f^[n] x) (fixedPoint f hf) ≤ dist x (f x) * (K : ℝ) ^ n / (1 - K) :=
   le_trans (hf.aposteriori_dist_iterate_fixedPoint_le x n) <|
     (div_le_div_right hf.one_sub_K_pos).2 <| hf.toLipschitzWith.dist_iterate_succ_le_geometric x n
 #align contracting_with.apriori_dist_iterate_fixed_point_le ContractingWith.apriori_dist_iterate_fixedPoint_le
 
 theorem tendsto_iterate_fixedPoint (x) :
-    Tendsto (fun n ↦ (f^[n]) x) atTop (𝓝 <| fixedPoint f hf) := by
+    Tendsto (fun n ↦ f^[n] x) atTop (𝓝 <| fixedPoint f hf) := by
   convert tendsto_iterate_efixedPoint hf (edist_ne_top x _)
   refine' (fixedPoint_unique _ _).symm
   apply efixedPoint_isFixedPt
@@ -351,10 +351,10 @@ theorem fixedPoint_lipschitz_in_map {g : α → α} (hg : ContractingWith K g) {
 
 /-- If a map `f` has a contracting iterate `f^[n]`, then the fixed point of `f^[n]` is also a fixed
 point of `f`. -/
-theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K (f^[n])) :
-    IsFixedPt f (hf.fixedPoint (f^[n])) := by
-  set x := hf.fixedPoint (f^[n])
-  have hx : (f^[n]) x = x := hf.fixedPoint_isFixedPt
+theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K f^[n]) :
+    IsFixedPt f (hf.fixedPoint f^[n]) := by
+  set x := hf.fixedPoint f^[n]
+  have hx : f^[n] x = x := hf.fixedPoint_isFixedPt
   have := hf.toLipschitzWith.dist_le_mul x (f x)
   rw [← iterate_succ_apply, iterate_succ_apply', hx] at this
   -- Porting note: Originally `contrapose! this`
chore: tidy various files (#3408)
Diff
@@ -33,9 +33,7 @@ contracting map, fixed point, Banach fixed point theorem
 -/
 
 
-open NNReal Topology Classical ENNReal
-
-open Filter Function
+open NNReal Topology Classical ENNReal Filter Function
 
 variable {α : Type _}
 
@@ -203,11 +201,11 @@ theorem efixedPoint_mem' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).1
 #align contracting_with.efixed_point_mem' ContractingWith.efixedPoint_mem'
 
-theorem efixedPoint_is_fixed_pt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
+theorem efixedPoint_isFixedPt' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
     IsFixedPt f (efixedPoint' f hsc hsf hf x hxs hx) :=
   (Classical.choose_spec <| hf.exists_fixedPoint' hsc hsf hxs hx).2.1
-#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_is_fixed_pt'
+#align contracting_with.efixed_point_is_fixed_pt' ContractingWith.efixedPoint_isFixedPt'
 
 theorem tendsto_iterate_efixedPoint' {s : Set α} (hsc : IsComplete s) (hsf : MapsTo f s s)
     (hf : ContractingWith K <| hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) :
@@ -250,7 +248,7 @@ theorem efixedPoint_eq_of_edist_lt_top' (hf : ContractingWith K f) {s : Set α}
     (hxy : edist x y ≠ ∞) :
     efixedPoint' f hsc hsf hfs x hxs hx = efixedPoint' f htc htf hft y hyt hy := by
   refine' (hf.eq_or_edist_eq_top_of_fixedPoints _ _).elim id fun h' ↦ False.elim (ne_of_lt _ h')
-    <;> try apply efixedPoint_is_fixed_pt'
+    <;> try apply efixedPoint_isFixedPt'
   change edistLtTopSetoid.Rel _ _
   trans x
   · apply Setoid.symm' -- Porting note: Originally `symm`
feat: port Topology.MetricSpace.Contracting (#3323)

Co-authored-by: Moritz Firsching <firsching@google.com>

Dependencies 10 + 598

599 files ported (98.4%)
261813 lines ported (98.0%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file