topology.partial
⟷
Mathlib.Topology.Partial
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -90,7 +90,7 @@ theorem pcontinuous_iff' {f : α →. β} :
have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x := by
intro s hs
have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy
- rw [ptendsto'_def] at this
+ rw [ptendsto'_def] at this
exact this s hs
show f.preimage s ∈ 𝓝 x
apply h'; rw [mem_nhds_iff]; exact ⟨s, Set.Subset.refl _, os, ys⟩
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2018 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/
-import Mathbin.Topology.ContinuousOn
-import Mathbin.Order.Filter.Partial
+import Topology.ContinuousOn
+import Order.Filter.Partial
#align_import topology.partial from "leanprover-community/mathlib"@"34ee86e6a59d911a8e4f89b68793ee7577ae79c7"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2018 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-
-! This file was ported from Lean 3 source module topology.partial
-! leanprover-community/mathlib commit 34ee86e6a59d911a8e4f89b68793ee7577ae79c7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Topology.ContinuousOn
import Mathbin.Order.Filter.Partial
+#align_import topology.partial from "leanprover-community/mathlib"@"34ee86e6a59d911a8e4f89b68793ee7577ae79c7"
+
/-!
# Partial functions and topological spaces
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -68,10 +68,13 @@ def PContinuous (f : α →. β) :=
#align pcontinuous PContinuous
-/
+#print open_dom_of_pcontinuous /-
theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.Dom := by
rw [← PFun.preimage_univ] <;> exact h _ isOpen_univ
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
+-/
+#print pcontinuous_iff' /-
theorem pcontinuous_iff' {f : α →. β} :
PContinuous f ↔ ∀ {x y} (h : y ∈ f x), PTendsto' f (𝓝 x) (𝓝 y) :=
by
@@ -95,9 +98,12 @@ theorem pcontinuous_iff' {f : α →. β} :
show f.preimage s ∈ 𝓝 x
apply h'; rw [mem_nhds_iff]; exact ⟨s, Set.Subset.refl _, os, ys⟩
#align pcontinuous_iff' pcontinuous_iff'
+-/
+#print continuousWithinAt_iff_ptendsto_res /-
theorem continuousWithinAt_iff_ptendsto_res (f : α → β) {x : α} {s : Set α} :
ContinuousWithinAt f s x ↔ PTendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
tendsto_iff_ptendsto _ _ _ _
#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_res
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/a3209ddf94136d36e5e5c624b10b2a347cc9d090
@@ -30,28 +30,28 @@ variable {α β : Type _} [TopologicalSpace α]
#print rtendsto_nhds /-
theorem rtendsto_nhds {r : Rel β α} {l : Filter β} {a : α} :
- Rtendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.Core s ∈ l :=
+ RTendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.Core s ∈ l :=
all_mem_nhds_filter _ _ (fun s t => id) _
#align rtendsto_nhds rtendsto_nhds
-/
#print rtendsto'_nhds /-
theorem rtendsto'_nhds {r : Rel β α} {l : Filter β} {a : α} :
- Rtendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.Preimage s ∈ l := by rw [rtendsto'_def];
+ RTendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.Preimage s ∈ l := by rw [rtendsto'_def];
apply all_mem_nhds_filter; apply Rel.preimage_mono
#align rtendsto'_nhds rtendsto'_nhds
-/
#print ptendsto_nhds /-
theorem ptendsto_nhds {f : β →. α} {l : Filter β} {a : α} :
- Ptendsto f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.Core s ∈ l :=
+ PTendsto f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.Core s ∈ l :=
rtendsto_nhds
#align ptendsto_nhds ptendsto_nhds
-/
#print ptendsto'_nhds /-
theorem ptendsto'_nhds {f : β →. α} {l : Filter β} {a : α} :
- Ptendsto' f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.Preimage s ∈ l :=
+ PTendsto' f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.Preimage s ∈ l :=
rtendsto'_nhds
#align ptendsto'_nhds ptendsto'_nhds
-/
@@ -73,7 +73,7 @@ theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
theorem pcontinuous_iff' {f : α →. β} :
- PContinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) :=
+ PContinuous f ↔ ∀ {x y} (h : y ∈ f x), PTendsto' f (𝓝 x) (𝓝 y) :=
by
constructor
· intro h x y h'
@@ -97,7 +97,7 @@ theorem pcontinuous_iff' {f : α →. β} :
#align pcontinuous_iff' pcontinuous_iff'
theorem continuousWithinAt_iff_ptendsto_res (f : α → β) {x : α} {s : Set α} :
- ContinuousWithinAt f s x ↔ Ptendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
+ ContinuousWithinAt f s x ↔ PTendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
tendsto_iff_ptendsto _ _ _ _
#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_res
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -90,7 +90,7 @@ theorem pcontinuous_iff' {f : α →. β} :
have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x := by
intro s hs
have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy
- rw [ptendsto'_def] at this
+ rw [ptendsto'_def] at this
exact this s hs
show f.preimage s ∈ 𝓝 x
apply h'; rw [mem_nhds_iff]; exact ⟨s, Set.Subset.refl _, os, ys⟩
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -24,7 +24,7 @@ In this file we prove properties of `filter.ptendsto` etc in topological spaces.
open Filter
-open Topology
+open scoped Topology
variable {α β : Type _} [TopologicalSpace α]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -61,19 +61,19 @@ theorem ptendsto'_nhds {f : β →. α} {l : Filter β} {a : α} :
variable [TopologicalSpace β]
-#print Pcontinuous /-
+#print PContinuous /-
/-- Continuity of a partial function -/
-def Pcontinuous (f : α →. β) :=
+def PContinuous (f : α →. β) :=
∀ s, IsOpen s → IsOpen (f.Preimage s)
-#align pcontinuous Pcontinuous
+#align pcontinuous PContinuous
-/
-theorem open_dom_of_pcontinuous {f : α →. β} (h : Pcontinuous f) : IsOpen f.Dom := by
+theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.Dom := by
rw [← PFun.preimage_univ] <;> exact h _ isOpen_univ
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
theorem pcontinuous_iff' {f : α →. β} :
- Pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) :=
+ PContinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) :=
by
constructor
· intro h x y h'
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -68,22 +68,10 @@ def Pcontinuous (f : α →. β) :=
#align pcontinuous Pcontinuous
-/
-/- warning: open_dom_of_pcontinuous -> open_dom_of_pcontinuous is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : PFun.{u1, u2} α β}, (Pcontinuous.{u1, u2} α β _inst_1 _inst_2 f) -> (IsOpen.{u1} α _inst_1 (PFun.Dom.{u1, u2} α β f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : PFun.{u2, u1} α β}, (Pcontinuous.{u2, u1} α β _inst_1 _inst_2 f) -> (IsOpen.{u2} α _inst_1 (PFun.Dom.{u2, u1} α β f))
-Case conversion may be inaccurate. Consider using '#align open_dom_of_pcontinuous open_dom_of_pcontinuousₓ'. -/
theorem open_dom_of_pcontinuous {f : α →. β} (h : Pcontinuous f) : IsOpen f.Dom := by
rw [← PFun.preimage_univ] <;> exact h _ isOpen_univ
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
-/- warning: pcontinuous_iff' -> pcontinuous_iff' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : PFun.{u1, u2} α β}, Iff (Pcontinuous.{u1, u2} α β _inst_1 _inst_2 f) (forall {x : α} {y : β}, (Membership.Mem.{u2, u2} β (Part.{u2} β) (Part.hasMem.{u2} β) y (f x)) -> (Filter.Ptendsto'.{u1, u2} α β f (nhds.{u1} α _inst_1 x) (nhds.{u2} β _inst_2 y)))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : PFun.{u2, u1} α β}, Iff (Pcontinuous.{u2, u1} α β _inst_1 _inst_2 f) (forall {x : α} {y : β}, (Membership.mem.{u1, u1} β (Part.{u1} β) (Part.instMembershipPart.{u1} β) y (f x)) -> (Filter.Ptendsto'.{u2, u1} α β f (nhds.{u2} α _inst_1 x) (nhds.{u1} β _inst_2 y)))
-Case conversion may be inaccurate. Consider using '#align pcontinuous_iff' pcontinuous_iff'ₓ'. -/
theorem pcontinuous_iff' {f : α →. β} :
Pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) :=
by
@@ -108,12 +96,6 @@ theorem pcontinuous_iff' {f : α →. β} :
apply h'; rw [mem_nhds_iff]; exact ⟨s, Set.Subset.refl _, os, ys⟩
#align pcontinuous_iff' pcontinuous_iff'
-/- warning: continuous_within_at_iff_ptendsto_res -> continuousWithinAt_iff_ptendsto_res is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) {x : α} {s : Set.{u1} α}, Iff (ContinuousWithinAt.{u1, u2} α β _inst_1 _inst_2 f s x) (Filter.Ptendsto.{u1, u2} α β (PFun.res.{u1, u2} α β f s) (nhds.{u1} α _inst_1 x) (nhds.{u2} β _inst_2 (f x)))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) {x : α} {s : Set.{u2} α}, Iff (ContinuousWithinAt.{u2, u1} α β _inst_1 _inst_2 f s x) (Filter.Ptendsto.{u2, u1} α β (PFun.res.{u2, u1} α β f s) (nhds.{u2} α _inst_1 x) (nhds.{u1} β _inst_2 (f x)))
-Case conversion may be inaccurate. Consider using '#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_resₓ'. -/
theorem continuousWithinAt_iff_ptendsto_res (f : α → β) {x : α} {s : Set α} :
ContinuousWithinAt f s x ↔ Ptendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
tendsto_iff_ptendsto _ _ _ _
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -37,11 +37,8 @@ theorem rtendsto_nhds {r : Rel β α} {l : Filter β} {a : α} :
#print rtendsto'_nhds /-
theorem rtendsto'_nhds {r : Rel β α} {l : Filter β} {a : α} :
- Rtendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.Preimage s ∈ l :=
- by
- rw [rtendsto'_def]
- apply all_mem_nhds_filter
- apply Rel.preimage_mono
+ Rtendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.Preimage s ∈ l := by rw [rtendsto'_def];
+ apply all_mem_nhds_filter; apply Rel.preimage_mono
#align rtendsto'_nhds rtendsto'_nhds
-/
@@ -108,9 +105,7 @@ theorem pcontinuous_iff' {f : α →. β} :
rw [ptendsto'_def] at this
exact this s hs
show f.preimage s ∈ 𝓝 x
- apply h'
- rw [mem_nhds_iff]
- exact ⟨s, Set.Subset.refl _, os, ys⟩
+ apply h'; rw [mem_nhds_iff]; exact ⟨s, Set.Subset.refl _, os, ys⟩
#align pcontinuous_iff' pcontinuous_iff'
/- warning: continuous_within_at_iff_ptendsto_res -> continuousWithinAt_iff_ptendsto_res is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
In some cases, the order of implicit arguments changed
because now they appear in a different order in variable
s.
Also, some definitions used greek letters for topological spaces,
changed to X
/Y
.
@@ -3,8 +3,8 @@ Copyright (c) 2018 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/
-import Mathlib.Topology.ContinuousOn
import Mathlib.Order.Filter.Partial
+import Mathlib.Topology.Basic
#align_import topology.partial from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
We use letters X and Y for topological spaces now, not Greek letters.
@@ -20,45 +20,45 @@ open Filter
open Topology
-variable {α β : Type*} [TopologicalSpace α]
+variable {X Y : Type*} [TopologicalSpace X]
-theorem rtendsto_nhds {r : Rel β α} {l : Filter β} {a : α} :
- RTendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.core s ∈ l :=
+theorem rtendsto_nhds {r : Rel Y X} {l : Filter Y} {x : X} :
+ RTendsto r l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → r.core s ∈ l :=
all_mem_nhds_filter _ _ (fun _s _t => id) _
#align rtendsto_nhds rtendsto_nhds
-theorem rtendsto'_nhds {r : Rel β α} {l : Filter β} {a : α} :
- RTendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.preimage s ∈ l := by
+theorem rtendsto'_nhds {r : Rel Y X} {l : Filter Y} {x : X} :
+ RTendsto' r l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → r.preimage s ∈ l := by
rw [rtendsto'_def]
apply all_mem_nhds_filter
apply Rel.preimage_mono
#align rtendsto'_nhds rtendsto'_nhds
-theorem ptendsto_nhds {f : β →. α} {l : Filter β} {a : α} :
- PTendsto f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.core s ∈ l :=
+theorem ptendsto_nhds {f : Y →. X} {l : Filter Y} {x : X} :
+ PTendsto f l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → f.core s ∈ l :=
rtendsto_nhds
#align ptendsto_nhds ptendsto_nhds
-theorem ptendsto'_nhds {f : β →. α} {l : Filter β} {a : α} :
- PTendsto' f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.preimage s ∈ l :=
+theorem ptendsto'_nhds {f : Y →. X} {l : Filter Y} {x : X} :
+ PTendsto' f l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → f.preimage s ∈ l :=
rtendsto'_nhds
#align ptendsto'_nhds ptendsto'_nhds
/-! ### Continuity and partial functions -/
-variable [TopologicalSpace β]
+variable [TopologicalSpace Y]
/-- Continuity of a partial function -/
-def PContinuous (f : α →. β) :=
+def PContinuous (f : X →. Y) :=
∀ s, IsOpen s → IsOpen (f.preimage s)
#align pcontinuous PContinuous
-theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.Dom := by
+theorem open_dom_of_pcontinuous {f : X →. Y} (h : PContinuous f) : IsOpen f.Dom := by
rw [← PFun.preimage_univ]; exact h _ isOpen_univ
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
-theorem pcontinuous_iff' {f : α →. β} :
+theorem pcontinuous_iff' {f : X →. Y} :
PContinuous f ↔ ∀ {x y} (h : y ∈ f x), PTendsto' f (𝓝 x) (𝓝 y) := by
constructor
· intro h x y h'
@@ -83,7 +83,7 @@ theorem pcontinuous_iff' {f : α →. β} :
exact ⟨s, Set.Subset.refl _, os, ys⟩
#align pcontinuous_iff' pcontinuous_iff'
-theorem continuousWithinAt_iff_ptendsto_res (f : α → β) {x : α} {s : Set α} :
+theorem continuousWithinAt_iff_ptendsto_res (f : X → Y) {x : X} {s : Set X} :
ContinuousWithinAt f s x ↔ PTendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
tendsto_iff_ptendsto _ _ _ _
#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_res
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -20,7 +20,7 @@ open Filter
open Topology
-variable {α β : Type _} [TopologicalSpace α]
+variable {α β : Type*} [TopologicalSpace α]
theorem rtendsto_nhds {r : Rel β α} {l : Filter β} {a : α} :
RTendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.core s ∈ l :=
@@ -2,15 +2,12 @@
Copyright (c) 2018 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-
-! This file was ported from Lean 3 source module topology.partial
-! leanprover-community/mathlib commit 4c19a16e4b705bf135cf9a80ac18fcc99c438514
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Topology.ContinuousOn
import Mathlib.Order.Filter.Partial
+#align_import topology.partial from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
+
/-!
# Partial functions and topological spaces
Rtendsto
and Ptendsto
to RTendsto
and PTendsto
(#4722)
https://github.com/leanprover-community/mathlib4/issues/2203
@@ -14,7 +14,7 @@ import Mathlib.Order.Filter.Partial
/-!
# Partial functions and topological spaces
-In this file we prove properties of `Filter.Ptendsto` etc in topological spaces. We also introduce
+In this file we prove properties of `Filter.PTendsto` etc in topological spaces. We also introduce
`PContinuous`, a version of `Continuous` for partially defined functions.
-/
@@ -26,24 +26,24 @@ open Topology
variable {α β : Type _} [TopologicalSpace α]
theorem rtendsto_nhds {r : Rel β α} {l : Filter β} {a : α} :
- Rtendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.core s ∈ l :=
+ RTendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.core s ∈ l :=
all_mem_nhds_filter _ _ (fun _s _t => id) _
#align rtendsto_nhds rtendsto_nhds
theorem rtendsto'_nhds {r : Rel β α} {l : Filter β} {a : α} :
- Rtendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.preimage s ∈ l := by
+ RTendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.preimage s ∈ l := by
rw [rtendsto'_def]
apply all_mem_nhds_filter
apply Rel.preimage_mono
#align rtendsto'_nhds rtendsto'_nhds
theorem ptendsto_nhds {f : β →. α} {l : Filter β} {a : α} :
- Ptendsto f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.core s ∈ l :=
+ PTendsto f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.core s ∈ l :=
rtendsto_nhds
#align ptendsto_nhds ptendsto_nhds
theorem ptendsto'_nhds {f : β →. α} {l : Filter β} {a : α} :
- Ptendsto' f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.preimage s ∈ l :=
+ PTendsto' f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.preimage s ∈ l :=
rtendsto'_nhds
#align ptendsto'_nhds ptendsto'_nhds
@@ -62,7 +62,7 @@ theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
theorem pcontinuous_iff' {f : α →. β} :
- PContinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) := by
+ PContinuous f ↔ ∀ {x y} (h : y ∈ f x), PTendsto' f (𝓝 x) (𝓝 y) := by
constructor
· intro h x y h'
simp only [ptendsto'_def, mem_nhds_iff]
@@ -77,7 +77,7 @@ theorem pcontinuous_iff' {f : α →. β} :
apply mem_of_superset _ h
have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x := by
intro s hs
- have : Ptendsto' f (𝓝 x) (𝓝 y) := hf fxy
+ have : PTendsto' f (𝓝 x) (𝓝 y) := hf fxy
rw [ptendsto'_def] at this
exact this s hs
show f.preimage s ∈ 𝓝 x
@@ -87,6 +87,6 @@ theorem pcontinuous_iff' {f : α →. β} :
#align pcontinuous_iff' pcontinuous_iff'
theorem continuousWithinAt_iff_ptendsto_res (f : α → β) {x : α} {s : Set α} :
- ContinuousWithinAt f s x ↔ Ptendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
+ ContinuousWithinAt f s x ↔ PTendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
tendsto_iff_ptendsto _ _ _ _
#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_res
@@ -15,7 +15,7 @@ import Mathlib.Order.Filter.Partial
# Partial functions and topological spaces
In this file we prove properties of `Filter.Ptendsto` etc in topological spaces. We also introduce
-`Pcontinuous`, a version of `Continuous` for partially defined functions.
+`PContinuous`, a version of `Continuous` for partially defined functions.
-/
@@ -53,16 +53,16 @@ theorem ptendsto'_nhds {f : β →. α} {l : Filter β} {a : α} :
variable [TopologicalSpace β]
/-- Continuity of a partial function -/
-def Pcontinuous (f : α →. β) :=
+def PContinuous (f : α →. β) :=
∀ s, IsOpen s → IsOpen (f.preimage s)
-#align pcontinuous Pcontinuous
+#align pcontinuous PContinuous
-theorem open_dom_of_pcontinuous {f : α →. β} (h : Pcontinuous f) : IsOpen f.Dom := by
+theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.Dom := by
rw [← PFun.preimage_univ]; exact h _ isOpen_univ
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
theorem pcontinuous_iff' {f : α →. β} :
- Pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) := by
+ PContinuous f ↔ ∀ {x y} (h : y ∈ f x), Ptendsto' f (𝓝 x) (𝓝 y) := by
constructor
· intro h x y h'
simp only [ptendsto'_def, mem_nhds_iff]
The unported dependencies are