topology.semicontinuousMathlib.Topology.Semicontinuous

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
-import Algebra.IndicatorFunction
+import Algebra.Function.Indicator
 import Topology.ContinuousOn
-import Topology.Instances.Ennreal
+import Topology.Instances.ENNReal
 
 #align_import topology.semicontinuous from "leanprover-community/mathlib"@"10bf4f825ad729c5653adc039dafa3622e7f93c9"
 
Diff
@@ -246,7 +246,7 @@ theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
   intro x z hz
-  by_cases h : x ∈ s <;> simp [h] at hz 
+  by_cases h : x ∈ s <;> simp [h] at hz
   · filter_upwards [hs.mem_nhds h]
     simp (config := { contextual := true }) [hz]
   · apply Filter.eventually_of_forall fun x' => _
@@ -280,7 +280,7 @@ theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0)
     LowerSemicontinuous (indicator s fun x => y) :=
   by
   intro x z hz
-  by_cases h : x ∈ s <;> simp [h] at hz 
+  by_cases h : x ∈ s <;> simp [h] at hz
   · apply Filter.eventually_of_forall fun x' => _
     by_cases h' : x' ∈ s <;> simp [h', hz, hz.trans_le hy]
   · filter_upwards [hs.is_open_compl.mem_nhds h]
@@ -402,7 +402,7 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
     calc
       y < g (min (f x) (f a)) := hz (by simp [zlt, ha, le_refl])
       _ ≤ g (f a) := gmon (min_le_right _ _)
-  · simp only [not_exists, not_lt] at h 
+  · simp only [not_exists, not_lt] at h
     exact Filter.eventually_of_forall fun a => hy.trans_le (gmon (h (f a)))
 #align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAt
 -/
@@ -508,7 +508,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < min (f z) (f x) + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (min_le_left _ _)
-    · simp only [not_exists, not_lt] at hx₂ 
+    · simp only [not_exists, not_lt] at hx₂
       filter_upwards [hf z₁ z₁lt] with z h₁z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
@@ -518,7 +518,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < min (f z) (f x) + g x := h this
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (hx₂ (g z))
-  · simp only [not_exists, not_lt] at hx₁ 
+  · simp only [not_exists, not_lt] at hx₁
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
         exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂
@@ -531,7 +531,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < f x + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (min_le_left _ _)
-    · simp only [not_exists, not_lt] at hx₁ hx₂ 
+    · simp only [not_exists, not_lt] at hx₁ hx₂
       apply Filter.eventually_of_forall
       intro z
       have : (f x, g x) ∈ u ×ˢ v := ⟨xu, xv⟩
@@ -704,7 +704,7 @@ theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
-  rw [← nhdsWithin_univ] at bdd 
+  rw [← nhdsWithin_univ] at bdd
   exact lowerSemicontinuousWithinAt_ciSup bdd h
 #align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSup
 -/
@@ -1374,15 +1374,15 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
       cases' le_or_gt (f a) (f x) with h h
       · exact hl ⟨lfa, h⟩
       · exact hu ⟨le_of_lt h, fau⟩
-    · simp only [not_exists, not_lt] at Hu 
+    · simp only [not_exists, not_lt] at Hu
       filter_upwards [h₁ l lfx] with a lfa using hl ⟨lfa, Hu (f a)⟩
-  · simp only [not_exists, not_lt] at Hl 
+  · simp only [not_exists, not_lt] at Hl
     by_cases Hu : ∃ u, f x < u
     · rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
       filter_upwards [h₂ u fxu] with a lfa
       apply hu
       exact ⟨Hl (f a), lfa⟩
-    · simp only [not_exists, not_lt] at Hu 
+    · simp only [not_exists, not_lt] at Hu
       apply Filter.eventually_of_forall
       intro a
       have : f a = f x := le_antisymm (Hu _) (Hl _)
Diff
@@ -622,7 +622,14 @@ theorem LowerSemicontinuous.add {f g : α → γ} (hf : LowerSemicontinuous f)
 #print lowerSemicontinuousWithinAt_sum /-
 theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousWithinAt (f i) s x) :
-    LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by classical
+    LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by
+  classical
+  induction' a using Finset.induction_on with i a ia IH generalizing ha
+  · exact lowerSemicontinuousWithinAt_const
+  · simp only [ia, Finset.sum_insert, not_false_iff]
+    exact
+      LowerSemicontinuousWithinAt.add (ha _ (Finset.mem_insert_self i a))
+        (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
 #align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sum
 -/
 
Diff
@@ -622,14 +622,7 @@ theorem LowerSemicontinuous.add {f g : α → γ} (hf : LowerSemicontinuous f)
 #print lowerSemicontinuousWithinAt_sum /-
 theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousWithinAt (f i) s x) :
-    LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by
-  classical
-  induction' a using Finset.induction_on with i a ia IH generalizing ha
-  · exact lowerSemicontinuousWithinAt_const
-  · simp only [ia, Finset.sum_insert, not_false_iff]
-    exact
-      LowerSemicontinuousWithinAt.add (ha _ (Finset.mem_insert_self i a))
-        (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
+    LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by classical
 #align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sum
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
-import Mathbin.Algebra.IndicatorFunction
-import Mathbin.Topology.ContinuousOn
-import Mathbin.Topology.Instances.Ennreal
+import Algebra.IndicatorFunction
+import Topology.ContinuousOn
+import Topology.Instances.Ennreal
 
 #align_import topology.semicontinuous from "leanprover-community/mathlib"@"10bf4f825ad729c5653adc039dafa3622e7f93c9"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module topology.semicontinuous
-! leanprover-community/mathlib commit 10bf4f825ad729c5653adc039dafa3622e7f93c9
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.IndicatorFunction
 import Mathbin.Topology.ContinuousOn
 import Mathbin.Topology.Instances.Ennreal
 
+#align_import topology.semicontinuous from "leanprover-community/mathlib"@"10bf4f825ad729c5653adc039dafa3622e7f93c9"
+
 /-!
 # Semicontinuous maps
 
Diff
@@ -150,66 +150,92 @@ def UpperSemicontinuous (f : α → β) :=
 /-! #### Basic dot notation interface for lower semicontinuity -/
 
 
+#print LowerSemicontinuousWithinAt.mono /-
 theorem LowerSemicontinuousWithinAt.mono (h : LowerSemicontinuousWithinAt f s x) (hst : t ⊆ s) :
     LowerSemicontinuousWithinAt f t x := fun y hy =>
   Filter.Eventually.filter_mono (nhdsWithin_mono _ hst) (h y hy)
 #align lower_semicontinuous_within_at.mono LowerSemicontinuousWithinAt.mono
+-/
 
+#print lowerSemicontinuousWithinAt_univ_iff /-
 theorem lowerSemicontinuousWithinAt_univ_iff :
     LowerSemicontinuousWithinAt f univ x ↔ LowerSemicontinuousAt f x := by
   simp [LowerSemicontinuousWithinAt, LowerSemicontinuousAt, nhdsWithin_univ]
 #align lower_semicontinuous_within_at_univ_iff lowerSemicontinuousWithinAt_univ_iff
+-/
 
+#print LowerSemicontinuousAt.lowerSemicontinuousWithinAt /-
 theorem LowerSemicontinuousAt.lowerSemicontinuousWithinAt (s : Set α)
     (h : LowerSemicontinuousAt f x) : LowerSemicontinuousWithinAt f s x := fun y hy =>
   Filter.Eventually.filter_mono nhdsWithin_le_nhds (h y hy)
 #align lower_semicontinuous_at.lower_semicontinuous_within_at LowerSemicontinuousAt.lowerSemicontinuousWithinAt
+-/
 
+#print LowerSemicontinuousOn.lowerSemicontinuousWithinAt /-
 theorem LowerSemicontinuousOn.lowerSemicontinuousWithinAt (h : LowerSemicontinuousOn f s)
     (hx : x ∈ s) : LowerSemicontinuousWithinAt f s x :=
   h x hx
 #align lower_semicontinuous_on.lower_semicontinuous_within_at LowerSemicontinuousOn.lowerSemicontinuousWithinAt
+-/
 
+#print LowerSemicontinuousOn.mono /-
 theorem LowerSemicontinuousOn.mono (h : LowerSemicontinuousOn f s) (hst : t ⊆ s) :
     LowerSemicontinuousOn f t := fun x hx => (h x (hst hx)).mono hst
 #align lower_semicontinuous_on.mono LowerSemicontinuousOn.mono
+-/
 
+#print lowerSemicontinuousOn_univ_iff /-
 theorem lowerSemicontinuousOn_univ_iff : LowerSemicontinuousOn f univ ↔ LowerSemicontinuous f := by
   simp [LowerSemicontinuousOn, LowerSemicontinuous, lowerSemicontinuousWithinAt_univ_iff]
 #align lower_semicontinuous_on_univ_iff lowerSemicontinuousOn_univ_iff
+-/
 
+#print LowerSemicontinuous.lowerSemicontinuousAt /-
 theorem LowerSemicontinuous.lowerSemicontinuousAt (h : LowerSemicontinuous f) (x : α) :
     LowerSemicontinuousAt f x :=
   h x
 #align lower_semicontinuous.lower_semicontinuous_at LowerSemicontinuous.lowerSemicontinuousAt
+-/
 
+#print LowerSemicontinuous.lowerSemicontinuousWithinAt /-
 theorem LowerSemicontinuous.lowerSemicontinuousWithinAt (h : LowerSemicontinuous f) (s : Set α)
     (x : α) : LowerSemicontinuousWithinAt f s x :=
   (h x).LowerSemicontinuousWithinAt s
 #align lower_semicontinuous.lower_semicontinuous_within_at LowerSemicontinuous.lowerSemicontinuousWithinAt
+-/
 
+#print LowerSemicontinuous.lowerSemicontinuousOn /-
 theorem LowerSemicontinuous.lowerSemicontinuousOn (h : LowerSemicontinuous f) (s : Set α) :
     LowerSemicontinuousOn f s := fun x hx => h.LowerSemicontinuousWithinAt s x
 #align lower_semicontinuous.lower_semicontinuous_on LowerSemicontinuous.lowerSemicontinuousOn
+-/
 
 /-! #### Constants -/
 
 
+#print lowerSemicontinuousWithinAt_const /-
 theorem lowerSemicontinuousWithinAt_const : LowerSemicontinuousWithinAt (fun x => z) s x :=
   fun y hy => Filter.eventually_of_forall fun x => hy
 #align lower_semicontinuous_within_at_const lowerSemicontinuousWithinAt_const
+-/
 
+#print lowerSemicontinuousAt_const /-
 theorem lowerSemicontinuousAt_const : LowerSemicontinuousAt (fun x => z) x := fun y hy =>
   Filter.eventually_of_forall fun x => hy
 #align lower_semicontinuous_at_const lowerSemicontinuousAt_const
+-/
 
+#print lowerSemicontinuousOn_const /-
 theorem lowerSemicontinuousOn_const : LowerSemicontinuousOn (fun x => z) s := fun x hx =>
   lowerSemicontinuousWithinAt_const
 #align lower_semicontinuous_on_const lowerSemicontinuousOn_const
+-/
 
+#print lowerSemicontinuous_const /-
 theorem lowerSemicontinuous_const : LowerSemicontinuous fun x : α => z := fun x =>
   lowerSemicontinuousAt_const
 #align lower_semicontinuous_const lowerSemicontinuous_const
+-/
 
 /-! #### Indicators -/
 
@@ -218,6 +244,7 @@ section
 
 variable [Zero β]
 
+#print IsOpen.lowerSemicontinuous_indicator /-
 theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
@@ -228,22 +255,30 @@ theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
   · apply Filter.eventually_of_forall fun x' => _
     by_cases h' : x' ∈ s <;> simp [h', hz.trans_le hy, hz]
 #align is_open.lower_semicontinuous_indicator IsOpen.lowerSemicontinuous_indicator
+-/
 
+#print IsOpen.lowerSemicontinuousOn_indicator /-
 theorem IsOpen.lowerSemicontinuousOn_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousOn (indicator s fun x => y) t :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousOn t
 #align is_open.lower_semicontinuous_on_indicator IsOpen.lowerSemicontinuousOn_indicator
+-/
 
+#print IsOpen.lowerSemicontinuousAt_indicator /-
 theorem IsOpen.lowerSemicontinuousAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousAt (indicator s fun x => y) x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousAt x
 #align is_open.lower_semicontinuous_at_indicator IsOpen.lowerSemicontinuousAt_indicator
+-/
 
+#print IsOpen.lowerSemicontinuousWithinAt_indicator /-
 theorem IsOpen.lowerSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousWithinAt t x
 #align is_open.lower_semicontinuous_within_at_indicator IsOpen.lowerSemicontinuousWithinAt_indicator
+-/
 
+#print IsClosed.lowerSemicontinuous_indicator /-
 theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
@@ -254,43 +289,55 @@ theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0)
   · filter_upwards [hs.is_open_compl.mem_nhds h]
     simp (config := { contextual := true }) [hz]
 #align is_closed.lower_semicontinuous_indicator IsClosed.lowerSemicontinuous_indicator
+-/
 
+#print IsClosed.lowerSemicontinuousOn_indicator /-
 theorem IsClosed.lowerSemicontinuousOn_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousOn (indicator s fun x => y) t :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousOn t
 #align is_closed.lower_semicontinuous_on_indicator IsClosed.lowerSemicontinuousOn_indicator
+-/
 
+#print IsClosed.lowerSemicontinuousAt_indicator /-
 theorem IsClosed.lowerSemicontinuousAt_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousAt (indicator s fun x => y) x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousAt x
 #align is_closed.lower_semicontinuous_at_indicator IsClosed.lowerSemicontinuousAt_indicator
+-/
 
+#print IsClosed.lowerSemicontinuousWithinAt_indicator /-
 theorem IsClosed.lowerSemicontinuousWithinAt_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousWithinAt t x
 #align is_closed.lower_semicontinuous_within_at_indicator IsClosed.lowerSemicontinuousWithinAt_indicator
+-/
 
 end
 
 /-! #### Relationship with continuity -/
 
 
+#print lowerSemicontinuous_iff_isOpen_preimage /-
 theorem lowerSemicontinuous_iff_isOpen_preimage :
     LowerSemicontinuous f ↔ ∀ y, IsOpen (f ⁻¹' Ioi y) :=
   ⟨fun H y => isOpen_iff_mem_nhds.2 fun x hx => H x y hx, fun H x y y_lt =>
     IsOpen.mem_nhds (H y) y_lt⟩
 #align lower_semicontinuous_iff_is_open_preimage lowerSemicontinuous_iff_isOpen_preimage
+-/
 
+#print LowerSemicontinuous.isOpen_preimage /-
 theorem LowerSemicontinuous.isOpen_preimage (hf : LowerSemicontinuous f) (y : β) :
     IsOpen (f ⁻¹' Ioi y) :=
   lowerSemicontinuous_iff_isOpen_preimage.1 hf y
 #align lower_semicontinuous.is_open_preimage LowerSemicontinuous.isOpen_preimage
+-/
 
 section
 
 variable {γ : Type _} [LinearOrder γ]
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
+#print lowerSemicontinuous_iff_isClosed_preimage /-
 theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     LowerSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Iic y) :=
   by
@@ -299,29 +346,40 @@ theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]]"
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Iic]
 #align lower_semicontinuous_iff_is_closed_preimage lowerSemicontinuous_iff_isClosed_preimage
+-/
 
+#print LowerSemicontinuous.isClosed_preimage /-
 theorem LowerSemicontinuous.isClosed_preimage {f : α → γ} (hf : LowerSemicontinuous f) (y : γ) :
     IsClosed (f ⁻¹' Iic y) :=
   lowerSemicontinuous_iff_isClosed_preimage.1 hf y
 #align lower_semicontinuous.is_closed_preimage LowerSemicontinuous.isClosed_preimage
+-/
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
+#print ContinuousWithinAt.lowerSemicontinuousWithinAt /-
 theorem ContinuousWithinAt.lowerSemicontinuousWithinAt {f : α → γ} (h : ContinuousWithinAt f s x) :
     LowerSemicontinuousWithinAt f s x := fun y hy => h (Ioi_mem_nhds hy)
 #align continuous_within_at.lower_semicontinuous_within_at ContinuousWithinAt.lowerSemicontinuousWithinAt
+-/
 
+#print ContinuousAt.lowerSemicontinuousAt /-
 theorem ContinuousAt.lowerSemicontinuousAt {f : α → γ} (h : ContinuousAt f x) :
     LowerSemicontinuousAt f x := fun y hy => h (Ioi_mem_nhds hy)
 #align continuous_at.lower_semicontinuous_at ContinuousAt.lowerSemicontinuousAt
+-/
 
+#print ContinuousOn.lowerSemicontinuousOn /-
 theorem ContinuousOn.lowerSemicontinuousOn {f : α → γ} (h : ContinuousOn f s) :
     LowerSemicontinuousOn f s := fun x hx => (h x hx).LowerSemicontinuousWithinAt
 #align continuous_on.lower_semicontinuous_on ContinuousOn.lowerSemicontinuousOn
+-/
 
+#print Continuous.lowerSemicontinuous /-
 theorem Continuous.lowerSemicontinuous {f : α → γ} (h : Continuous f) : LowerSemicontinuous f :=
   fun x => h.ContinuousAt.LowerSemicontinuousAt
 #align continuous.lower_semicontinuous Continuous.lowerSemicontinuous
+-/
 
 end
 
@@ -334,6 +392,7 @@ variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
+#print ContinuousAt.comp_lowerSemicontinuousWithinAt /-
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x :=
@@ -349,45 +408,60 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
   · simp only [not_exists, not_lt] at h 
     exact Filter.eventually_of_forall fun a => hy.trans_le (gmon (h (f a)))
 #align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAt
+-/
 
+#print ContinuousAt.comp_lowerSemicontinuousAt /-
 theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : LowerSemicontinuousAt f x) (gmon : Monotone g) : LowerSemicontinuousAt (g ∘ f) x :=
   by
   simp only [← lowerSemicontinuousWithinAt_univ_iff] at hf ⊢
   exact hg.comp_lower_semicontinuous_within_at hf gmon
 #align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAt
+-/
 
+#print Continuous.comp_lowerSemicontinuousOn /-
 theorem Continuous.comp_lowerSemicontinuousOn {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuousOn f s) (gmon : Monotone g) : LowerSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_lowerSemicontinuousWithinAt (hf x hx) gmon
 #align continuous.comp_lower_semicontinuous_on Continuous.comp_lowerSemicontinuousOn
+-/
 
+#print Continuous.comp_lowerSemicontinuous /-
 theorem Continuous.comp_lowerSemicontinuous {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuous f) (gmon : Monotone g) : LowerSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_lowerSemicontinuousAt (hf x) gmon
 #align continuous.comp_lower_semicontinuous Continuous.comp_lowerSemicontinuous
+-/
 
+#print ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone /-
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Antitone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_lowerSemicontinuousWithinAt α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_lower_semicontinuous_within_at_antitone ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone
+-/
 
+#print ContinuousAt.comp_lowerSemicontinuousAt_antitone /-
 theorem ContinuousAt.comp_lowerSemicontinuousAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousAt f x) (gmon : Antitone g) :
     UpperSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_lowerSemicontinuousAt α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_lower_semicontinuous_at_antitone ContinuousAt.comp_lowerSemicontinuousAt_antitone
+-/
 
+#print Continuous.comp_lowerSemicontinuousOn_antitone /-
 theorem Continuous.comp_lowerSemicontinuousOn_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuousOn f s) (gmon : Antitone g) : UpperSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone (hf x hx) gmon
 #align continuous.comp_lower_semicontinuous_on_antitone Continuous.comp_lowerSemicontinuousOn_antitone
+-/
 
+#print Continuous.comp_lowerSemicontinuous_antitone /-
 theorem Continuous.comp_lowerSemicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuous f) (gmon : Antitone g) : UpperSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_lowerSemicontinuousAt_antitone (hf x) gmon
 #align continuous.comp_lower_semicontinuous_antitone Continuous.comp_lowerSemicontinuous_antitone
+-/
 
 end
 
@@ -404,6 +478,7 @@ variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [Topologica
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print LowerSemicontinuousWithinAt.add' /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -467,7 +542,9 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         y < f x + g x := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (hx₂ (g z))
 #align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'
+-/
 
+#print LowerSemicontinuousAt.add' /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -477,7 +554,9 @@ theorem LowerSemicontinuousAt.add' {f g : α → γ} (hf : LowerSemicontinuousAt
     LowerSemicontinuousAt (fun z => f z + g z) x := by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *; exact hf.add' hg hcont
 #align lower_semicontinuous_at.add' LowerSemicontinuousAt.add'
+-/
 
+#print LowerSemicontinuousOn.add' /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -487,7 +566,9 @@ theorem LowerSemicontinuousOn.add' {f g : α → γ} (hf : LowerSemicontinuousOn
     LowerSemicontinuousOn (fun z => f z + g z) s := fun x hx =>
   (hf x hx).add' (hg x hx) (hcont x hx)
 #align lower_semicontinuous_on.add' LowerSemicontinuousOn.add'
+-/
 
+#print LowerSemicontinuous.add' /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -496,9 +577,11 @@ theorem LowerSemicontinuous.add' {f g : α → γ} (hf : LowerSemicontinuous f)
     (hcont : ∀ x, ContinuousAt (fun p : γ × γ => p.1 + p.2) (f x, g x)) :
     LowerSemicontinuous fun z => f z + g z := fun x => (hf x).add' (hg x) (hcont x)
 #align lower_semicontinuous.add' LowerSemicontinuous.add'
+-/
 
 variable [ContinuousAdd γ]
 
+#print LowerSemicontinuousWithinAt.add /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -507,7 +590,9 @@ theorem LowerSemicontinuousWithinAt.add {f g : α → γ} (hf : LowerSemicontinu
     LowerSemicontinuousWithinAt (fun z => f z + g z) s x :=
   hf.add' hg continuous_add.ContinuousAt
 #align lower_semicontinuous_within_at.add LowerSemicontinuousWithinAt.add
+-/
 
+#print LowerSemicontinuousAt.add /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -515,7 +600,9 @@ theorem LowerSemicontinuousAt.add {f g : α → γ} (hf : LowerSemicontinuousAt
     (hg : LowerSemicontinuousAt g x) : LowerSemicontinuousAt (fun z => f z + g z) x :=
   hf.add' hg continuous_add.ContinuousAt
 #align lower_semicontinuous_at.add LowerSemicontinuousAt.add
+-/
 
+#print LowerSemicontinuousOn.add /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -523,7 +610,9 @@ theorem LowerSemicontinuousOn.add {f g : α → γ} (hf : LowerSemicontinuousOn
     (hg : LowerSemicontinuousOn g s) : LowerSemicontinuousOn (fun z => f z + g z) s :=
   hf.add' hg fun x hx => continuous_add.ContinuousAt
 #align lower_semicontinuous_on.add LowerSemicontinuousOn.add
+-/
 
+#print LowerSemicontinuous.add /-
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -531,7 +620,9 @@ theorem LowerSemicontinuous.add {f g : α → γ} (hf : LowerSemicontinuous f)
     (hg : LowerSemicontinuous g) : LowerSemicontinuous fun z => f z + g z :=
   hf.add' hg fun x => continuous_add.ContinuousAt
 #align lower_semicontinuous.add LowerSemicontinuous.add
+-/
 
+#print lowerSemicontinuousWithinAt_sum /-
 theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by
@@ -543,7 +634,9 @@ theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
       LowerSemicontinuousWithinAt.add (ha _ (Finset.mem_insert_self i a))
         (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
 #align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sum
+-/
 
+#print lowerSemicontinuousAt_sum /-
 theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun z => ∑ i in a, f i z) x :=
@@ -551,17 +644,22 @@ theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
   exact lowerSemicontinuousWithinAt_sum ha
 #align lower_semicontinuous_at_sum lowerSemicontinuousAt_sum
+-/
 
+#print lowerSemicontinuousOn_sum /-
 theorem lowerSemicontinuousOn_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun z => ∑ i in a, f i z) s := fun x hx =>
   lowerSemicontinuousWithinAt_sum fun i hi => ha i hi x hx
 #align lower_semicontinuous_on_sum lowerSemicontinuousOn_sum
+-/
 
+#print lowerSemicontinuous_sum /-
 theorem lowerSemicontinuous_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuous (f i)) : LowerSemicontinuous fun z => ∑ i in a, f i z :=
   fun x => lowerSemicontinuousAt_sum fun i hi => ha i hi x
 #align lower_semicontinuous_sum lowerSemicontinuous_sum
+-/
 
 end
 
@@ -572,6 +670,7 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
+#print lowerSemicontinuousWithinAt_ciSup /-
 theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
@@ -583,20 +682,26 @@ theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     rcases exists_lt_of_lt_ciSup hy with ⟨i, hi⟩
     filter_upwards [h i y hi, bdd] with y hy hy' using hy.trans_le (le_ciSup hy' i)
 #align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSup
+-/
 
+#print lowerSemicontinuousWithinAt_iSup /-
 theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
   lowerSemicontinuousWithinAt_ciSup (by simp) h
 #align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print lowerSemicontinuousWithinAt_biSup /-
 theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ (i) (hi), f i hi x') s x :=
   lowerSemicontinuousWithinAt_iSup fun i => lowerSemicontinuousWithinAt_iSup fun hi => h i hi
 #align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_biSup
+-/
 
+#print lowerSemicontinuousAt_ciSup /-
 theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
@@ -605,53 +710,70 @@ theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
   rw [← nhdsWithin_univ] at bdd 
   exact lowerSemicontinuousWithinAt_ciSup bdd h
 #align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSup
+-/
 
+#print lowerSemicontinuousAt_iSup /-
 theorem lowerSemicontinuousAt_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   lowerSemicontinuousAt_ciSup (by simp) h
 #align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print lowerSemicontinuousAt_biSup /-
 theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
     LowerSemicontinuousAt (fun x' => ⨆ (i) (hi), f i hi x') x :=
   lowerSemicontinuousAt_iSup fun i => lowerSemicontinuousAt_iSup fun hi => h i hi
 #align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_biSup
+-/
 
+#print lowerSemicontinuousOn_ciSup /-
 theorem lowerSemicontinuousOn_ciSup {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
   lowerSemicontinuousWithinAt_ciSup (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
 #align lower_semicontinuous_on_csupr lowerSemicontinuousOn_ciSup
+-/
 
+#print lowerSemicontinuousOn_iSup /-
 theorem lowerSemicontinuousOn_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
   lowerSemicontinuousOn_ciSup (by simp) h
 #align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print lowerSemicontinuousOn_biSup /-
 theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
     LowerSemicontinuousOn (fun x' => ⨆ (i) (hi), f i hi x') s :=
   lowerSemicontinuousOn_iSup fun i => lowerSemicontinuousOn_iSup fun hi => h i hi
 #align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_biSup
+-/
 
+#print lowerSemicontinuous_ciSup /-
 theorem lowerSemicontinuous_ciSup {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
   lowerSemicontinuousAt_ciSup (eventually_of_forall bdd) fun i => h i x
 #align lower_semicontinuous_csupr lowerSemicontinuous_ciSup
+-/
 
+#print lowerSemicontinuous_iSup /-
 theorem lowerSemicontinuous_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
   lowerSemicontinuous_ciSup (by simp) h
 #align lower_semicontinuous_supr lowerSemicontinuous_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print lowerSemicontinuous_biSup /-
 theorem lowerSemicontinuous_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
     LowerSemicontinuous fun x' => ⨆ (i) (hi), f i hi x' :=
   lowerSemicontinuous_iSup fun i => lowerSemicontinuous_iSup fun hi => h i hi
 #align lower_semicontinuous_bsupr lowerSemicontinuous_biSup
+-/
 
 end
 
@@ -662,6 +784,7 @@ section
 
 variable {ι : Type _}
 
+#print lowerSemicontinuousWithinAt_tsum /-
 theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ∑' i, f i x') s x :=
@@ -670,22 +793,29 @@ theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
   apply lowerSemicontinuousWithinAt_iSup fun b => _
   exact lowerSemicontinuousWithinAt_sum fun i hi => h i
 #align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsum
+-/
 
+#print lowerSemicontinuousAt_tsum /-
 theorem lowerSemicontinuousAt_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ∑' i, f i x') x :=
   by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
   exact lowerSemicontinuousWithinAt_tsum h
 #align lower_semicontinuous_at_tsum lowerSemicontinuousAt_tsum
+-/
 
+#print lowerSemicontinuousOn_tsum /-
 theorem lowerSemicontinuousOn_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ∑' i, f i x') s := fun x hx =>
   lowerSemicontinuousWithinAt_tsum fun i => h i x hx
 #align lower_semicontinuous_on_tsum lowerSemicontinuousOn_tsum
+-/
 
+#print lowerSemicontinuous_tsum /-
 theorem lowerSemicontinuous_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ∑' i, f i x' := fun x => lowerSemicontinuousAt_tsum fun i => h i x
 #align lower_semicontinuous_tsum lowerSemicontinuous_tsum
+-/
 
 end
 
@@ -697,66 +827,92 @@ end
 /-! #### Basic dot notation interface for upper semicontinuity -/
 
 
+#print UpperSemicontinuousWithinAt.mono /-
 theorem UpperSemicontinuousWithinAt.mono (h : UpperSemicontinuousWithinAt f s x) (hst : t ⊆ s) :
     UpperSemicontinuousWithinAt f t x := fun y hy =>
   Filter.Eventually.filter_mono (nhdsWithin_mono _ hst) (h y hy)
 #align upper_semicontinuous_within_at.mono UpperSemicontinuousWithinAt.mono
+-/
 
+#print upperSemicontinuousWithinAt_univ_iff /-
 theorem upperSemicontinuousWithinAt_univ_iff :
     UpperSemicontinuousWithinAt f univ x ↔ UpperSemicontinuousAt f x := by
   simp [UpperSemicontinuousWithinAt, UpperSemicontinuousAt, nhdsWithin_univ]
 #align upper_semicontinuous_within_at_univ_iff upperSemicontinuousWithinAt_univ_iff
+-/
 
+#print UpperSemicontinuousAt.upperSemicontinuousWithinAt /-
 theorem UpperSemicontinuousAt.upperSemicontinuousWithinAt (s : Set α)
     (h : UpperSemicontinuousAt f x) : UpperSemicontinuousWithinAt f s x := fun y hy =>
   Filter.Eventually.filter_mono nhdsWithin_le_nhds (h y hy)
 #align upper_semicontinuous_at.upper_semicontinuous_within_at UpperSemicontinuousAt.upperSemicontinuousWithinAt
+-/
 
+#print UpperSemicontinuousOn.upperSemicontinuousWithinAt /-
 theorem UpperSemicontinuousOn.upperSemicontinuousWithinAt (h : UpperSemicontinuousOn f s)
     (hx : x ∈ s) : UpperSemicontinuousWithinAt f s x :=
   h x hx
 #align upper_semicontinuous_on.upper_semicontinuous_within_at UpperSemicontinuousOn.upperSemicontinuousWithinAt
+-/
 
+#print UpperSemicontinuousOn.mono /-
 theorem UpperSemicontinuousOn.mono (h : UpperSemicontinuousOn f s) (hst : t ⊆ s) :
     UpperSemicontinuousOn f t := fun x hx => (h x (hst hx)).mono hst
 #align upper_semicontinuous_on.mono UpperSemicontinuousOn.mono
+-/
 
+#print upperSemicontinuousOn_univ_iff /-
 theorem upperSemicontinuousOn_univ_iff : UpperSemicontinuousOn f univ ↔ UpperSemicontinuous f := by
   simp [UpperSemicontinuousOn, UpperSemicontinuous, upperSemicontinuousWithinAt_univ_iff]
 #align upper_semicontinuous_on_univ_iff upperSemicontinuousOn_univ_iff
+-/
 
+#print UpperSemicontinuous.upperSemicontinuousAt /-
 theorem UpperSemicontinuous.upperSemicontinuousAt (h : UpperSemicontinuous f) (x : α) :
     UpperSemicontinuousAt f x :=
   h x
 #align upper_semicontinuous.upper_semicontinuous_at UpperSemicontinuous.upperSemicontinuousAt
+-/
 
+#print UpperSemicontinuous.upperSemicontinuousWithinAt /-
 theorem UpperSemicontinuous.upperSemicontinuousWithinAt (h : UpperSemicontinuous f) (s : Set α)
     (x : α) : UpperSemicontinuousWithinAt f s x :=
   (h x).UpperSemicontinuousWithinAt s
 #align upper_semicontinuous.upper_semicontinuous_within_at UpperSemicontinuous.upperSemicontinuousWithinAt
+-/
 
+#print UpperSemicontinuous.upperSemicontinuousOn /-
 theorem UpperSemicontinuous.upperSemicontinuousOn (h : UpperSemicontinuous f) (s : Set α) :
     UpperSemicontinuousOn f s := fun x hx => h.UpperSemicontinuousWithinAt s x
 #align upper_semicontinuous.upper_semicontinuous_on UpperSemicontinuous.upperSemicontinuousOn
+-/
 
 /-! #### Constants -/
 
 
+#print upperSemicontinuousWithinAt_const /-
 theorem upperSemicontinuousWithinAt_const : UpperSemicontinuousWithinAt (fun x => z) s x :=
   fun y hy => Filter.eventually_of_forall fun x => hy
 #align upper_semicontinuous_within_at_const upperSemicontinuousWithinAt_const
+-/
 
+#print upperSemicontinuousAt_const /-
 theorem upperSemicontinuousAt_const : UpperSemicontinuousAt (fun x => z) x := fun y hy =>
   Filter.eventually_of_forall fun x => hy
 #align upper_semicontinuous_at_const upperSemicontinuousAt_const
+-/
 
+#print upperSemicontinuousOn_const /-
 theorem upperSemicontinuousOn_const : UpperSemicontinuousOn (fun x => z) s := fun x hx =>
   upperSemicontinuousWithinAt_const
 #align upper_semicontinuous_on_const upperSemicontinuousOn_const
+-/
 
+#print upperSemicontinuous_const /-
 theorem upperSemicontinuous_const : UpperSemicontinuous fun x : α => z := fun x =>
   upperSemicontinuousAt_const
 #align upper_semicontinuous_const upperSemicontinuous_const
+-/
 
 /-! #### Indicators -/
 
@@ -765,67 +921,88 @@ section
 
 variable [Zero β]
 
+#print IsOpen.upperSemicontinuous_indicator /-
 theorem IsOpen.upperSemicontinuous_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuous (indicator s fun x => y) :=
   @IsOpen.lowerSemicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy
 #align is_open.upper_semicontinuous_indicator IsOpen.upperSemicontinuous_indicator
+-/
 
+#print IsOpen.upperSemicontinuousOn_indicator /-
 theorem IsOpen.upperSemicontinuousOn_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousOn (indicator s fun x => y) t :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousOn t
 #align is_open.upper_semicontinuous_on_indicator IsOpen.upperSemicontinuousOn_indicator
+-/
 
+#print IsOpen.upperSemicontinuousAt_indicator /-
 theorem IsOpen.upperSemicontinuousAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousAt (indicator s fun x => y) x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousAt x
 #align is_open.upper_semicontinuous_at_indicator IsOpen.upperSemicontinuousAt_indicator
+-/
 
+#print IsOpen.upperSemicontinuousWithinAt_indicator /-
 theorem IsOpen.upperSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousWithinAt t x
 #align is_open.upper_semicontinuous_within_at_indicator IsOpen.upperSemicontinuousWithinAt_indicator
+-/
 
+#print IsClosed.upperSemicontinuous_indicator /-
 theorem IsClosed.upperSemicontinuous_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuous (indicator s fun x => y) :=
   @IsClosed.lowerSemicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy
 #align is_closed.upper_semicontinuous_indicator IsClosed.upperSemicontinuous_indicator
+-/
 
+#print IsClosed.upperSemicontinuousOn_indicator /-
 theorem IsClosed.upperSemicontinuousOn_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousOn (indicator s fun x => y) t :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousOn t
 #align is_closed.upper_semicontinuous_on_indicator IsClosed.upperSemicontinuousOn_indicator
+-/
 
+#print IsClosed.upperSemicontinuousAt_indicator /-
 theorem IsClosed.upperSemicontinuousAt_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousAt (indicator s fun x => y) x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousAt x
 #align is_closed.upper_semicontinuous_at_indicator IsClosed.upperSemicontinuousAt_indicator
+-/
 
+#print IsClosed.upperSemicontinuousWithinAt_indicator /-
 theorem IsClosed.upperSemicontinuousWithinAt_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousWithinAt t x
 #align is_closed.upper_semicontinuous_within_at_indicator IsClosed.upperSemicontinuousWithinAt_indicator
+-/
 
 end
 
 /-! #### Relationship with continuity -/
 
 
+#print upperSemicontinuous_iff_isOpen_preimage /-
 theorem upperSemicontinuous_iff_isOpen_preimage :
     UpperSemicontinuous f ↔ ∀ y, IsOpen (f ⁻¹' Iio y) :=
   ⟨fun H y => isOpen_iff_mem_nhds.2 fun x hx => H x y hx, fun H x y y_lt =>
     IsOpen.mem_nhds (H y) y_lt⟩
 #align upper_semicontinuous_iff_is_open_preimage upperSemicontinuous_iff_isOpen_preimage
+-/
 
+#print UpperSemicontinuous.isOpen_preimage /-
 theorem UpperSemicontinuous.isOpen_preimage (hf : UpperSemicontinuous f) (y : β) :
     IsOpen (f ⁻¹' Iio y) :=
   upperSemicontinuous_iff_isOpen_preimage.1 hf y
 #align upper_semicontinuous.is_open_preimage UpperSemicontinuous.isOpen_preimage
+-/
 
 section
 
 variable {γ : Type _} [LinearOrder γ]
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
+#print upperSemicontinuous_iff_isClosed_preimage /-
 theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     UpperSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Ici y) :=
   by
@@ -834,29 +1011,40 @@ theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]]"
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Ici]
 #align upper_semicontinuous_iff_is_closed_preimage upperSemicontinuous_iff_isClosed_preimage
+-/
 
+#print UpperSemicontinuous.isClosed_preimage /-
 theorem UpperSemicontinuous.isClosed_preimage {f : α → γ} (hf : UpperSemicontinuous f) (y : γ) :
     IsClosed (f ⁻¹' Ici y) :=
   upperSemicontinuous_iff_isClosed_preimage.1 hf y
 #align upper_semicontinuous.is_closed_preimage UpperSemicontinuous.isClosed_preimage
+-/
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
+#print ContinuousWithinAt.upperSemicontinuousWithinAt /-
 theorem ContinuousWithinAt.upperSemicontinuousWithinAt {f : α → γ} (h : ContinuousWithinAt f s x) :
     UpperSemicontinuousWithinAt f s x := fun y hy => h (Iio_mem_nhds hy)
 #align continuous_within_at.upper_semicontinuous_within_at ContinuousWithinAt.upperSemicontinuousWithinAt
+-/
 
+#print ContinuousAt.upperSemicontinuousAt /-
 theorem ContinuousAt.upperSemicontinuousAt {f : α → γ} (h : ContinuousAt f x) :
     UpperSemicontinuousAt f x := fun y hy => h (Iio_mem_nhds hy)
 #align continuous_at.upper_semicontinuous_at ContinuousAt.upperSemicontinuousAt
+-/
 
+#print ContinuousOn.upperSemicontinuousOn /-
 theorem ContinuousOn.upperSemicontinuousOn {f : α → γ} (h : ContinuousOn f s) :
     UpperSemicontinuousOn f s := fun x hx => (h x hx).UpperSemicontinuousWithinAt
 #align continuous_on.upper_semicontinuous_on ContinuousOn.upperSemicontinuousOn
+-/
 
+#print Continuous.upperSemicontinuous /-
 theorem Continuous.upperSemicontinuous {f : α → γ} (h : Continuous f) : UpperSemicontinuous f :=
   fun x => h.ContinuousAt.UpperSemicontinuousAt
 #align continuous.upper_semicontinuous Continuous.upperSemicontinuous
+-/
 
 end
 
@@ -869,48 +1057,64 @@ variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
+#print ContinuousAt.comp_upperSemicontinuousWithinAt /-
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_lowerSemicontinuousWithinAt α _ x s γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual
 #align continuous_at.comp_upper_semicontinuous_within_at ContinuousAt.comp_upperSemicontinuousWithinAt
+-/
 
+#print ContinuousAt.comp_upperSemicontinuousAt /-
 theorem ContinuousAt.comp_upperSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : UpperSemicontinuousAt f x) (gmon : Monotone g) : UpperSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_lowerSemicontinuousAt α _ x γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual
 #align continuous_at.comp_upper_semicontinuous_at ContinuousAt.comp_upperSemicontinuousAt
+-/
 
+#print Continuous.comp_upperSemicontinuousOn /-
 theorem Continuous.comp_upperSemicontinuousOn {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuousOn f s) (gmon : Monotone g) : UpperSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_upperSemicontinuousWithinAt (hf x hx) gmon
 #align continuous.comp_upper_semicontinuous_on Continuous.comp_upperSemicontinuousOn
+-/
 
+#print Continuous.comp_upperSemicontinuous /-
 theorem Continuous.comp_upperSemicontinuous {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuous f) (gmon : Monotone g) : UpperSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_upperSemicontinuousAt (hf x) gmon
 #align continuous.comp_upper_semicontinuous Continuous.comp_upperSemicontinuous
+-/
 
+#print ContinuousAt.comp_upperSemicontinuousWithinAt_antitone /-
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Antitone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_upperSemicontinuousWithinAt α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_upper_semicontinuous_within_at_antitone ContinuousAt.comp_upperSemicontinuousWithinAt_antitone
+-/
 
+#print ContinuousAt.comp_upperSemicontinuousAt_antitone /-
 theorem ContinuousAt.comp_upperSemicontinuousAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousAt f x) (gmon : Antitone g) :
     LowerSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_upperSemicontinuousAt α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_upper_semicontinuous_at_antitone ContinuousAt.comp_upperSemicontinuousAt_antitone
+-/
 
+#print Continuous.comp_upperSemicontinuousOn_antitone /-
 theorem Continuous.comp_upperSemicontinuousOn_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuousOn f s) (gmon : Antitone g) : LowerSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_upperSemicontinuousWithinAt_antitone (hf x hx) gmon
 #align continuous.comp_upper_semicontinuous_on_antitone Continuous.comp_upperSemicontinuousOn_antitone
+-/
 
+#print Continuous.comp_upperSemicontinuous_antitone /-
 theorem Continuous.comp_upperSemicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuous f) (gmon : Antitone g) : LowerSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_upperSemicontinuousAt_antitone (hf x) gmon
 #align continuous.comp_upper_semicontinuous_antitone Continuous.comp_upperSemicontinuous_antitone
+-/
 
 end
 
@@ -922,6 +1126,7 @@ section
 variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
+#print UpperSemicontinuousWithinAt.add' /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -931,7 +1136,9 @@ theorem UpperSemicontinuousWithinAt.add' {f g : α → γ} (hf : UpperSemicontin
     UpperSemicontinuousWithinAt (fun z => f z + g z) s x :=
   @LowerSemicontinuousWithinAt.add' α _ x s γᵒᵈ _ _ _ _ _ hf hg hcont
 #align upper_semicontinuous_within_at.add' UpperSemicontinuousWithinAt.add'
+-/
 
+#print UpperSemicontinuousAt.add' /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -941,7 +1148,9 @@ theorem UpperSemicontinuousAt.add' {f g : α → γ} (hf : UpperSemicontinuousAt
     UpperSemicontinuousAt (fun z => f z + g z) x := by
   simp_rw [← upperSemicontinuousWithinAt_univ_iff] at *; exact hf.add' hg hcont
 #align upper_semicontinuous_at.add' UpperSemicontinuousAt.add'
+-/
 
+#print UpperSemicontinuousOn.add' /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -951,7 +1160,9 @@ theorem UpperSemicontinuousOn.add' {f g : α → γ} (hf : UpperSemicontinuousOn
     UpperSemicontinuousOn (fun z => f z + g z) s := fun x hx =>
   (hf x hx).add' (hg x hx) (hcont x hx)
 #align upper_semicontinuous_on.add' UpperSemicontinuousOn.add'
+-/
 
+#print UpperSemicontinuous.add' /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -960,9 +1171,11 @@ theorem UpperSemicontinuous.add' {f g : α → γ} (hf : UpperSemicontinuous f)
     (hcont : ∀ x, ContinuousAt (fun p : γ × γ => p.1 + p.2) (f x, g x)) :
     UpperSemicontinuous fun z => f z + g z := fun x => (hf x).add' (hg x) (hcont x)
 #align upper_semicontinuous.add' UpperSemicontinuous.add'
+-/
 
 variable [ContinuousAdd γ]
 
+#print UpperSemicontinuousWithinAt.add /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -971,7 +1184,9 @@ theorem UpperSemicontinuousWithinAt.add {f g : α → γ} (hf : UpperSemicontinu
     UpperSemicontinuousWithinAt (fun z => f z + g z) s x :=
   hf.add' hg continuous_add.ContinuousAt
 #align upper_semicontinuous_within_at.add UpperSemicontinuousWithinAt.add
+-/
 
+#print UpperSemicontinuousAt.add /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -979,7 +1194,9 @@ theorem UpperSemicontinuousAt.add {f g : α → γ} (hf : UpperSemicontinuousAt
     (hg : UpperSemicontinuousAt g x) : UpperSemicontinuousAt (fun z => f z + g z) x :=
   hf.add' hg continuous_add.ContinuousAt
 #align upper_semicontinuous_at.add UpperSemicontinuousAt.add
+-/
 
+#print UpperSemicontinuousOn.add /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -987,7 +1204,9 @@ theorem UpperSemicontinuousOn.add {f g : α → γ} (hf : UpperSemicontinuousOn
     (hg : UpperSemicontinuousOn g s) : UpperSemicontinuousOn (fun z => f z + g z) s :=
   hf.add' hg fun x hx => continuous_add.ContinuousAt
 #align upper_semicontinuous_on.add UpperSemicontinuousOn.add
+-/
 
+#print UpperSemicontinuous.add /-
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -995,13 +1214,17 @@ theorem UpperSemicontinuous.add {f g : α → γ} (hf : UpperSemicontinuous f)
     (hg : UpperSemicontinuous g) : UpperSemicontinuous fun z => f z + g z :=
   hf.add' hg fun x => continuous_add.ContinuousAt
 #align upper_semicontinuous.add UpperSemicontinuous.add
+-/
 
+#print upperSemicontinuousWithinAt_sum /-
 theorem upperSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x :=
   @lowerSemicontinuousWithinAt_sum α _ x s ι γᵒᵈ _ _ _ _ f a ha
 #align upper_semicontinuous_within_at_sum upperSemicontinuousWithinAt_sum
+-/
 
+#print upperSemicontinuousAt_sum /-
 theorem upperSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun z => ∑ i in a, f i z) x :=
@@ -1009,17 +1232,22 @@ theorem upperSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
   simp_rw [← upperSemicontinuousWithinAt_univ_iff] at *
   exact upperSemicontinuousWithinAt_sum ha
 #align upper_semicontinuous_at_sum upperSemicontinuousAt_sum
+-/
 
+#print upperSemicontinuousOn_sum /-
 theorem upperSemicontinuousOn_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun z => ∑ i in a, f i z) s := fun x hx =>
   upperSemicontinuousWithinAt_sum fun i hi => ha i hi x hx
 #align upper_semicontinuous_on_sum upperSemicontinuousOn_sum
+-/
 
+#print upperSemicontinuous_sum /-
 theorem upperSemicontinuous_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuous (f i)) : UpperSemicontinuous fun z => ∑ i in a, f i z :=
   fun x => upperSemicontinuousAt_sum fun i hi => ha i hi x
 #align upper_semicontinuous_sum upperSemicontinuous_sum
+-/
 
 end
 
@@ -1030,77 +1258,101 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
+#print upperSemicontinuousWithinAt_ciInf /-
 theorem upperSemicontinuousWithinAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
   @lowerSemicontinuousWithinAt_ciSup α _ x s ι δ'ᵒᵈ _ f bdd h
 #align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_ciInf
+-/
 
+#print upperSemicontinuousWithinAt_iInf /-
 theorem upperSemicontinuousWithinAt_iInf {f : ι → α → δ}
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
   @lowerSemicontinuousWithinAt_iSup α _ x s ι δᵒᵈ _ f h
 #align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print upperSemicontinuousWithinAt_biInf /-
 theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ (i) (hi), f i hi x') s x :=
   upperSemicontinuousWithinAt_iInf fun i => upperSemicontinuousWithinAt_iInf fun hi => h i hi
 #align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_biInf
+-/
 
+#print upperSemicontinuousAt_ciInf /-
 theorem upperSemicontinuousAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_ciSup α _ x ι δ'ᵒᵈ _ f bdd h
 #align upper_semicontinuous_at_cinfi upperSemicontinuousAt_ciInf
+-/
 
+#print upperSemicontinuousAt_iInf /-
 theorem upperSemicontinuousAt_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_iSup α _ x ι δᵒᵈ _ f h
 #align upper_semicontinuous_at_infi upperSemicontinuousAt_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print upperSemicontinuousAt_biInf /-
 theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
     UpperSemicontinuousAt (fun x' => ⨅ (i) (hi), f i hi x') x :=
   upperSemicontinuousAt_iInf fun i => upperSemicontinuousAt_iInf fun hi => h i hi
 #align upper_semicontinuous_at_binfi upperSemicontinuousAt_biInf
+-/
 
+#print upperSemicontinuousOn_ciInf /-
 theorem upperSemicontinuousOn_ciInf {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_ciInf (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
 #align upper_semicontinuous_on_cinfi upperSemicontinuousOn_ciInf
+-/
 
+#print upperSemicontinuousOn_iInf /-
 theorem upperSemicontinuousOn_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_iInf fun i => h i x hx
 #align upper_semicontinuous_on_infi upperSemicontinuousOn_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print upperSemicontinuousOn_biInf /-
 theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
     UpperSemicontinuousOn (fun x' => ⨅ (i) (hi), f i hi x') s :=
   upperSemicontinuousOn_iInf fun i => upperSemicontinuousOn_iInf fun hi => h i hi
 #align upper_semicontinuous_on_binfi upperSemicontinuousOn_biInf
+-/
 
+#print upperSemicontinuous_ciInf /-
 theorem upperSemicontinuous_ciInf {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
   upperSemicontinuousAt_ciInf (eventually_of_forall bdd) fun i => h i x
 #align upper_semicontinuous_cinfi upperSemicontinuous_ciInf
+-/
 
+#print upperSemicontinuous_iInf /-
 theorem upperSemicontinuous_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
     UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_iInf fun i => h i x
 #align upper_semicontinuous_infi upperSemicontinuous_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print upperSemicontinuous_biInf /-
 theorem upperSemicontinuous_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
     UpperSemicontinuous fun x' => ⨅ (i) (hi), f i hi x' :=
   upperSemicontinuous_iInf fun i => upperSemicontinuous_iInf fun hi => h i hi
 #align upper_semicontinuous_binfi upperSemicontinuous_biInf
+-/
 
 end
 
@@ -1108,6 +1360,7 @@ section
 
 variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
+#print continuousWithinAt_iff_lower_upperSemicontinuousWithinAt /-
 theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ} :
     ContinuousWithinAt f s x ↔
       LowerSemicontinuousWithinAt f s x ∧ UpperSemicontinuousWithinAt f s x :=
@@ -1139,13 +1392,17 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
       rw [this]
       exact mem_of_mem_nhds hv
 #align continuous_within_at_iff_lower_upper_semicontinuous_within_at continuousWithinAt_iff_lower_upperSemicontinuousWithinAt
+-/
 
+#print continuousAt_iff_lower_upperSemicontinuousAt /-
 theorem continuousAt_iff_lower_upperSemicontinuousAt {f : α → γ} :
     ContinuousAt f x ↔ LowerSemicontinuousAt f x ∧ UpperSemicontinuousAt f x := by
   simp_rw [← continuousWithinAt_univ, ← lowerSemicontinuousWithinAt_univ_iff, ←
     upperSemicontinuousWithinAt_univ_iff, continuousWithinAt_iff_lower_upperSemicontinuousWithinAt]
 #align continuous_at_iff_lower_upper_semicontinuous_at continuousAt_iff_lower_upperSemicontinuousAt
+-/
 
+#print continuousOn_iff_lower_upperSemicontinuousOn /-
 theorem continuousOn_iff_lower_upperSemicontinuousOn {f : α → γ} :
     ContinuousOn f s ↔ LowerSemicontinuousOn f s ∧ UpperSemicontinuousOn f s :=
   by
@@ -1153,12 +1410,15 @@ theorem continuousOn_iff_lower_upperSemicontinuousOn {f : α → γ} :
   exact
     ⟨fun H => ⟨fun x hx => (H x hx).1, fun x hx => (H x hx).2⟩, fun H x hx => ⟨H.1 x hx, H.2 x hx⟩⟩
 #align continuous_on_iff_lower_upper_semicontinuous_on continuousOn_iff_lower_upperSemicontinuousOn
+-/
 
+#print continuous_iff_lower_upperSemicontinuous /-
 theorem continuous_iff_lower_upperSemicontinuous {f : α → γ} :
     Continuous f ↔ LowerSemicontinuous f ∧ UpperSemicontinuous f := by
   simp_rw [continuous_iff_continuousOn_univ, continuousOn_iff_lower_upperSemicontinuousOn,
     lowerSemicontinuousOn_univ_iff, upperSemicontinuousOn_univ_iff]
 #align continuous_iff_lower_upper_semicontinuous continuous_iff_lower_upperSemicontinuous
+-/
 
 end
 
Diff
@@ -346,7 +346,6 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
     calc
       y < g (min (f x) (f a)) := hz (by simp [zlt, ha, le_refl])
       _ ≤ g (f a) := gmon (min_le_right _ _)
-      
   · simp only [not_exists, not_lt] at h 
     exact Filter.eventually_of_forall fun a => hy.trans_le (gmon (h (f a)))
 #align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAt
@@ -437,7 +436,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < min (f z) (f x) + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (min_le_left _ _)
-        
     · simp only [not_exists, not_lt] at hx₂ 
       filter_upwards [hf z₁ z₁lt] with z h₁z
       have A1 : min (f z) (f x) ∈ u := by
@@ -448,7 +446,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < min (f z) (f x) + g x := h this
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (hx₂ (g z))
-        
   · simp only [not_exists, not_lt] at hx₁ 
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
@@ -462,7 +459,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < f x + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (min_le_left _ _)
-        
     · simp only [not_exists, not_lt] at hx₁ hx₂ 
       apply Filter.eventually_of_forall
       intro z
@@ -470,7 +466,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < f x + g x := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (hx₂ (g z))
-        
 #align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'
 
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
Diff
@@ -342,7 +342,7 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
   by_cases h : ∃ l, l < f x
   · obtain ⟨z, zlt, hz⟩ : ∃ z < f x, Ioc z (f x) ⊆ g ⁻¹' Ioi y :=
       exists_Ioc_subset_of_mem_nhds (hg (Ioi_mem_nhds hy)) h
-    filter_upwards [hf z zlt]with a ha
+    filter_upwards [hf z zlt] with a ha
     calc
       y < g (min (f x) (f a)) := hz (by simp [zlt, ha, le_refl])
       _ ≤ g (f a) := gmon (min_le_right _ _)
@@ -416,7 +416,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
   intro y hy
   obtain ⟨u, v, u_open, xu, v_open, xv, h⟩ :
     ∃ u v : Set γ,
-      IsOpen u ∧ f x ∈ u ∧ IsOpen v ∧ g x ∈ v ∧ u ×ˢ v ⊆ { p : γ × γ | y < p.fst + p.snd } :=
+      IsOpen u ∧ f x ∈ u ∧ IsOpen v ∧ g x ∈ v ∧ u ×ˢ v ⊆ {p : γ × γ | y < p.fst + p.snd} :=
     mem_nhds_prod_iff'.1 (hcont (is_open_Ioi.mem_nhds hy))
   by_cases hx₁ : ∃ l, l < f x
   · obtain ⟨z₁, z₁lt, h₁⟩ : ∃ z₁ < f x, Ioc z₁ (f x) ⊆ u :=
@@ -424,7 +424,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
         exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂
-      filter_upwards [hf z₁ z₁lt, hg z₂ z₂lt]with z h₁z h₂z
+      filter_upwards [hf z₁ z₁lt, hg z₂ z₂lt] with z h₁z h₂z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
         · simp [H]; exact h₁ ⟨h₁z, H⟩
@@ -439,7 +439,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (min_le_left _ _)
         
     · simp only [not_exists, not_lt] at hx₂ 
-      filter_upwards [hf z₁ z₁lt]with z h₁z
+      filter_upwards [hf z₁ z₁lt] with z h₁z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
         · simp [H]; exact h₁ ⟨h₁z, H⟩
@@ -453,7 +453,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
         exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂
-      filter_upwards [hg z₂ z₂lt]with z h₂z
+      filter_upwards [hg z₂ z₂lt] with z h₂z
       have A2 : min (g z) (g x) ∈ v := by
         by_cases H : g z ≤ g x
         · simp [H]; exact h₂ ⟨h₂z, H⟩
@@ -541,12 +541,12 @@ theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by
   classical
-    induction' a using Finset.induction_on with i a ia IH generalizing ha
-    · exact lowerSemicontinuousWithinAt_const
-    · simp only [ia, Finset.sum_insert, not_false_iff]
-      exact
-        LowerSemicontinuousWithinAt.add (ha _ (Finset.mem_insert_self i a))
-          (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
+  induction' a using Finset.induction_on with i a ia IH generalizing ha
+  · exact lowerSemicontinuousWithinAt_const
+  · simp only [ia, Finset.sum_insert, not_false_iff]
+    exact
+      LowerSemicontinuousWithinAt.add (ha _ (Finset.mem_insert_self i a))
+        (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
 #align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sum
 
 theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
@@ -586,7 +586,7 @@ theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
   · simpa only [iSup_of_empty'] using lowerSemicontinuousWithinAt_const
   · intro y hy
     rcases exists_lt_of_lt_ciSup hy with ⟨i, hi⟩
-    filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_ciSup hy' i)
+    filter_upwards [h i y hi, bdd] with y hy hy' using hy.trans_le (le_ciSup hy' i)
 #align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSup
 
 theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
@@ -1125,16 +1125,16 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
   · rcases exists_Ioc_subset_of_mem_nhds hv Hl with ⟨l, lfx, hl⟩
     by_cases Hu : ∃ u, f x < u
     · rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
-      filter_upwards [h₁ l lfx, h₂ u fxu]with a lfa fau
+      filter_upwards [h₁ l lfx, h₂ u fxu] with a lfa fau
       cases' le_or_gt (f a) (f x) with h h
       · exact hl ⟨lfa, h⟩
       · exact hu ⟨le_of_lt h, fau⟩
     · simp only [not_exists, not_lt] at Hu 
-      filter_upwards [h₁ l lfx]with a lfa using hl ⟨lfa, Hu (f a)⟩
+      filter_upwards [h₁ l lfx] with a lfa using hl ⟨lfa, Hu (f a)⟩
   · simp only [not_exists, not_lt] at Hl 
     by_cases Hu : ∃ u, f x < u
     · rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
-      filter_upwards [h₂ u fxu]with a lfa
+      filter_upwards [h₂ u fxu] with a lfa
       apply hu
       exact ⟨Hl (f a), lfa⟩
     · simp only [not_exists, not_lt] at Hu 
Diff
@@ -222,7 +222,7 @@ theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
   intro x z hz
-  by_cases h : x ∈ s <;> simp [h] at hz
+  by_cases h : x ∈ s <;> simp [h] at hz 
   · filter_upwards [hs.mem_nhds h]
     simp (config := { contextual := true }) [hz]
   · apply Filter.eventually_of_forall fun x' => _
@@ -248,7 +248,7 @@ theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0)
     LowerSemicontinuous (indicator s fun x => y) :=
   by
   intro x z hz
-  by_cases h : x ∈ s <;> simp [h] at hz
+  by_cases h : x ∈ s <;> simp [h] at hz 
   · apply Filter.eventually_of_forall fun x' => _
     by_cases h' : x' ∈ s <;> simp [h', hz, hz.trans_le hy]
   · filter_upwards [hs.is_open_compl.mem_nhds h]
@@ -347,14 +347,14 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
       y < g (min (f x) (f a)) := hz (by simp [zlt, ha, le_refl])
       _ ≤ g (f a) := gmon (min_le_right _ _)
       
-  · simp only [not_exists, not_lt] at h
+  · simp only [not_exists, not_lt] at h 
     exact Filter.eventually_of_forall fun a => hy.trans_le (gmon (h (f a)))
 #align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAt
 
 theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : LowerSemicontinuousAt f x) (gmon : Monotone g) : LowerSemicontinuousAt (g ∘ f) x :=
   by
-  simp only [← lowerSemicontinuousWithinAt_univ_iff] at hf⊢
+  simp only [← lowerSemicontinuousWithinAt_univ_iff] at hf ⊢
   exact hg.comp_lower_semicontinuous_within_at hf gmon
 #align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAt
 
@@ -438,7 +438,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         y < min (f z) (f x) + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (min_le_left _ _)
         
-    · simp only [not_exists, not_lt] at hx₂
+    · simp only [not_exists, not_lt] at hx₂ 
       filter_upwards [hf z₁ z₁lt]with z h₁z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
@@ -449,7 +449,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         y < min (f z) (f x) + g x := h this
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (hx₂ (g z))
         
-  · simp only [not_exists, not_lt] at hx₁
+  · simp only [not_exists, not_lt] at hx₁ 
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
         exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂
@@ -463,7 +463,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         y < f x + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (min_le_left _ _)
         
-    · simp only [not_exists, not_lt] at hx₁ hx₂
+    · simp only [not_exists, not_lt] at hx₁ hx₂ 
       apply Filter.eventually_of_forall
       intro z
       have : (f x, g x) ∈ u ×ˢ v := ⟨xu, xv⟩
@@ -607,7 +607,7 @@ theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
-  rw [← nhdsWithin_univ] at bdd
+  rw [← nhdsWithin_univ] at bdd 
   exact lowerSemicontinuousWithinAt_ciSup bdd h
 #align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSup
 
@@ -1129,15 +1129,15 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
       cases' le_or_gt (f a) (f x) with h h
       · exact hl ⟨lfa, h⟩
       · exact hu ⟨le_of_lt h, fau⟩
-    · simp only [not_exists, not_lt] at Hu
+    · simp only [not_exists, not_lt] at Hu 
       filter_upwards [h₁ l lfx]with a lfa using hl ⟨lfa, Hu (f a)⟩
-  · simp only [not_exists, not_lt] at Hl
+  · simp only [not_exists, not_lt] at Hl 
     by_cases Hu : ∃ u, f x < u
     · rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
       filter_upwards [h₂ u fxu]with a lfa
       apply hu
       exact ⟨Hl (f a), lfa⟩
-    · simp only [not_exists, not_lt] at Hu
+    · simp only [not_exists, not_lt] at Hu 
       apply Filter.eventually_of_forall
       intro a
       have : f a = f x := le_antisymm (Hu _) (Hl _)
Diff
@@ -60,7 +60,7 @@ ones for lower semicontinuous functions using `order_dual`.
 -/
 
 
-open Topology BigOperators ENNReal
+open scoped Topology BigOperators ENNReal
 
 open Set Function Filter
 
Diff
@@ -150,98 +150,44 @@ def UpperSemicontinuous (f : α → β) :=
 /-! #### Basic dot notation interface for lower semicontinuity -/
 
 
-/- warning: lower_semicontinuous_within_at.mono -> LowerSemicontinuousWithinAt.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α} {t : Set.{u1} α}, (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f t x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α} {t : Set.{u2} α}, (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f t x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at.mono LowerSemicontinuousWithinAt.monoₓ'. -/
 theorem LowerSemicontinuousWithinAt.mono (h : LowerSemicontinuousWithinAt f s x) (hst : t ⊆ s) :
     LowerSemicontinuousWithinAt f t x := fun y hy =>
   Filter.Eventually.filter_mono (nhdsWithin_mono _ hst) (h y hy)
 #align lower_semicontinuous_within_at.mono LowerSemicontinuousWithinAt.mono
 
-/- warning: lower_semicontinuous_within_at_univ_iff -> lowerSemicontinuousWithinAt_univ_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α}, Iff (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α) x) (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α}, Iff (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α) x) (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_univ_iff lowerSemicontinuousWithinAt_univ_iffₓ'. -/
 theorem lowerSemicontinuousWithinAt_univ_iff :
     LowerSemicontinuousWithinAt f univ x ↔ LowerSemicontinuousAt f x := by
   simp [LowerSemicontinuousWithinAt, LowerSemicontinuousAt, nhdsWithin_univ]
 #align lower_semicontinuous_within_at_univ_iff lowerSemicontinuousWithinAt_univ_iff
 
-/- warning: lower_semicontinuous_at.lower_semicontinuous_within_at -> LowerSemicontinuousAt.lowerSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} (s : Set.{u1} α), (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} (s : Set.{u2} α), (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at.lower_semicontinuous_within_at LowerSemicontinuousAt.lowerSemicontinuousWithinAtₓ'. -/
 theorem LowerSemicontinuousAt.lowerSemicontinuousWithinAt (s : Set α)
     (h : LowerSemicontinuousAt f x) : LowerSemicontinuousWithinAt f s x := fun y hy =>
   Filter.Eventually.filter_mono nhdsWithin_le_nhds (h y hy)
 #align lower_semicontinuous_at.lower_semicontinuous_within_at LowerSemicontinuousAt.lowerSemicontinuousWithinAt
 
-/- warning: lower_semicontinuous_on.lower_semicontinuous_within_at -> LowerSemicontinuousOn.lowerSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.lower_semicontinuous_within_at LowerSemicontinuousOn.lowerSemicontinuousWithinAtₓ'. -/
 theorem LowerSemicontinuousOn.lowerSemicontinuousWithinAt (h : LowerSemicontinuousOn f s)
     (hx : x ∈ s) : LowerSemicontinuousWithinAt f s x :=
   h x hx
 #align lower_semicontinuous_on.lower_semicontinuous_within_at LowerSemicontinuousOn.lowerSemicontinuousWithinAt
 
-/- warning: lower_semicontinuous_on.mono -> LowerSemicontinuousOn.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {s : Set.{u1} α} {t : Set.{u1} α}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f t)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {s : Set.{u2} α} {t : Set.{u2} α}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f t)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.mono LowerSemicontinuousOn.monoₓ'. -/
 theorem LowerSemicontinuousOn.mono (h : LowerSemicontinuousOn f s) (hst : t ⊆ s) :
     LowerSemicontinuousOn f t := fun x hx => (h x (hst hx)).mono hst
 #align lower_semicontinuous_on.mono LowerSemicontinuousOn.mono
 
-/- warning: lower_semicontinuous_on_univ_iff -> lowerSemicontinuousOn_univ_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α)) (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α)) (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_univ_iff lowerSemicontinuousOn_univ_iffₓ'. -/
 theorem lowerSemicontinuousOn_univ_iff : LowerSemicontinuousOn f univ ↔ LowerSemicontinuous f := by
   simp [LowerSemicontinuousOn, LowerSemicontinuous, lowerSemicontinuousWithinAt_univ_iff]
 #align lower_semicontinuous_on_univ_iff lowerSemicontinuousOn_univ_iff
 
-/- warning: lower_semicontinuous.lower_semicontinuous_at -> LowerSemicontinuous.lowerSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (x : α), LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (x : α), LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.lower_semicontinuous_at LowerSemicontinuous.lowerSemicontinuousAtₓ'. -/
 theorem LowerSemicontinuous.lowerSemicontinuousAt (h : LowerSemicontinuous f) (x : α) :
     LowerSemicontinuousAt f x :=
   h x
 #align lower_semicontinuous.lower_semicontinuous_at LowerSemicontinuous.lowerSemicontinuousAt
 
-/- warning: lower_semicontinuous.lower_semicontinuous_within_at -> LowerSemicontinuous.lowerSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α) (x : α), LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α) (x : α), LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.lower_semicontinuous_within_at LowerSemicontinuous.lowerSemicontinuousWithinAtₓ'. -/
 theorem LowerSemicontinuous.lowerSemicontinuousWithinAt (h : LowerSemicontinuous f) (s : Set α)
     (x : α) : LowerSemicontinuousWithinAt f s x :=
   (h x).LowerSemicontinuousWithinAt s
 #align lower_semicontinuous.lower_semicontinuous_within_at LowerSemicontinuous.lowerSemicontinuousWithinAt
 
-/- warning: lower_semicontinuous.lower_semicontinuous_on -> LowerSemicontinuous.lowerSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α), LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α), LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.lower_semicontinuous_on LowerSemicontinuous.lowerSemicontinuousOnₓ'. -/
 theorem LowerSemicontinuous.lowerSemicontinuousOn (h : LowerSemicontinuous f) (s : Set α) :
     LowerSemicontinuousOn f s := fun x hx => h.LowerSemicontinuousWithinAt s x
 #align lower_semicontinuous.lower_semicontinuous_on LowerSemicontinuous.lowerSemicontinuousOn
@@ -249,42 +195,18 @@ theorem LowerSemicontinuous.lowerSemicontinuousOn (h : LowerSemicontinuous f) (s
 /-! #### Constants -/
 
 
-/- warning: lower_semicontinuous_within_at_const -> lowerSemicontinuousWithinAt_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {z : β}, LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s x
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {z : β}, LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s x
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_const lowerSemicontinuousWithinAt_constₓ'. -/
 theorem lowerSemicontinuousWithinAt_const : LowerSemicontinuousWithinAt (fun x => z) s x :=
   fun y hy => Filter.eventually_of_forall fun x => hy
 #align lower_semicontinuous_within_at_const lowerSemicontinuousWithinAt_const
 
-/- warning: lower_semicontinuous_at_const -> lowerSemicontinuousAt_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {z : β}, LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) x
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {z : β}, LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) x
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_const lowerSemicontinuousAt_constₓ'. -/
 theorem lowerSemicontinuousAt_const : LowerSemicontinuousAt (fun x => z) x := fun y hy =>
   Filter.eventually_of_forall fun x => hy
 #align lower_semicontinuous_at_const lowerSemicontinuousAt_const
 
-/- warning: lower_semicontinuous_on_const -> lowerSemicontinuousOn_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {z : β}, LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {z : β}, LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_const lowerSemicontinuousOn_constₓ'. -/
 theorem lowerSemicontinuousOn_const : LowerSemicontinuousOn (fun x => z) s := fun x hx =>
   lowerSemicontinuousWithinAt_const
 #align lower_semicontinuous_on_const lowerSemicontinuousOn_const
 
-/- warning: lower_semicontinuous_const -> lowerSemicontinuous_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {z : β}, LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {z : β}, LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_const lowerSemicontinuous_constₓ'. -/
 theorem lowerSemicontinuous_const : LowerSemicontinuous fun x : α => z := fun x =>
   lowerSemicontinuousAt_const
 #align lower_semicontinuous_const lowerSemicontinuous_const
@@ -296,12 +218,6 @@ section
 
 variable [Zero β]
 
-/- warning: is_open.lower_semicontinuous_indicator -> IsOpen.lowerSemicontinuous_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
-Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_indicator IsOpen.lowerSemicontinuous_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
@@ -313,45 +229,21 @@ theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     by_cases h' : x' ∈ s <;> simp [h', hz.trans_le hy, hz]
 #align is_open.lower_semicontinuous_indicator IsOpen.lowerSemicontinuous_indicator
 
-/- warning: is_open.lower_semicontinuous_on_indicator -> IsOpen.lowerSemicontinuousOn_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
-Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_on_indicator IsOpen.lowerSemicontinuousOn_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuousOn_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousOn (indicator s fun x => y) t :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousOn t
 #align is_open.lower_semicontinuous_on_indicator IsOpen.lowerSemicontinuousOn_indicator
 
-/- warning: is_open.lower_semicontinuous_at_indicator -> IsOpen.lowerSemicontinuousAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
-Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_at_indicator IsOpen.lowerSemicontinuousAt_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuousAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousAt (indicator s fun x => y) x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousAt x
 #align is_open.lower_semicontinuous_at_indicator IsOpen.lowerSemicontinuousAt_indicator
 
-/- warning: is_open.lower_semicontinuous_within_at_indicator -> IsOpen.lowerSemicontinuousWithinAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
-Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_within_at_indicator IsOpen.lowerSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousWithinAt t x
 #align is_open.lower_semicontinuous_within_at_indicator IsOpen.lowerSemicontinuousWithinAt_indicator
 
-/- warning: is_closed.lower_semicontinuous_indicator -> IsClosed.lowerSemicontinuous_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
-Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_indicator IsClosed.lowerSemicontinuous_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
@@ -363,34 +255,16 @@ theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0)
     simp (config := { contextual := true }) [hz]
 #align is_closed.lower_semicontinuous_indicator IsClosed.lowerSemicontinuous_indicator
 
-/- warning: is_closed.lower_semicontinuous_on_indicator -> IsClosed.lowerSemicontinuousOn_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
-Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_on_indicator IsClosed.lowerSemicontinuousOn_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuousOn_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousOn (indicator s fun x => y) t :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousOn t
 #align is_closed.lower_semicontinuous_on_indicator IsClosed.lowerSemicontinuousOn_indicator
 
-/- warning: is_closed.lower_semicontinuous_at_indicator -> IsClosed.lowerSemicontinuousAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
-Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_at_indicator IsClosed.lowerSemicontinuousAt_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuousAt_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousAt (indicator s fun x => y) x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousAt x
 #align is_closed.lower_semicontinuous_at_indicator IsClosed.lowerSemicontinuousAt_indicator
 
-/- warning: is_closed.lower_semicontinuous_within_at_indicator -> IsClosed.lowerSemicontinuousWithinAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
-Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_within_at_indicator IsClosed.lowerSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuousWithinAt_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousWithinAt t x
@@ -401,24 +275,12 @@ end
 /-! #### Relationship with continuity -/
 
 
-/- warning: lower_semicontinuous_iff_is_open_preimage -> lowerSemicontinuous_iff_isOpen_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Ioi.{u2} β _inst_2 y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Ioi.{u1} β _inst_2 y)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_iff_is_open_preimage lowerSemicontinuous_iff_isOpen_preimageₓ'. -/
 theorem lowerSemicontinuous_iff_isOpen_preimage :
     LowerSemicontinuous f ↔ ∀ y, IsOpen (f ⁻¹' Ioi y) :=
   ⟨fun H y => isOpen_iff_mem_nhds.2 fun x hx => H x y hx, fun H x y y_lt =>
     IsOpen.mem_nhds (H y) y_lt⟩
 #align lower_semicontinuous_iff_is_open_preimage lowerSemicontinuous_iff_isOpen_preimage
 
-/- warning: lower_semicontinuous.is_open_preimage -> LowerSemicontinuous.isOpen_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Ioi.{u2} β _inst_2 y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Ioi.{u1} β _inst_2 y)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.is_open_preimage LowerSemicontinuous.isOpen_preimageₓ'. -/
 theorem LowerSemicontinuous.isOpen_preimage (hf : LowerSemicontinuous f) (y : β) :
     IsOpen (f ⁻¹' Ioi y) :=
   lowerSemicontinuous_iff_isOpen_preimage.1 hf y
@@ -428,12 +290,6 @@ section
 
 variable {γ : Type _} [LinearOrder γ]
 
-/- warning: lower_semicontinuous_iff_is_closed_preimage -> lowerSemicontinuous_iff_isClosed_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, Iff (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Iic.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, Iff (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Iic.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_iff_is_closed_preimage lowerSemicontinuous_iff_isClosed_preimageₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
 theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     LowerSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Iic y) :=
@@ -444,12 +300,6 @@ theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Iic]
 #align lower_semicontinuous_iff_is_closed_preimage lowerSemicontinuous_iff_isClosed_preimage
 
-/- warning: lower_semicontinuous.is_closed_preimage -> LowerSemicontinuous.isClosed_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Iic.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) -> (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Iic.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.is_closed_preimage LowerSemicontinuous.isClosed_preimageₓ'. -/
 theorem LowerSemicontinuous.isClosed_preimage {f : α → γ} (hf : LowerSemicontinuous f) (y : γ) :
     IsClosed (f ⁻¹' Iic y) :=
   lowerSemicontinuous_iff_isClosed_preimage.1 hf y
@@ -457,42 +307,18 @@ theorem LowerSemicontinuous.isClosed_preimage {f : α → γ} (hf : LowerSemicon
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
-/- warning: continuous_within_at.lower_semicontinuous_within_at -> ContinuousWithinAt.lowerSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousWithinAt.{u1, u2} α γ _inst_1 _inst_4 f s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousWithinAt.{u2, u1} α γ _inst_1 _inst_4 f s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x)
-Case conversion may be inaccurate. Consider using '#align continuous_within_at.lower_semicontinuous_within_at ContinuousWithinAt.lowerSemicontinuousWithinAtₓ'. -/
 theorem ContinuousWithinAt.lowerSemicontinuousWithinAt {f : α → γ} (h : ContinuousWithinAt f s x) :
     LowerSemicontinuousWithinAt f s x := fun y hy => h (Ioi_mem_nhds hy)
 #align continuous_within_at.lower_semicontinuous_within_at ContinuousWithinAt.lowerSemicontinuousWithinAt
 
-/- warning: continuous_at.lower_semicontinuous_at -> ContinuousAt.lowerSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousAt.{u1, u2} α γ _inst_1 _inst_4 f x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousAt.{u2, u1} α γ _inst_1 _inst_4 f x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.lower_semicontinuous_at ContinuousAt.lowerSemicontinuousAtₓ'. -/
 theorem ContinuousAt.lowerSemicontinuousAt {f : α → γ} (h : ContinuousAt f x) :
     LowerSemicontinuousAt f x := fun y hy => h (Ioi_mem_nhds hy)
 #align continuous_at.lower_semicontinuous_at ContinuousAt.lowerSemicontinuousAt
 
-/- warning: continuous_on.lower_semicontinuous_on -> ContinuousOn.lowerSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousOn.{u1, u2} α γ _inst_1 _inst_4 f s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousOn.{u2, u1} α γ _inst_1 _inst_4 f s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s)
-Case conversion may be inaccurate. Consider using '#align continuous_on.lower_semicontinuous_on ContinuousOn.lowerSemicontinuousOnₓ'. -/
 theorem ContinuousOn.lowerSemicontinuousOn {f : α → γ} (h : ContinuousOn f s) :
     LowerSemicontinuousOn f s := fun x hx => (h x hx).LowerSemicontinuousWithinAt
 #align continuous_on.lower_semicontinuous_on ContinuousOn.lowerSemicontinuousOn
 
-/- warning: continuous.lower_semicontinuous -> Continuous.lowerSemicontinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (Continuous.{u1, u2} α γ _inst_1 _inst_4 f) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (Continuous.{u2, u1} α γ _inst_1 _inst_4 f) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f)
-Case conversion may be inaccurate. Consider using '#align continuous.lower_semicontinuous Continuous.lowerSemicontinuousₓ'. -/
 theorem Continuous.lowerSemicontinuous {f : α → γ} (h : Continuous f) : LowerSemicontinuous f :=
   fun x => h.ContinuousAt.LowerSemicontinuousAt
 #align continuous.lower_semicontinuous Continuous.lowerSemicontinuous
@@ -508,12 +334,6 @@ variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
-/- warning: continuous_at.comp_lower_semicontinuous_within_at -> ContinuousAt.comp_lowerSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAtₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x :=
@@ -531,12 +351,6 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
     exact Filter.eventually_of_forall fun a => hy.trans_le (gmon (h (f a)))
 #align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAt
 
-/- warning: continuous_at.comp_lower_semicontinuous_at -> ContinuousAt.comp_lowerSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAtₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : LowerSemicontinuousAt f x) (gmon : Monotone g) : LowerSemicontinuousAt (g ∘ f) x :=
   by
@@ -544,69 +358,33 @@ theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ}
   exact hg.comp_lower_semicontinuous_within_at hf gmon
 #align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAt
 
-/- warning: continuous.comp_lower_semicontinuous_on -> Continuous.comp_lowerSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
-Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous_on Continuous.comp_lowerSemicontinuousOnₓ'. -/
 theorem Continuous.comp_lowerSemicontinuousOn {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuousOn f s) (gmon : Monotone g) : LowerSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_lowerSemicontinuousWithinAt (hf x hx) gmon
 #align continuous.comp_lower_semicontinuous_on Continuous.comp_lowerSemicontinuousOn
 
-/- warning: continuous.comp_lower_semicontinuous -> Continuous.comp_lowerSemicontinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
-Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous Continuous.comp_lowerSemicontinuousₓ'. -/
 theorem Continuous.comp_lowerSemicontinuous {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuous f) (gmon : Monotone g) : LowerSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_lowerSemicontinuousAt (hf x) gmon
 #align continuous.comp_lower_semicontinuous Continuous.comp_lowerSemicontinuous
 
-/- warning: continuous_at.comp_lower_semicontinuous_within_at_antitone -> ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_within_at_antitone ContinuousAt.comp_lowerSemicontinuousWithinAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Antitone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_lowerSemicontinuousWithinAt α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_lower_semicontinuous_within_at_antitone ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone
 
-/- warning: continuous_at.comp_lower_semicontinuous_at_antitone -> ContinuousAt.comp_lowerSemicontinuousAt_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_at_antitone ContinuousAt.comp_lowerSemicontinuousAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousAt f x) (gmon : Antitone g) :
     UpperSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_lowerSemicontinuousAt α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_lower_semicontinuous_at_antitone ContinuousAt.comp_lowerSemicontinuousAt_antitone
 
-/- warning: continuous.comp_lower_semicontinuous_on_antitone -> Continuous.comp_lowerSemicontinuousOn_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
-Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous_on_antitone Continuous.comp_lowerSemicontinuousOn_antitoneₓ'. -/
 theorem Continuous.comp_lowerSemicontinuousOn_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuousOn f s) (gmon : Antitone g) : UpperSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone (hf x hx) gmon
 #align continuous.comp_lower_semicontinuous_on_antitone Continuous.comp_lowerSemicontinuousOn_antitone
 
-/- warning: continuous.comp_lower_semicontinuous_antitone -> Continuous.comp_lowerSemicontinuous_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
-Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous_antitone Continuous.comp_lowerSemicontinuous_antitoneₓ'. -/
 theorem Continuous.comp_lowerSemicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuous f) (gmon : Antitone g) : UpperSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_lowerSemicontinuousAt_antitone (hf x) gmon
@@ -622,12 +400,6 @@ section
 variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
-/- warning: lower_semicontinuous_within_at.add' -> LowerSemicontinuousWithinAt.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
@@ -701,12 +473,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         
 #align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'
 
-/- warning: lower_semicontinuous_at.add' -> LowerSemicontinuousAt.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at.add' LowerSemicontinuousAt.add'ₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -717,12 +483,6 @@ theorem LowerSemicontinuousAt.add' {f g : α → γ} (hf : LowerSemicontinuousAt
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *; exact hf.add' hg hcont
 #align lower_semicontinuous_at.add' LowerSemicontinuousAt.add'
 
-/- warning: lower_semicontinuous_on.add' -> LowerSemicontinuousOn.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x)))) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x)))) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.add' LowerSemicontinuousOn.add'ₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -733,12 +493,6 @@ theorem LowerSemicontinuousOn.add' {f g : α → γ} (hf : LowerSemicontinuousOn
   (hf x hx).add' (hg x hx) (hcont x hx)
 #align lower_semicontinuous_on.add' LowerSemicontinuousOn.add'
 
-/- warning: lower_semicontinuous.add' -> LowerSemicontinuous.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.add' LowerSemicontinuous.add'ₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -750,12 +504,6 @@ theorem LowerSemicontinuous.add' {f g : α → γ} (hf : LowerSemicontinuous f)
 
 variable [ContinuousAdd γ]
 
-/- warning: lower_semicontinuous_within_at.add -> LowerSemicontinuousWithinAt.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at.add LowerSemicontinuousWithinAt.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -765,12 +513,6 @@ theorem LowerSemicontinuousWithinAt.add {f g : α → γ} (hf : LowerSemicontinu
   hf.add' hg continuous_add.ContinuousAt
 #align lower_semicontinuous_within_at.add LowerSemicontinuousWithinAt.add
 
-/- warning: lower_semicontinuous_at.add -> LowerSemicontinuousAt.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at.add LowerSemicontinuousAt.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -779,12 +521,6 @@ theorem LowerSemicontinuousAt.add {f g : α → γ} (hf : LowerSemicontinuousAt
   hf.add' hg continuous_add.ContinuousAt
 #align lower_semicontinuous_at.add LowerSemicontinuousAt.add
 
-/- warning: lower_semicontinuous_on.add -> LowerSemicontinuousOn.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.add LowerSemicontinuousOn.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -793,12 +529,6 @@ theorem LowerSemicontinuousOn.add {f g : α → γ} (hf : LowerSemicontinuousOn
   hf.add' hg fun x hx => continuous_add.ContinuousAt
 #align lower_semicontinuous_on.add LowerSemicontinuousOn.add
 
-/- warning: lower_semicontinuous.add -> LowerSemicontinuous.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.add LowerSemicontinuous.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -807,12 +537,6 @@ theorem LowerSemicontinuous.add {f g : α → γ} (hf : LowerSemicontinuous f)
   hf.add' hg fun x => continuous_add.ContinuousAt
 #align lower_semicontinuous.add LowerSemicontinuous.add
 
-/- warning: lower_semicontinuous_within_at_sum -> lowerSemicontinuousWithinAt_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s x)) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s x)) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sumₓ'. -/
 theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by
@@ -825,12 +549,6 @@ theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
           (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
 #align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sum
 
-/- warning: lower_semicontinuous_at_sum -> lowerSemicontinuousAt_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) x)) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) x)) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_sum lowerSemicontinuousAt_sumₓ'. -/
 theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun z => ∑ i in a, f i z) x :=
@@ -839,24 +557,12 @@ theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
   exact lowerSemicontinuousWithinAt_sum ha
 #align lower_semicontinuous_at_sum lowerSemicontinuousAt_sum
 
-/- warning: lower_semicontinuous_on_sum -> lowerSemicontinuousOn_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s)) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s)) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_sum lowerSemicontinuousOn_sumₓ'. -/
 theorem lowerSemicontinuousOn_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun z => ∑ i in a, f i z) s := fun x hx =>
   lowerSemicontinuousWithinAt_sum fun i hi => ha i hi x hx
 #align lower_semicontinuous_on_sum lowerSemicontinuousOn_sum
 
-/- warning: lower_semicontinuous_sum -> lowerSemicontinuous_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i))) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_sum lowerSemicontinuous_sumₓ'. -/
 theorem lowerSemicontinuous_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuous (f i)) : LowerSemicontinuous fun z => ∑ i in a, f i z :=
   fun x => lowerSemicontinuousAt_sum fun i hi => ha i hi x
@@ -871,12 +577,6 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-/- warning: lower_semicontinuous_within_at_csupr -> lowerSemicontinuousWithinAt_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iSup.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSupₓ'. -/
 theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
@@ -889,24 +589,12 @@ theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_ciSup hy' i)
 #align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSup
 
-/- warning: lower_semicontinuous_within_at_supr -> lowerSemicontinuousWithinAt_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSupₓ'. -/
 theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
   lowerSemicontinuousWithinAt_ciSup (by simp) h
 #align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSup
 
-/- warning: lower_semicontinuous_within_at_bsupr -> lowerSemicontinuousWithinAt_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
@@ -914,12 +602,6 @@ theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p
   lowerSemicontinuousWithinAt_iSup fun i => lowerSemicontinuousWithinAt_iSup fun hi => h i hi
 #align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_biSup
 
-/- warning: lower_semicontinuous_at_csupr -> lowerSemicontinuousAt_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iSup.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSupₓ'. -/
 theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
@@ -929,23 +611,11 @@ theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
   exact lowerSemicontinuousWithinAt_ciSup bdd h
 #align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSup
 
-/- warning: lower_semicontinuous_at_supr -> lowerSemicontinuousAt_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSupₓ'. -/
 theorem lowerSemicontinuousAt_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   lowerSemicontinuousAt_ciSup (by simp) h
 #align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSup
 
-/- warning: lower_semicontinuous_at_bsupr -> lowerSemicontinuousAt_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
@@ -953,35 +623,17 @@ theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α
   lowerSemicontinuousAt_iSup fun i => lowerSemicontinuousAt_iSup fun hi => h i hi
 #align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_biSup
 
-/- warning: lower_semicontinuous_on_csupr -> lowerSemicontinuousOn_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iSup.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_ciSupₓ'. -/
 theorem lowerSemicontinuousOn_ciSup {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
   lowerSemicontinuousWithinAt_ciSup (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
 #align lower_semicontinuous_on_csupr lowerSemicontinuousOn_ciSup
 
-/- warning: lower_semicontinuous_on_supr -> lowerSemicontinuousOn_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSupₓ'. -/
 theorem lowerSemicontinuousOn_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
   lowerSemicontinuousOn_ciSup (by simp) h
 #align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSup
 
-/- warning: lower_semicontinuous_on_bsupr -> lowerSemicontinuousOn_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
@@ -989,34 +641,16 @@ theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α
   lowerSemicontinuousOn_iSup fun i => lowerSemicontinuousOn_iSup fun hi => h i hi
 #align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_biSup
 
-/- warning: lower_semicontinuous_csupr -> lowerSemicontinuous_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toSupSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_csupr lowerSemicontinuous_ciSupₓ'. -/
 theorem lowerSemicontinuous_ciSup {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
   lowerSemicontinuousAt_ciSup (eventually_of_forall bdd) fun i => h i x
 #align lower_semicontinuous_csupr lowerSemicontinuous_ciSup
 
-/- warning: lower_semicontinuous_supr -> lowerSemicontinuous_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_supr lowerSemicontinuous_iSupₓ'. -/
 theorem lowerSemicontinuous_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
   lowerSemicontinuous_ciSup (by simp) h
 #align lower_semicontinuous_supr lowerSemicontinuous_iSup
 
-/- warning: lower_semicontinuous_bsupr -> lowerSemicontinuous_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_bsupr lowerSemicontinuous_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuous_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
@@ -1033,12 +667,6 @@ section
 
 variable {ι : Type _}
 
-/- warning: lower_semicontinuous_within_at_tsum -> lowerSemicontinuousWithinAt_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousWithinAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousWithinAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsumₓ'. -/
 theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ∑' i, f i x') s x :=
@@ -1048,12 +676,6 @@ theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
   exact lowerSemicontinuousWithinAt_sum fun i hi => h i
 #align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsum
 
-/- warning: lower_semicontinuous_at_tsum -> lowerSemicontinuousAt_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i) x) -> (LowerSemicontinuousAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i) x) -> (LowerSemicontinuousAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_tsum lowerSemicontinuousAt_tsumₓ'. -/
 theorem lowerSemicontinuousAt_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ∑' i, f i x') x :=
   by
@@ -1061,23 +683,11 @@ theorem lowerSemicontinuousAt_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, Lo
   exact lowerSemicontinuousWithinAt_tsum h
 #align lower_semicontinuous_at_tsum lowerSemicontinuousAt_tsum
 
-/- warning: lower_semicontinuous_on_tsum -> lowerSemicontinuousOn_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousOn.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i) s) -> (LowerSemicontinuousOn.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousOn.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i) s) -> (LowerSemicontinuousOn.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_tsum lowerSemicontinuousOn_tsumₓ'. -/
 theorem lowerSemicontinuousOn_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ∑' i, f i x') s := fun x hx =>
   lowerSemicontinuousWithinAt_tsum fun i => h i x hx
 #align lower_semicontinuous_on_tsum lowerSemicontinuousOn_tsum
 
-/- warning: lower_semicontinuous_tsum -> lowerSemicontinuous_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuous.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i)) -> (LowerSemicontinuous.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuous.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i)) -> (LowerSemicontinuous.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_tsum lowerSemicontinuous_tsumₓ'. -/
 theorem lowerSemicontinuous_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ∑' i, f i x' := fun x => lowerSemicontinuousAt_tsum fun i => h i x
 #align lower_semicontinuous_tsum lowerSemicontinuous_tsum
@@ -1092,98 +702,44 @@ end
 /-! #### Basic dot notation interface for upper semicontinuity -/
 
 
-/- warning: upper_semicontinuous_within_at.mono -> UpperSemicontinuousWithinAt.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α} {t : Set.{u1} α}, (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f t x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α} {t : Set.{u2} α}, (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f t x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at.mono UpperSemicontinuousWithinAt.monoₓ'. -/
 theorem UpperSemicontinuousWithinAt.mono (h : UpperSemicontinuousWithinAt f s x) (hst : t ⊆ s) :
     UpperSemicontinuousWithinAt f t x := fun y hy =>
   Filter.Eventually.filter_mono (nhdsWithin_mono _ hst) (h y hy)
 #align upper_semicontinuous_within_at.mono UpperSemicontinuousWithinAt.mono
 
-/- warning: upper_semicontinuous_within_at_univ_iff -> upperSemicontinuousWithinAt_univ_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α}, Iff (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α) x) (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α}, Iff (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α) x) (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_univ_iff upperSemicontinuousWithinAt_univ_iffₓ'. -/
 theorem upperSemicontinuousWithinAt_univ_iff :
     UpperSemicontinuousWithinAt f univ x ↔ UpperSemicontinuousAt f x := by
   simp [UpperSemicontinuousWithinAt, UpperSemicontinuousAt, nhdsWithin_univ]
 #align upper_semicontinuous_within_at_univ_iff upperSemicontinuousWithinAt_univ_iff
 
-/- warning: upper_semicontinuous_at.upper_semicontinuous_within_at -> UpperSemicontinuousAt.upperSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} (s : Set.{u1} α), (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} (s : Set.{u2} α), (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at.upper_semicontinuous_within_at UpperSemicontinuousAt.upperSemicontinuousWithinAtₓ'. -/
 theorem UpperSemicontinuousAt.upperSemicontinuousWithinAt (s : Set α)
     (h : UpperSemicontinuousAt f x) : UpperSemicontinuousWithinAt f s x := fun y hy =>
   Filter.Eventually.filter_mono nhdsWithin_le_nhds (h y hy)
 #align upper_semicontinuous_at.upper_semicontinuous_within_at UpperSemicontinuousAt.upperSemicontinuousWithinAt
 
-/- warning: upper_semicontinuous_on.upper_semicontinuous_within_at -> UpperSemicontinuousOn.upperSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.upper_semicontinuous_within_at UpperSemicontinuousOn.upperSemicontinuousWithinAtₓ'. -/
 theorem UpperSemicontinuousOn.upperSemicontinuousWithinAt (h : UpperSemicontinuousOn f s)
     (hx : x ∈ s) : UpperSemicontinuousWithinAt f s x :=
   h x hx
 #align upper_semicontinuous_on.upper_semicontinuous_within_at UpperSemicontinuousOn.upperSemicontinuousWithinAt
 
-/- warning: upper_semicontinuous_on.mono -> UpperSemicontinuousOn.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {s : Set.{u1} α} {t : Set.{u1} α}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f t)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {s : Set.{u2} α} {t : Set.{u2} α}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f t)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.mono UpperSemicontinuousOn.monoₓ'. -/
 theorem UpperSemicontinuousOn.mono (h : UpperSemicontinuousOn f s) (hst : t ⊆ s) :
     UpperSemicontinuousOn f t := fun x hx => (h x (hst hx)).mono hst
 #align upper_semicontinuous_on.mono UpperSemicontinuousOn.mono
 
-/- warning: upper_semicontinuous_on_univ_iff -> upperSemicontinuousOn_univ_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α)) (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α)) (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_univ_iff upperSemicontinuousOn_univ_iffₓ'. -/
 theorem upperSemicontinuousOn_univ_iff : UpperSemicontinuousOn f univ ↔ UpperSemicontinuous f := by
   simp [UpperSemicontinuousOn, UpperSemicontinuous, upperSemicontinuousWithinAt_univ_iff]
 #align upper_semicontinuous_on_univ_iff upperSemicontinuousOn_univ_iff
 
-/- warning: upper_semicontinuous.upper_semicontinuous_at -> UpperSemicontinuous.upperSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (x : α), UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (x : α), UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.upper_semicontinuous_at UpperSemicontinuous.upperSemicontinuousAtₓ'. -/
 theorem UpperSemicontinuous.upperSemicontinuousAt (h : UpperSemicontinuous f) (x : α) :
     UpperSemicontinuousAt f x :=
   h x
 #align upper_semicontinuous.upper_semicontinuous_at UpperSemicontinuous.upperSemicontinuousAt
 
-/- warning: upper_semicontinuous.upper_semicontinuous_within_at -> UpperSemicontinuous.upperSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α) (x : α), UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α) (x : α), UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.upper_semicontinuous_within_at UpperSemicontinuous.upperSemicontinuousWithinAtₓ'. -/
 theorem UpperSemicontinuous.upperSemicontinuousWithinAt (h : UpperSemicontinuous f) (s : Set α)
     (x : α) : UpperSemicontinuousWithinAt f s x :=
   (h x).UpperSemicontinuousWithinAt s
 #align upper_semicontinuous.upper_semicontinuous_within_at UpperSemicontinuous.upperSemicontinuousWithinAt
 
-/- warning: upper_semicontinuous.upper_semicontinuous_on -> UpperSemicontinuous.upperSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α), UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α), UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.upper_semicontinuous_on UpperSemicontinuous.upperSemicontinuousOnₓ'. -/
 theorem UpperSemicontinuous.upperSemicontinuousOn (h : UpperSemicontinuous f) (s : Set α) :
     UpperSemicontinuousOn f s := fun x hx => h.UpperSemicontinuousWithinAt s x
 #align upper_semicontinuous.upper_semicontinuous_on UpperSemicontinuous.upperSemicontinuousOn
@@ -1191,42 +747,18 @@ theorem UpperSemicontinuous.upperSemicontinuousOn (h : UpperSemicontinuous f) (s
 /-! #### Constants -/
 
 
-/- warning: upper_semicontinuous_within_at_const -> upperSemicontinuousWithinAt_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {z : β}, UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s x
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {z : β}, UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s x
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_const upperSemicontinuousWithinAt_constₓ'. -/
 theorem upperSemicontinuousWithinAt_const : UpperSemicontinuousWithinAt (fun x => z) s x :=
   fun y hy => Filter.eventually_of_forall fun x => hy
 #align upper_semicontinuous_within_at_const upperSemicontinuousWithinAt_const
 
-/- warning: upper_semicontinuous_at_const -> upperSemicontinuousAt_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {z : β}, UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) x
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {z : β}, UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) x
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_const upperSemicontinuousAt_constₓ'. -/
 theorem upperSemicontinuousAt_const : UpperSemicontinuousAt (fun x => z) x := fun y hy =>
   Filter.eventually_of_forall fun x => hy
 #align upper_semicontinuous_at_const upperSemicontinuousAt_const
 
-/- warning: upper_semicontinuous_on_const -> upperSemicontinuousOn_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {z : β}, UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {z : β}, UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_const upperSemicontinuousOn_constₓ'. -/
 theorem upperSemicontinuousOn_const : UpperSemicontinuousOn (fun x => z) s := fun x hx =>
   upperSemicontinuousWithinAt_const
 #align upper_semicontinuous_on_const upperSemicontinuousOn_const
 
-/- warning: upper_semicontinuous_const -> upperSemicontinuous_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {z : β}, UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {z : β}, UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_const upperSemicontinuous_constₓ'. -/
 theorem upperSemicontinuous_const : UpperSemicontinuous fun x : α => z := fun x =>
   upperSemicontinuousAt_const
 #align upper_semicontinuous_const upperSemicontinuous_const
@@ -1238,89 +770,41 @@ section
 
 variable [Zero β]
 
-/- warning: is_open.upper_semicontinuous_indicator -> IsOpen.upperSemicontinuous_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
-Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_indicator IsOpen.upperSemicontinuous_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuous_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuous (indicator s fun x => y) :=
   @IsOpen.lowerSemicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy
 #align is_open.upper_semicontinuous_indicator IsOpen.upperSemicontinuous_indicator
 
-/- warning: is_open.upper_semicontinuous_on_indicator -> IsOpen.upperSemicontinuousOn_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
-Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_on_indicator IsOpen.upperSemicontinuousOn_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuousOn_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousOn (indicator s fun x => y) t :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousOn t
 #align is_open.upper_semicontinuous_on_indicator IsOpen.upperSemicontinuousOn_indicator
 
-/- warning: is_open.upper_semicontinuous_at_indicator -> IsOpen.upperSemicontinuousAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
-Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_at_indicator IsOpen.upperSemicontinuousAt_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuousAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousAt (indicator s fun x => y) x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousAt x
 #align is_open.upper_semicontinuous_at_indicator IsOpen.upperSemicontinuousAt_indicator
 
-/- warning: is_open.upper_semicontinuous_within_at_indicator -> IsOpen.upperSemicontinuousWithinAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
-Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_within_at_indicator IsOpen.upperSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousWithinAt t x
 #align is_open.upper_semicontinuous_within_at_indicator IsOpen.upperSemicontinuousWithinAt_indicator
 
-/- warning: is_closed.upper_semicontinuous_indicator -> IsClosed.upperSemicontinuous_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
-Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_indicator IsClosed.upperSemicontinuous_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuous_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuous (indicator s fun x => y) :=
   @IsClosed.lowerSemicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy
 #align is_closed.upper_semicontinuous_indicator IsClosed.upperSemicontinuous_indicator
 
-/- warning: is_closed.upper_semicontinuous_on_indicator -> IsClosed.upperSemicontinuousOn_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
-Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_on_indicator IsClosed.upperSemicontinuousOn_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuousOn_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousOn (indicator s fun x => y) t :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousOn t
 #align is_closed.upper_semicontinuous_on_indicator IsClosed.upperSemicontinuousOn_indicator
 
-/- warning: is_closed.upper_semicontinuous_at_indicator -> IsClosed.upperSemicontinuousAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
-Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_at_indicator IsClosed.upperSemicontinuousAt_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuousAt_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousAt (indicator s fun x => y) x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousAt x
 #align is_closed.upper_semicontinuous_at_indicator IsClosed.upperSemicontinuousAt_indicator
 
-/- warning: is_closed.upper_semicontinuous_within_at_indicator -> IsClosed.upperSemicontinuousWithinAt_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
-Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_within_at_indicator IsClosed.upperSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuousWithinAt_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousWithinAt t x
@@ -1331,24 +815,12 @@ end
 /-! #### Relationship with continuity -/
 
 
-/- warning: upper_semicontinuous_iff_is_open_preimage -> upperSemicontinuous_iff_isOpen_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Iio.{u2} β _inst_2 y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Iio.{u1} β _inst_2 y)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_iff_is_open_preimage upperSemicontinuous_iff_isOpen_preimageₓ'. -/
 theorem upperSemicontinuous_iff_isOpen_preimage :
     UpperSemicontinuous f ↔ ∀ y, IsOpen (f ⁻¹' Iio y) :=
   ⟨fun H y => isOpen_iff_mem_nhds.2 fun x hx => H x y hx, fun H x y y_lt =>
     IsOpen.mem_nhds (H y) y_lt⟩
 #align upper_semicontinuous_iff_is_open_preimage upperSemicontinuous_iff_isOpen_preimage
 
-/- warning: upper_semicontinuous.is_open_preimage -> UpperSemicontinuous.isOpen_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Iio.{u2} β _inst_2 y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Iio.{u1} β _inst_2 y)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.is_open_preimage UpperSemicontinuous.isOpen_preimageₓ'. -/
 theorem UpperSemicontinuous.isOpen_preimage (hf : UpperSemicontinuous f) (y : β) :
     IsOpen (f ⁻¹' Iio y) :=
   upperSemicontinuous_iff_isOpen_preimage.1 hf y
@@ -1358,12 +830,6 @@ section
 
 variable {γ : Type _} [LinearOrder γ]
 
-/- warning: upper_semicontinuous_iff_is_closed_preimage -> upperSemicontinuous_iff_isClosed_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, Iff (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Ici.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, Iff (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Ici.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_iff_is_closed_preimage upperSemicontinuous_iff_isClosed_preimageₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
 theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     UpperSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Ici y) :=
@@ -1374,12 +840,6 @@ theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Ici]
 #align upper_semicontinuous_iff_is_closed_preimage upperSemicontinuous_iff_isClosed_preimage
 
-/- warning: upper_semicontinuous.is_closed_preimage -> UpperSemicontinuous.isClosed_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Ici.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) -> (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Ici.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.is_closed_preimage UpperSemicontinuous.isClosed_preimageₓ'. -/
 theorem UpperSemicontinuous.isClosed_preimage {f : α → γ} (hf : UpperSemicontinuous f) (y : γ) :
     IsClosed (f ⁻¹' Ici y) :=
   upperSemicontinuous_iff_isClosed_preimage.1 hf y
@@ -1387,42 +847,18 @@ theorem UpperSemicontinuous.isClosed_preimage {f : α → γ} (hf : UpperSemicon
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
-/- warning: continuous_within_at.upper_semicontinuous_within_at -> ContinuousWithinAt.upperSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousWithinAt.{u1, u2} α γ _inst_1 _inst_4 f s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousWithinAt.{u2, u1} α γ _inst_1 _inst_4 f s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x)
-Case conversion may be inaccurate. Consider using '#align continuous_within_at.upper_semicontinuous_within_at ContinuousWithinAt.upperSemicontinuousWithinAtₓ'. -/
 theorem ContinuousWithinAt.upperSemicontinuousWithinAt {f : α → γ} (h : ContinuousWithinAt f s x) :
     UpperSemicontinuousWithinAt f s x := fun y hy => h (Iio_mem_nhds hy)
 #align continuous_within_at.upper_semicontinuous_within_at ContinuousWithinAt.upperSemicontinuousWithinAt
 
-/- warning: continuous_at.upper_semicontinuous_at -> ContinuousAt.upperSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousAt.{u1, u2} α γ _inst_1 _inst_4 f x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousAt.{u2, u1} α γ _inst_1 _inst_4 f x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.upper_semicontinuous_at ContinuousAt.upperSemicontinuousAtₓ'. -/
 theorem ContinuousAt.upperSemicontinuousAt {f : α → γ} (h : ContinuousAt f x) :
     UpperSemicontinuousAt f x := fun y hy => h (Iio_mem_nhds hy)
 #align continuous_at.upper_semicontinuous_at ContinuousAt.upperSemicontinuousAt
 
-/- warning: continuous_on.upper_semicontinuous_on -> ContinuousOn.upperSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousOn.{u1, u2} α γ _inst_1 _inst_4 f s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousOn.{u2, u1} α γ _inst_1 _inst_4 f s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s)
-Case conversion may be inaccurate. Consider using '#align continuous_on.upper_semicontinuous_on ContinuousOn.upperSemicontinuousOnₓ'. -/
 theorem ContinuousOn.upperSemicontinuousOn {f : α → γ} (h : ContinuousOn f s) :
     UpperSemicontinuousOn f s := fun x hx => (h x hx).UpperSemicontinuousWithinAt
 #align continuous_on.upper_semicontinuous_on ContinuousOn.upperSemicontinuousOn
 
-/- warning: continuous.upper_semicontinuous -> Continuous.upperSemicontinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (Continuous.{u1, u2} α γ _inst_1 _inst_4 f) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (Continuous.{u2, u1} α γ _inst_1 _inst_4 f) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f)
-Case conversion may be inaccurate. Consider using '#align continuous.upper_semicontinuous Continuous.upperSemicontinuousₓ'. -/
 theorem Continuous.upperSemicontinuous {f : α → γ} (h : Continuous f) : UpperSemicontinuous f :=
   fun x => h.ContinuousAt.UpperSemicontinuousAt
 #align continuous.upper_semicontinuous Continuous.upperSemicontinuous
@@ -1438,92 +874,44 @@ variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
-/- warning: continuous_at.comp_upper_semicontinuous_within_at -> ContinuousAt.comp_upperSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_within_at ContinuousAt.comp_upperSemicontinuousWithinAtₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_lowerSemicontinuousWithinAt α _ x s γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual
 #align continuous_at.comp_upper_semicontinuous_within_at ContinuousAt.comp_upperSemicontinuousWithinAt
 
-/- warning: continuous_at.comp_upper_semicontinuous_at -> ContinuousAt.comp_upperSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_at ContinuousAt.comp_upperSemicontinuousAtₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : UpperSemicontinuousAt f x) (gmon : Monotone g) : UpperSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_lowerSemicontinuousAt α _ x γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual
 #align continuous_at.comp_upper_semicontinuous_at ContinuousAt.comp_upperSemicontinuousAt
 
-/- warning: continuous.comp_upper_semicontinuous_on -> Continuous.comp_upperSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
-Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous_on Continuous.comp_upperSemicontinuousOnₓ'. -/
 theorem Continuous.comp_upperSemicontinuousOn {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuousOn f s) (gmon : Monotone g) : UpperSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_upperSemicontinuousWithinAt (hf x hx) gmon
 #align continuous.comp_upper_semicontinuous_on Continuous.comp_upperSemicontinuousOn
 
-/- warning: continuous.comp_upper_semicontinuous -> Continuous.comp_upperSemicontinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
-Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous Continuous.comp_upperSemicontinuousₓ'. -/
 theorem Continuous.comp_upperSemicontinuous {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuous f) (gmon : Monotone g) : UpperSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_upperSemicontinuousAt (hf x) gmon
 #align continuous.comp_upper_semicontinuous Continuous.comp_upperSemicontinuous
 
-/- warning: continuous_at.comp_upper_semicontinuous_within_at_antitone -> ContinuousAt.comp_upperSemicontinuousWithinAt_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_within_at_antitone ContinuousAt.comp_upperSemicontinuousWithinAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Antitone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_upperSemicontinuousWithinAt α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_upper_semicontinuous_within_at_antitone ContinuousAt.comp_upperSemicontinuousWithinAt_antitone
 
-/- warning: continuous_at.comp_upper_semicontinuous_at_antitone -> ContinuousAt.comp_upperSemicontinuousAt_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
-Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_at_antitone ContinuousAt.comp_upperSemicontinuousAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousAt f x) (gmon : Antitone g) :
     LowerSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_upperSemicontinuousAt α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_upper_semicontinuous_at_antitone ContinuousAt.comp_upperSemicontinuousAt_antitone
 
-/- warning: continuous.comp_upper_semicontinuous_on_antitone -> Continuous.comp_upperSemicontinuousOn_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
-Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous_on_antitone Continuous.comp_upperSemicontinuousOn_antitoneₓ'. -/
 theorem Continuous.comp_upperSemicontinuousOn_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuousOn f s) (gmon : Antitone g) : LowerSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_upperSemicontinuousWithinAt_antitone (hf x hx) gmon
 #align continuous.comp_upper_semicontinuous_on_antitone Continuous.comp_upperSemicontinuousOn_antitone
 
-/- warning: continuous.comp_upper_semicontinuous_antitone -> Continuous.comp_upperSemicontinuous_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
-Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous_antitone Continuous.comp_upperSemicontinuous_antitoneₓ'. -/
 theorem Continuous.comp_upperSemicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuous f) (gmon : Antitone g) : LowerSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_upperSemicontinuousAt_antitone (hf x) gmon
@@ -1539,12 +927,6 @@ section
 variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
-/- warning: upper_semicontinuous_within_at.add' -> UpperSemicontinuousWithinAt.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at.add' UpperSemicontinuousWithinAt.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -1555,12 +937,6 @@ theorem UpperSemicontinuousWithinAt.add' {f g : α → γ} (hf : UpperSemicontin
   @LowerSemicontinuousWithinAt.add' α _ x s γᵒᵈ _ _ _ _ _ hf hg hcont
 #align upper_semicontinuous_within_at.add' UpperSemicontinuousWithinAt.add'
 
-/- warning: upper_semicontinuous_at.add' -> UpperSemicontinuousAt.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at.add' UpperSemicontinuousAt.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -1571,12 +947,6 @@ theorem UpperSemicontinuousAt.add' {f g : α → γ} (hf : UpperSemicontinuousAt
   simp_rw [← upperSemicontinuousWithinAt_univ_iff] at *; exact hf.add' hg hcont
 #align upper_semicontinuous_at.add' UpperSemicontinuousAt.add'
 
-/- warning: upper_semicontinuous_on.add' -> UpperSemicontinuousOn.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x)))) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x)))) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.add' UpperSemicontinuousOn.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -1587,12 +957,6 @@ theorem UpperSemicontinuousOn.add' {f g : α → γ} (hf : UpperSemicontinuousOn
   (hf x hx).add' (hg x hx) (hcont x hx)
 #align upper_semicontinuous_on.add' UpperSemicontinuousOn.add'
 
-/- warning: upper_semicontinuous.add' -> UpperSemicontinuous.add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.add' UpperSemicontinuous.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -1604,12 +968,6 @@ theorem UpperSemicontinuous.add' {f g : α → γ} (hf : UpperSemicontinuous f)
 
 variable [ContinuousAdd γ]
 
-/- warning: upper_semicontinuous_within_at.add -> UpperSemicontinuousWithinAt.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at.add UpperSemicontinuousWithinAt.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -1619,12 +977,6 @@ theorem UpperSemicontinuousWithinAt.add {f g : α → γ} (hf : UpperSemicontinu
   hf.add' hg continuous_add.ContinuousAt
 #align upper_semicontinuous_within_at.add UpperSemicontinuousWithinAt.add
 
-/- warning: upper_semicontinuous_at.add -> UpperSemicontinuousAt.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at.add UpperSemicontinuousAt.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -1633,12 +985,6 @@ theorem UpperSemicontinuousAt.add {f g : α → γ} (hf : UpperSemicontinuousAt
   hf.add' hg continuous_add.ContinuousAt
 #align upper_semicontinuous_at.add UpperSemicontinuousAt.add
 
-/- warning: upper_semicontinuous_on.add -> UpperSemicontinuousOn.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.add UpperSemicontinuousOn.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -1647,12 +993,6 @@ theorem UpperSemicontinuousOn.add {f g : α → γ} (hf : UpperSemicontinuousOn
   hf.add' hg fun x hx => continuous_add.ContinuousAt
 #align upper_semicontinuous_on.add UpperSemicontinuousOn.add
 
-/- warning: upper_semicontinuous.add -> UpperSemicontinuous.add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.add UpperSemicontinuous.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -1661,24 +1001,12 @@ theorem UpperSemicontinuous.add {f g : α → γ} (hf : UpperSemicontinuous f)
   hf.add' hg fun x => continuous_add.ContinuousAt
 #align upper_semicontinuous.add UpperSemicontinuous.add
 
-/- warning: upper_semicontinuous_within_at_sum -> upperSemicontinuousWithinAt_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s x)) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s x)) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_sum upperSemicontinuousWithinAt_sumₓ'. -/
 theorem upperSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x :=
   @lowerSemicontinuousWithinAt_sum α _ x s ι γᵒᵈ _ _ _ _ f a ha
 #align upper_semicontinuous_within_at_sum upperSemicontinuousWithinAt_sum
 
-/- warning: upper_semicontinuous_at_sum -> upperSemicontinuousAt_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) x)) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) x)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) x)) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_sum upperSemicontinuousAt_sumₓ'. -/
 theorem upperSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun z => ∑ i in a, f i z) x :=
@@ -1687,24 +1015,12 @@ theorem upperSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
   exact upperSemicontinuousWithinAt_sum ha
 #align upper_semicontinuous_at_sum upperSemicontinuousAt_sum
 
-/- warning: upper_semicontinuous_on_sum -> upperSemicontinuousOn_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s)) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s)
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s)) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_sum upperSemicontinuousOn_sumₓ'. -/
 theorem upperSemicontinuousOn_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun z => ∑ i in a, f i z) s := fun x hx =>
   upperSemicontinuousWithinAt_sum fun i hi => ha i hi x hx
 #align upper_semicontinuous_on_sum upperSemicontinuousOn_sum
 
-/- warning: upper_semicontinuous_sum -> upperSemicontinuous_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i))) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_sum upperSemicontinuous_sumₓ'. -/
 theorem upperSemicontinuous_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuous (f i)) : UpperSemicontinuous fun z => ∑ i in a, f i z :=
   fun x => upperSemicontinuousAt_sum fun i hi => ha i hi x
@@ -1719,12 +1035,6 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-/- warning: upper_semicontinuous_within_at_cinfi -> upperSemicontinuousWithinAt_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iInf.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_ciInfₓ'. -/
 theorem upperSemicontinuousWithinAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
@@ -1732,24 +1042,12 @@ theorem upperSemicontinuousWithinAt_ciInf {f : ι → α → δ'}
   @lowerSemicontinuousWithinAt_ciSup α _ x s ι δ'ᵒᵈ _ f bdd h
 #align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_ciInf
 
-/- warning: upper_semicontinuous_within_at_infi -> upperSemicontinuousWithinAt_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInfₓ'. -/
 theorem upperSemicontinuousWithinAt_iInf {f : ι → α → δ}
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
   @lowerSemicontinuousWithinAt_iSup α _ x s ι δᵒᵈ _ f h
 #align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInf
 
-/- warning: upper_semicontinuous_within_at_binfi -> upperSemicontinuousWithinAt_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
@@ -1757,35 +1055,17 @@ theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p
   upperSemicontinuousWithinAt_iInf fun i => upperSemicontinuousWithinAt_iInf fun hi => h i hi
 #align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_biInf
 
-/- warning: upper_semicontinuous_at_cinfi -> upperSemicontinuousAt_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iInf.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_ciInfₓ'. -/
 theorem upperSemicontinuousAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_ciSup α _ x ι δ'ᵒᵈ _ f bdd h
 #align upper_semicontinuous_at_cinfi upperSemicontinuousAt_ciInf
 
-/- warning: upper_semicontinuous_at_infi -> upperSemicontinuousAt_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_infi upperSemicontinuousAt_iInfₓ'. -/
 theorem upperSemicontinuousAt_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_iSup α _ x ι δᵒᵈ _ f h
 #align upper_semicontinuous_at_infi upperSemicontinuousAt_iInf
 
-/- warning: upper_semicontinuous_at_binfi -> upperSemicontinuousAt_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_binfi upperSemicontinuousAt_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
@@ -1793,35 +1073,17 @@ theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α
   upperSemicontinuousAt_iInf fun i => upperSemicontinuousAt_iInf fun hi => h i hi
 #align upper_semicontinuous_at_binfi upperSemicontinuousAt_biInf
 
-/- warning: upper_semicontinuous_on_cinfi -> upperSemicontinuousOn_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iInf.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_ciInfₓ'. -/
 theorem upperSemicontinuousOn_ciInf {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_ciInf (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
 #align upper_semicontinuous_on_cinfi upperSemicontinuousOn_ciInf
 
-/- warning: upper_semicontinuous_on_infi -> upperSemicontinuousOn_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_infi upperSemicontinuousOn_iInfₓ'. -/
 theorem upperSemicontinuousOn_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_iInf fun i => h i x hx
 #align upper_semicontinuous_on_infi upperSemicontinuousOn_iInf
 
-/- warning: upper_semicontinuous_on_binfi -> upperSemicontinuousOn_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_binfi upperSemicontinuousOn_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
@@ -1829,33 +1091,15 @@ theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α
   upperSemicontinuousOn_iInf fun i => upperSemicontinuousOn_iInf fun hi => h i hi
 #align upper_semicontinuous_on_binfi upperSemicontinuousOn_biInf
 
-/- warning: upper_semicontinuous_cinfi -> upperSemicontinuous_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toInfSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_cinfi upperSemicontinuous_ciInfₓ'. -/
 theorem upperSemicontinuous_ciInf {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
   upperSemicontinuousAt_ciInf (eventually_of_forall bdd) fun i => h i x
 #align upper_semicontinuous_cinfi upperSemicontinuous_ciInf
 
-/- warning: upper_semicontinuous_infi -> upperSemicontinuous_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_infi upperSemicontinuous_iInfₓ'. -/
 theorem upperSemicontinuous_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
     UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_iInf fun i => h i x
 #align upper_semicontinuous_infi upperSemicontinuous_iInf
 
-/- warning: upper_semicontinuous_binfi -> upperSemicontinuous_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_binfi upperSemicontinuous_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuous_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
@@ -1869,12 +1113,6 @@ section
 
 variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
-/- warning: continuous_within_at_iff_lower_upper_semicontinuous_within_at -> continuousWithinAt_iff_lower_upperSemicontinuousWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (ContinuousWithinAt.{u1, u2} α γ _inst_1 _inst_4 f s x) (And (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (ContinuousWithinAt.{u2, u1} α γ _inst_1 _inst_4 f s x) (And (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x) (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x))
-Case conversion may be inaccurate. Consider using '#align continuous_within_at_iff_lower_upper_semicontinuous_within_at continuousWithinAt_iff_lower_upperSemicontinuousWithinAtₓ'. -/
 theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ} :
     ContinuousWithinAt f s x ↔
       LowerSemicontinuousWithinAt f s x ∧ UpperSemicontinuousWithinAt f s x :=
@@ -1907,24 +1145,12 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
       exact mem_of_mem_nhds hv
 #align continuous_within_at_iff_lower_upper_semicontinuous_within_at continuousWithinAt_iff_lower_upperSemicontinuousWithinAt
 
-/- warning: continuous_at_iff_lower_upper_semicontinuous_at -> continuousAt_iff_lower_upperSemicontinuousAt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (ContinuousAt.{u1, u2} α γ _inst_1 _inst_4 f x) (And (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (ContinuousAt.{u2, u1} α γ _inst_1 _inst_4 f x) (And (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x) (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x))
-Case conversion may be inaccurate. Consider using '#align continuous_at_iff_lower_upper_semicontinuous_at continuousAt_iff_lower_upperSemicontinuousAtₓ'. -/
 theorem continuousAt_iff_lower_upperSemicontinuousAt {f : α → γ} :
     ContinuousAt f x ↔ LowerSemicontinuousAt f x ∧ UpperSemicontinuousAt f x := by
   simp_rw [← continuousWithinAt_univ, ← lowerSemicontinuousWithinAt_univ_iff, ←
     upperSemicontinuousWithinAt_univ_iff, continuousWithinAt_iff_lower_upperSemicontinuousWithinAt]
 #align continuous_at_iff_lower_upper_semicontinuous_at continuousAt_iff_lower_upperSemicontinuousAt
 
-/- warning: continuous_on_iff_lower_upper_semicontinuous_on -> continuousOn_iff_lower_upperSemicontinuousOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (ContinuousOn.{u1, u2} α γ _inst_1 _inst_4 f s) (And (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (ContinuousOn.{u2, u1} α γ _inst_1 _inst_4 f s) (And (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s) (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s))
-Case conversion may be inaccurate. Consider using '#align continuous_on_iff_lower_upper_semicontinuous_on continuousOn_iff_lower_upperSemicontinuousOnₓ'. -/
 theorem continuousOn_iff_lower_upperSemicontinuousOn {f : α → γ} :
     ContinuousOn f s ↔ LowerSemicontinuousOn f s ∧ UpperSemicontinuousOn f s :=
   by
@@ -1933,12 +1159,6 @@ theorem continuousOn_iff_lower_upperSemicontinuousOn {f : α → γ} :
     ⟨fun H => ⟨fun x hx => (H x hx).1, fun x hx => (H x hx).2⟩, fun H x hx => ⟨H.1 x hx, H.2 x hx⟩⟩
 #align continuous_on_iff_lower_upper_semicontinuous_on continuousOn_iff_lower_upperSemicontinuousOn
 
-/- warning: continuous_iff_lower_upper_semicontinuous -> continuous_iff_lower_upperSemicontinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (Continuous.{u1, u2} α γ _inst_1 _inst_4 f) (And (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (Continuous.{u2, u1} α γ _inst_1 _inst_4 f) (And (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f))
-Case conversion may be inaccurate. Consider using '#align continuous_iff_lower_upper_semicontinuous continuous_iff_lower_upperSemicontinuousₓ'. -/
 theorem continuous_iff_lower_upperSemicontinuous {f : α → γ} :
     Continuous f ↔ LowerSemicontinuous f ∧ UpperSemicontinuous f := by
   simp_rw [continuous_iff_continuousOn_univ, continuousOn_iff_lower_upperSemicontinuousOn,
Diff
@@ -655,16 +655,12 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       filter_upwards [hf z₁ z₁lt, hg z₂ z₂lt]with z h₁z h₂z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
-        · simp [H]
-          exact h₁ ⟨h₁z, H⟩
-        · simp [le_of_not_le H]
-          exact h₁ ⟨z₁lt, le_rfl⟩
+        · simp [H]; exact h₁ ⟨h₁z, H⟩
+        · simp [le_of_not_le H]; exact h₁ ⟨z₁lt, le_rfl⟩
       have A2 : min (g z) (g x) ∈ v := by
         by_cases H : g z ≤ g x
-        · simp [H]
-          exact h₂ ⟨h₂z, H⟩
-        · simp [le_of_not_le H]
-          exact h₂ ⟨z₂lt, le_rfl⟩
+        · simp [H]; exact h₂ ⟨h₂z, H⟩
+        · simp [le_of_not_le H]; exact h₂ ⟨z₂lt, le_rfl⟩
       have : (min (f z) (f x), min (g z) (g x)) ∈ u ×ˢ v := ⟨A1, A2⟩
       calc
         y < min (f z) (f x) + min (g z) (g x) := h this
@@ -674,10 +670,8 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       filter_upwards [hf z₁ z₁lt]with z h₁z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
-        · simp [H]
-          exact h₁ ⟨h₁z, H⟩
-        · simp [le_of_not_le H]
-          exact h₁ ⟨z₁lt, le_rfl⟩
+        · simp [H]; exact h₁ ⟨h₁z, H⟩
+        · simp [le_of_not_le H]; exact h₁ ⟨z₁lt, le_rfl⟩
       have : (min (f z) (f x), g x) ∈ u ×ˢ v := ⟨A1, xv⟩
       calc
         y < min (f z) (f x) + g x := h this
@@ -690,10 +684,8 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       filter_upwards [hg z₂ z₂lt]with z h₂z
       have A2 : min (g z) (g x) ∈ v := by
         by_cases H : g z ≤ g x
-        · simp [H]
-          exact h₂ ⟨h₂z, H⟩
-        · simp [le_of_not_le H]
-          exact h₂ ⟨z₂lt, le_rfl⟩
+        · simp [H]; exact h₂ ⟨h₂z, H⟩
+        · simp [le_of_not_le H]; exact h₂ ⟨z₂lt, le_rfl⟩
       have : (f x, min (g z) (g x)) ∈ u ×ˢ v := ⟨xu, A2⟩
       calc
         y < f x + min (g z) (g x) := h this
@@ -721,10 +713,8 @@ the lemma uses `[has_continuous_add]`. -/
 theorem LowerSemicontinuousAt.add' {f g : α → γ} (hf : LowerSemicontinuousAt f x)
     (hg : LowerSemicontinuousAt g x)
     (hcont : ContinuousAt (fun p : γ × γ => p.1 + p.2) (f x, g x)) :
-    LowerSemicontinuousAt (fun z => f z + g z) x :=
-  by
-  simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
-  exact hf.add' hg hcont
+    LowerSemicontinuousAt (fun z => f z + g z) x := by
+  simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *; exact hf.add' hg hcont
 #align lower_semicontinuous_at.add' LowerSemicontinuousAt.add'
 
 /- warning: lower_semicontinuous_on.add' -> LowerSemicontinuousOn.add' is a dubious translation:
@@ -1577,10 +1567,8 @@ the lemma uses `[has_continuous_add]`. -/
 theorem UpperSemicontinuousAt.add' {f g : α → γ} (hf : UpperSemicontinuousAt f x)
     (hg : UpperSemicontinuousAt g x)
     (hcont : ContinuousAt (fun p : γ × γ => p.1 + p.2) (f x, g x)) :
-    UpperSemicontinuousAt (fun z => f z + g z) x :=
-  by
-  simp_rw [← upperSemicontinuousWithinAt_univ_iff] at *
-  exact hf.add' hg hcont
+    UpperSemicontinuousAt (fun z => f z + g z) x := by
+  simp_rw [← upperSemicontinuousWithinAt_univ_iff] at *; exact hf.add' hg hcont
 #align upper_semicontinuous_at.add' UpperSemicontinuousAt.add'
 
 /- warning: upper_semicontinuous_on.add' -> UpperSemicontinuousOn.add' is a dubious translation:
Diff
@@ -298,7 +298,7 @@ variable [Zero β]
 
 /- warning: is_open.lower_semicontinuous_indicator -> IsOpen.lowerSemicontinuous_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
 Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_indicator IsOpen.lowerSemicontinuous_indicatorₓ'. -/
@@ -315,7 +315,7 @@ theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
 
 /- warning: is_open.lower_semicontinuous_on_indicator -> IsOpen.lowerSemicontinuousOn_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
 Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_on_indicator IsOpen.lowerSemicontinuousOn_indicatorₓ'. -/
@@ -326,7 +326,7 @@ theorem IsOpen.lowerSemicontinuousOn_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
 
 /- warning: is_open.lower_semicontinuous_at_indicator -> IsOpen.lowerSemicontinuousAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
 Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_at_indicator IsOpen.lowerSemicontinuousAt_indicatorₓ'. -/
@@ -337,7 +337,7 @@ theorem IsOpen.lowerSemicontinuousAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
 
 /- warning: is_open.lower_semicontinuous_within_at_indicator -> IsOpen.lowerSemicontinuousWithinAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
 Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_within_at_indicator IsOpen.lowerSemicontinuousWithinAt_indicatorₓ'. -/
@@ -348,7 +348,7 @@ theorem IsOpen.lowerSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : 0 ≤
 
 /- warning: is_closed.lower_semicontinuous_indicator -> IsClosed.lowerSemicontinuous_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
 Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_indicator IsClosed.lowerSemicontinuous_indicatorₓ'. -/
@@ -365,7 +365,7 @@ theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0)
 
 /- warning: is_closed.lower_semicontinuous_on_indicator -> IsClosed.lowerSemicontinuousOn_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
 Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_on_indicator IsClosed.lowerSemicontinuousOn_indicatorₓ'. -/
@@ -376,7 +376,7 @@ theorem IsClosed.lowerSemicontinuousOn_indicator (hs : IsClosed s) (hy : y ≤ 0
 
 /- warning: is_closed.lower_semicontinuous_at_indicator -> IsClosed.lowerSemicontinuousAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
 Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_at_indicator IsClosed.lowerSemicontinuousAt_indicatorₓ'. -/
@@ -387,7 +387,7 @@ theorem IsClosed.lowerSemicontinuousAt_indicator (hs : IsClosed s) (hy : y ≤ 0
 
 /- warning: is_closed.lower_semicontinuous_within_at_indicator -> IsClosed.lowerSemicontinuousWithinAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
 Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_within_at_indicator IsClosed.lowerSemicontinuousWithinAt_indicatorₓ'. -/
@@ -1250,7 +1250,7 @@ variable [Zero β]
 
 /- warning: is_open.upper_semicontinuous_indicator -> IsOpen.upperSemicontinuous_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
 Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_indicator IsOpen.upperSemicontinuous_indicatorₓ'. -/
@@ -1261,7 +1261,7 @@ theorem IsOpen.upperSemicontinuous_indicator (hs : IsOpen s) (hy : y ≤ 0) :
 
 /- warning: is_open.upper_semicontinuous_on_indicator -> IsOpen.upperSemicontinuousOn_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
 Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_on_indicator IsOpen.upperSemicontinuousOn_indicatorₓ'. -/
@@ -1272,7 +1272,7 @@ theorem IsOpen.upperSemicontinuousOn_indicator (hs : IsOpen s) (hy : y ≤ 0) :
 
 /- warning: is_open.upper_semicontinuous_at_indicator -> IsOpen.upperSemicontinuousAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
 Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_at_indicator IsOpen.upperSemicontinuousAt_indicatorₓ'. -/
@@ -1283,7 +1283,7 @@ theorem IsOpen.upperSemicontinuousAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
 
 /- warning: is_open.upper_semicontinuous_within_at_indicator -> IsOpen.upperSemicontinuousWithinAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
 Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_within_at_indicator IsOpen.upperSemicontinuousWithinAt_indicatorₓ'. -/
@@ -1294,7 +1294,7 @@ theorem IsOpen.upperSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : y ≤
 
 /- warning: is_closed.upper_semicontinuous_indicator -> IsClosed.upperSemicontinuous_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
 Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_indicator IsClosed.upperSemicontinuous_indicatorₓ'. -/
@@ -1305,7 +1305,7 @@ theorem IsClosed.upperSemicontinuous_indicator (hs : IsClosed s) (hy : 0 ≤ y)
 
 /- warning: is_closed.upper_semicontinuous_on_indicator -> IsClosed.upperSemicontinuousOn_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
 Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_on_indicator IsClosed.upperSemicontinuousOn_indicatorₓ'. -/
@@ -1316,7 +1316,7 @@ theorem IsClosed.upperSemicontinuousOn_indicator (hs : IsClosed s) (hy : 0 ≤ y
 
 /- warning: is_closed.upper_semicontinuous_at_indicator -> IsClosed.upperSemicontinuousAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
 Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_at_indicator IsClosed.upperSemicontinuousAt_indicatorₓ'. -/
@@ -1327,7 +1327,7 @@ theorem IsClosed.upperSemicontinuousAt_indicator (hs : IsClosed s) (hy : 0 ≤ y
 
 /- warning: is_closed.upper_semicontinuous_within_at_indicator -> IsClosed.upperSemicontinuousWithinAt_indicator is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
 Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_within_at_indicator IsClosed.upperSemicontinuousWithinAt_indicatorₓ'. -/
Diff
@@ -881,158 +881,158 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-/- warning: lower_semicontinuous_within_at_csupr -> lowerSemicontinuousWithinAt_csupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_within_at_csupr -> lowerSemicontinuousWithinAt_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupᵢₓ'. -/
-theorem lowerSemicontinuousWithinAt_csupᵢ {f : ι → α → δ'}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iSup.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSupₓ'. -/
+theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
   by
   cases isEmpty_or_nonempty ι
-  · simpa only [supᵢ_of_empty'] using lowerSemicontinuousWithinAt_const
+  · simpa only [iSup_of_empty'] using lowerSemicontinuousWithinAt_const
   · intro y hy
-    rcases exists_lt_of_lt_csupᵢ hy with ⟨i, hi⟩
-    filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_csupᵢ hy' i)
-#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupᵢ
+    rcases exists_lt_of_lt_ciSup hy with ⟨i, hi⟩
+    filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_ciSup hy' i)
+#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSup
 
-/- warning: lower_semicontinuous_within_at_supr -> lowerSemicontinuousWithinAt_supᵢ is a dubious translation:
+/- warning: lower_semicontinuous_within_at_supr -> lowerSemicontinuousWithinAt_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢₓ'. -/
-theorem lowerSemicontinuousWithinAt_supᵢ {f : ι → α → δ}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSupₓ'. -/
+theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
-  lowerSemicontinuousWithinAt_csupᵢ (by simp) h
-#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢ
+  lowerSemicontinuousWithinAt_ciSup (by simp) h
+#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSup
 
-/- warning: lower_semicontinuous_within_at_bsupr -> lowerSemicontinuousWithinAt_bsupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_within_at_bsupr -> lowerSemicontinuousWithinAt_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuousWithinAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ (i) (hi), f i hi x') s x :=
-  lowerSemicontinuousWithinAt_supᵢ fun i => lowerSemicontinuousWithinAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupᵢ
+  lowerSemicontinuousWithinAt_iSup fun i => lowerSemicontinuousWithinAt_iSup fun hi => h i hi
+#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_biSup
 
-/- warning: lower_semicontinuous_at_csupr -> lowerSemicontinuousAt_csupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_at_csupr -> lowerSemicontinuousAt_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupᵢₓ'. -/
-theorem lowerSemicontinuousAt_csupᵢ {f : ι → α → δ'}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iSup.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSupₓ'. -/
+theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
   rw [← nhdsWithin_univ] at bdd
-  exact lowerSemicontinuousWithinAt_csupᵢ bdd h
-#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupᵢ
+  exact lowerSemicontinuousWithinAt_ciSup bdd h
+#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSup
 
-/- warning: lower_semicontinuous_at_supr -> lowerSemicontinuousAt_supᵢ is a dubious translation:
+/- warning: lower_semicontinuous_at_supr -> lowerSemicontinuousAt_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢₓ'. -/
-theorem lowerSemicontinuousAt_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSupₓ'. -/
+theorem lowerSemicontinuousAt_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
-  lowerSemicontinuousAt_csupᵢ (by simp) h
-#align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢ
+  lowerSemicontinuousAt_ciSup (by simp) h
+#align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSup
 
-/- warning: lower_semicontinuous_at_bsupr -> lowerSemicontinuousAt_bsupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_at_bsupr -> lowerSemicontinuousAt_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuousAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
     LowerSemicontinuousAt (fun x' => ⨆ (i) (hi), f i hi x') x :=
-  lowerSemicontinuousAt_supᵢ fun i => lowerSemicontinuousAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupᵢ
+  lowerSemicontinuousAt_iSup fun i => lowerSemicontinuousAt_iSup fun hi => h i hi
+#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_biSup
 
-/- warning: lower_semicontinuous_on_csupr -> lowerSemicontinuousOn_csupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_on_csupr -> lowerSemicontinuousOn_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupᵢₓ'. -/
-theorem lowerSemicontinuousOn_csupᵢ {f : ι → α → δ'}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iSup.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_ciSupₓ'. -/
+theorem lowerSemicontinuousOn_ciSup {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
-  lowerSemicontinuousWithinAt_csupᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupᵢ
+  lowerSemicontinuousWithinAt_ciSup (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_ciSup
 
-/- warning: lower_semicontinuous_on_supr -> lowerSemicontinuousOn_supᵢ is a dubious translation:
+/- warning: lower_semicontinuous_on_supr -> lowerSemicontinuousOn_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢₓ'. -/
-theorem lowerSemicontinuousOn_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSupₓ'. -/
+theorem lowerSemicontinuousOn_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
-  lowerSemicontinuousOn_csupᵢ (by simp) h
-#align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢ
+  lowerSemicontinuousOn_ciSup (by simp) h
+#align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSup
 
-/- warning: lower_semicontinuous_on_bsupr -> lowerSemicontinuousOn_bsupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_on_bsupr -> lowerSemicontinuousOn_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuousOn_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
     LowerSemicontinuousOn (fun x' => ⨆ (i) (hi), f i hi x') s :=
-  lowerSemicontinuousOn_supᵢ fun i => lowerSemicontinuousOn_supᵢ fun hi => h i hi
-#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupᵢ
+  lowerSemicontinuousOn_iSup fun i => lowerSemicontinuousOn_iSup fun hi => h i hi
+#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_biSup
 
-/- warning: lower_semicontinuous_csupr -> lowerSemicontinuous_csupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_csupr -> lowerSemicontinuous_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toSupSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_csupr lowerSemicontinuous_csupᵢₓ'. -/
-theorem lowerSemicontinuous_csupᵢ {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iSup.{u3, u2} δ' (ConditionallyCompleteLattice.toSupSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_csupr lowerSemicontinuous_ciSupₓ'. -/
+theorem lowerSemicontinuous_ciSup {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
-  lowerSemicontinuousAt_csupᵢ (eventually_of_forall bdd) fun i => h i x
-#align lower_semicontinuous_csupr lowerSemicontinuous_csupᵢ
+  lowerSemicontinuousAt_ciSup (eventually_of_forall bdd) fun i => h i x
+#align lower_semicontinuous_csupr lowerSemicontinuous_ciSup
 
-/- warning: lower_semicontinuous_supr -> lowerSemicontinuous_supᵢ is a dubious translation:
+/- warning: lower_semicontinuous_supr -> lowerSemicontinuous_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_supr lowerSemicontinuous_supᵢₓ'. -/
-theorem lowerSemicontinuous_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_supr lowerSemicontinuous_iSupₓ'. -/
+theorem lowerSemicontinuous_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
-  lowerSemicontinuous_csupᵢ (by simp) h
-#align lower_semicontinuous_supr lowerSemicontinuous_supᵢ
+  lowerSemicontinuous_ciSup (by simp) h
+#align lower_semicontinuous_supr lowerSemicontinuous_iSup
 
-/- warning: lower_semicontinuous_bsupr -> lowerSemicontinuous_bsupᵢ is a dubious translation:
+/- warning: lower_semicontinuous_bsupr -> lowerSemicontinuous_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iSup.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iSup.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iSup.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iSup.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_bsupr lowerSemicontinuous_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuous_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuous_biSup {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
     LowerSemicontinuous fun x' => ⨆ (i) (hi), f i hi x' :=
-  lowerSemicontinuous_supᵢ fun i => lowerSemicontinuous_supᵢ fun hi => h i hi
-#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupᵢ
+  lowerSemicontinuous_iSup fun i => lowerSemicontinuous_iSup fun hi => h i hi
+#align lower_semicontinuous_bsupr lowerSemicontinuous_biSup
 
 end
 
@@ -1053,8 +1053,8 @@ theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ∑' i, f i x') s x :=
   by
-  simp_rw [ENNReal.tsum_eq_supᵢ_sum]
-  apply lowerSemicontinuousWithinAt_supᵢ fun b => _
+  simp_rw [ENNReal.tsum_eq_iSup_sum]
+  apply lowerSemicontinuousWithinAt_iSup fun b => _
   exact lowerSemicontinuousWithinAt_sum fun i hi => h i
 #align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsum
 
@@ -1731,149 +1731,149 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-/- warning: upper_semicontinuous_within_at_cinfi -> upperSemicontinuousWithinAt_cinfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_within_at_cinfi -> upperSemicontinuousWithinAt_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfᵢₓ'. -/
-theorem upperSemicontinuousWithinAt_cinfᵢ {f : ι → α → δ'}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iInf.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_ciInfₓ'. -/
+theorem upperSemicontinuousWithinAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
-  @lowerSemicontinuousWithinAt_csupᵢ α _ x s ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfᵢ
+  @lowerSemicontinuousWithinAt_ciSup α _ x s ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_ciInf
 
-/- warning: upper_semicontinuous_within_at_infi -> upperSemicontinuousWithinAt_infᵢ is a dubious translation:
+/- warning: upper_semicontinuous_within_at_infi -> upperSemicontinuousWithinAt_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢₓ'. -/
-theorem upperSemicontinuousWithinAt_infᵢ {f : ι → α → δ}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInfₓ'. -/
+theorem upperSemicontinuousWithinAt_iInf {f : ι → α → δ}
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
-  @lowerSemicontinuousWithinAt_supᵢ α _ x s ι δᵒᵈ _ f h
-#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢ
+  @lowerSemicontinuousWithinAt_iSup α _ x s ι δᵒᵈ _ f h
+#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInf
 
-/- warning: upper_semicontinuous_within_at_binfi -> upperSemicontinuousWithinAt_binfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_within_at_binfi -> upperSemicontinuousWithinAt_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuousWithinAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ (i) (hi), f i hi x') s x :=
-  upperSemicontinuousWithinAt_infᵢ fun i => upperSemicontinuousWithinAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfᵢ
+  upperSemicontinuousWithinAt_iInf fun i => upperSemicontinuousWithinAt_iInf fun hi => h i hi
+#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_biInf
 
-/- warning: upper_semicontinuous_at_cinfi -> upperSemicontinuousAt_cinfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_at_cinfi -> upperSemicontinuousAt_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfᵢₓ'. -/
-theorem upperSemicontinuousAt_cinfᵢ {f : ι → α → δ'}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iInf.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_ciInfₓ'. -/
+theorem upperSemicontinuousAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
-  @lowerSemicontinuousAt_csupᵢ α _ x ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfᵢ
+  @lowerSemicontinuousAt_ciSup α _ x ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_ciInf
 
-/- warning: upper_semicontinuous_at_infi -> upperSemicontinuousAt_infᵢ is a dubious translation:
+/- warning: upper_semicontinuous_at_infi -> upperSemicontinuousAt_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢₓ'. -/
-theorem upperSemicontinuousAt_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_infi upperSemicontinuousAt_iInfₓ'. -/
+theorem upperSemicontinuousAt_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
-  @lowerSemicontinuousAt_supᵢ α _ x ι δᵒᵈ _ f h
-#align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢ
+  @lowerSemicontinuousAt_iSup α _ x ι δᵒᵈ _ f h
+#align upper_semicontinuous_at_infi upperSemicontinuousAt_iInf
 
-/- warning: upper_semicontinuous_at_binfi -> upperSemicontinuousAt_binfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_at_binfi -> upperSemicontinuousAt_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_binfi upperSemicontinuousAt_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuousAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
     UpperSemicontinuousAt (fun x' => ⨅ (i) (hi), f i hi x') x :=
-  upperSemicontinuousAt_infᵢ fun i => upperSemicontinuousAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfᵢ
+  upperSemicontinuousAt_iInf fun i => upperSemicontinuousAt_iInf fun hi => h i hi
+#align upper_semicontinuous_at_binfi upperSemicontinuousAt_biInf
 
-/- warning: upper_semicontinuous_on_cinfi -> upperSemicontinuousOn_cinfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_on_cinfi -> upperSemicontinuousOn_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfᵢₓ'. -/
-theorem upperSemicontinuousOn_cinfᵢ {f : ι → α → δ'}
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => iInf.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_ciInfₓ'. -/
+theorem upperSemicontinuousOn_ciInf {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
-  upperSemicontinuousWithinAt_cinfᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfᵢ
+  upperSemicontinuousWithinAt_ciInf (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_ciInf
 
-/- warning: upper_semicontinuous_on_infi -> upperSemicontinuousOn_infᵢ is a dubious translation:
+/- warning: upper_semicontinuous_on_infi -> upperSemicontinuousOn_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢₓ'. -/
-theorem upperSemicontinuousOn_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_infi upperSemicontinuousOn_iInfₓ'. -/
+theorem upperSemicontinuousOn_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
-  upperSemicontinuousWithinAt_infᵢ fun i => h i x hx
-#align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢ
+  upperSemicontinuousWithinAt_iInf fun i => h i x hx
+#align upper_semicontinuous_on_infi upperSemicontinuousOn_iInf
 
-/- warning: upper_semicontinuous_on_binfi -> upperSemicontinuousOn_binfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_on_binfi -> upperSemicontinuousOn_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_binfi upperSemicontinuousOn_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuousOn_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
     UpperSemicontinuousOn (fun x' => ⨅ (i) (hi), f i hi x') s :=
-  upperSemicontinuousOn_infᵢ fun i => upperSemicontinuousOn_infᵢ fun hi => h i hi
-#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfᵢ
+  upperSemicontinuousOn_iInf fun i => upperSemicontinuousOn_iInf fun hi => h i hi
+#align upper_semicontinuous_on_binfi upperSemicontinuousOn_biInf
 
-/- warning: upper_semicontinuous_cinfi -> upperSemicontinuous_cinfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_cinfi -> upperSemicontinuous_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toInfSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_cinfi upperSemicontinuous_cinfᵢₓ'. -/
-theorem upperSemicontinuous_cinfᵢ {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => iInf.{u3, u2} δ' (ConditionallyCompleteLattice.toInfSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_cinfi upperSemicontinuous_ciInfₓ'. -/
+theorem upperSemicontinuous_ciInf {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
-  upperSemicontinuousAt_cinfᵢ (eventually_of_forall bdd) fun i => h i x
-#align upper_semicontinuous_cinfi upperSemicontinuous_cinfᵢ
+  upperSemicontinuousAt_ciInf (eventually_of_forall bdd) fun i => h i x
+#align upper_semicontinuous_cinfi upperSemicontinuous_ciInf
 
-/- warning: upper_semicontinuous_infi -> upperSemicontinuous_infᵢ is a dubious translation:
+/- warning: upper_semicontinuous_infi -> upperSemicontinuous_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_infi upperSemicontinuous_infᵢₓ'. -/
-theorem upperSemicontinuous_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
-    UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_infᵢ fun i => h i x
-#align upper_semicontinuous_infi upperSemicontinuous_infᵢ
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_infi upperSemicontinuous_iInfₓ'. -/
+theorem upperSemicontinuous_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
+    UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_iInf fun i => h i x
+#align upper_semicontinuous_infi upperSemicontinuous_iInf
 
-/- warning: upper_semicontinuous_binfi -> upperSemicontinuous_binfᵢ is a dubious translation:
+/- warning: upper_semicontinuous_binfi -> upperSemicontinuous_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => iInf.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => iInf.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_binfi upperSemicontinuous_binfᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => iInf.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => iInf.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_binfi upperSemicontinuous_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuous_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuous_biInf {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
     UpperSemicontinuous fun x' => ⨅ (i) (hi), f i hi x' :=
-  upperSemicontinuous_infᵢ fun i => upperSemicontinuous_infᵢ fun hi => h i hi
-#align upper_semicontinuous_binfi upperSemicontinuous_binfᵢ
+  upperSemicontinuous_iInf fun i => upperSemicontinuous_iInf fun hi => h i hi
+#align upper_semicontinuous_binfi upperSemicontinuous_biInf
 
 end
 
Diff
@@ -881,13 +881,13 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-/- warning: lower_semicontinuous_within_at_csupr -> lowerSemicontinuousWithinAt_csupr is a dubious translation:
+/- warning: lower_semicontinuous_within_at_csupr -> lowerSemicontinuousWithinAt_csupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csuprₓ'. -/
-theorem lowerSemicontinuousWithinAt_csupr {f : ι → α → δ'}
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupᵢₓ'. -/
+theorem lowerSemicontinuousWithinAt_csupᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
@@ -897,7 +897,7 @@ theorem lowerSemicontinuousWithinAt_csupr {f : ι → α → δ'}
   · intro y hy
     rcases exists_lt_of_lt_csupᵢ hy with ⟨i, hi⟩
     filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_csupᵢ hy' i)
-#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupr
+#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupᵢ
 
 /- warning: lower_semicontinuous_within_at_supr -> lowerSemicontinuousWithinAt_supᵢ is a dubious translation:
 lean 3 declaration is
@@ -908,36 +908,36 @@ Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_w
 theorem lowerSemicontinuousWithinAt_supᵢ {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
-  lowerSemicontinuousWithinAt_csupr (by simp) h
+  lowerSemicontinuousWithinAt_csupᵢ (by simp) h
 #align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢ
 
-/- warning: lower_semicontinuous_within_at_bsupr -> lowerSemicontinuousWithinAt_bsupr is a dubious translation:
+/- warning: lower_semicontinuous_within_at_bsupr -> lowerSemicontinuousWithinAt_bsupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsuprₓ'. -/
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuousWithinAt_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuousWithinAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ (i) (hi), f i hi x') s x :=
   lowerSemicontinuousWithinAt_supᵢ fun i => lowerSemicontinuousWithinAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupr
+#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupᵢ
 
-/- warning: lower_semicontinuous_at_csupr -> lowerSemicontinuousAt_csupr is a dubious translation:
+/- warning: lower_semicontinuous_at_csupr -> lowerSemicontinuousAt_csupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csuprₓ'. -/
-theorem lowerSemicontinuousAt_csupr {f : ι → α → δ'}
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupᵢₓ'. -/
+theorem lowerSemicontinuousAt_csupᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
   rw [← nhdsWithin_univ] at bdd
-  exact lowerSemicontinuousWithinAt_csupr bdd h
-#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupr
+  exact lowerSemicontinuousWithinAt_csupᵢ bdd h
+#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupᵢ
 
 /- warning: lower_semicontinuous_at_supr -> lowerSemicontinuousAt_supᵢ is a dubious translation:
 lean 3 declaration is
@@ -947,33 +947,33 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢₓ'. -/
 theorem lowerSemicontinuousAt_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
-  lowerSemicontinuousAt_csupr (by simp) h
+  lowerSemicontinuousAt_csupᵢ (by simp) h
 #align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢ
 
-/- warning: lower_semicontinuous_at_bsupr -> lowerSemicontinuousAt_bsupr is a dubious translation:
+/- warning: lower_semicontinuous_at_bsupr -> lowerSemicontinuousAt_bsupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsuprₓ'. -/
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuousAt_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuousAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
     LowerSemicontinuousAt (fun x' => ⨆ (i) (hi), f i hi x') x :=
   lowerSemicontinuousAt_supᵢ fun i => lowerSemicontinuousAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupr
+#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupᵢ
 
-/- warning: lower_semicontinuous_on_csupr -> lowerSemicontinuousOn_csupr is a dubious translation:
+/- warning: lower_semicontinuous_on_csupr -> lowerSemicontinuousOn_csupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csuprₓ'. -/
-theorem lowerSemicontinuousOn_csupr {f : ι → α → δ'}
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupᵢₓ'. -/
+theorem lowerSemicontinuousOn_csupᵢ {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
-  lowerSemicontinuousWithinAt_csupr (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupr
+  lowerSemicontinuousWithinAt_csupᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupᵢ
 
 /- warning: lower_semicontinuous_on_supr -> lowerSemicontinuousOn_supᵢ is a dubious translation:
 lean 3 declaration is
@@ -983,32 +983,32 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢₓ'. -/
 theorem lowerSemicontinuousOn_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
-  lowerSemicontinuousOn_csupr (by simp) h
+  lowerSemicontinuousOn_csupᵢ (by simp) h
 #align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢ
 
-/- warning: lower_semicontinuous_on_bsupr -> lowerSemicontinuousOn_bsupr is a dubious translation:
+/- warning: lower_semicontinuous_on_bsupr -> lowerSemicontinuousOn_bsupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsuprₓ'. -/
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuousOn_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuousOn_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
     LowerSemicontinuousOn (fun x' => ⨆ (i) (hi), f i hi x') s :=
   lowerSemicontinuousOn_supᵢ fun i => lowerSemicontinuousOn_supᵢ fun hi => h i hi
-#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupr
+#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupᵢ
 
-/- warning: lower_semicontinuous_csupr -> lowerSemicontinuous_csupr is a dubious translation:
+/- warning: lower_semicontinuous_csupr -> lowerSemicontinuous_csupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toSupSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_csupr lowerSemicontinuous_csuprₓ'. -/
-theorem lowerSemicontinuous_csupr {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_csupr lowerSemicontinuous_csupᵢₓ'. -/
+theorem lowerSemicontinuous_csupᵢ {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
-  lowerSemicontinuousAt_csupr (eventually_of_forall bdd) fun i => h i x
-#align lower_semicontinuous_csupr lowerSemicontinuous_csupr
+  lowerSemicontinuousAt_csupᵢ (eventually_of_forall bdd) fun i => h i x
+#align lower_semicontinuous_csupr lowerSemicontinuous_csupᵢ
 
 /- warning: lower_semicontinuous_supr -> lowerSemicontinuous_supᵢ is a dubious translation:
 lean 3 declaration is
@@ -1018,21 +1018,21 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_supr lowerSemicontinuous_supᵢₓ'. -/
 theorem lowerSemicontinuous_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
-  lowerSemicontinuous_csupr (by simp) h
+  lowerSemicontinuous_csupᵢ (by simp) h
 #align lower_semicontinuous_supr lowerSemicontinuous_supᵢ
 
-/- warning: lower_semicontinuous_bsupr -> lowerSemicontinuous_bsupr is a dubious translation:
+/- warning: lower_semicontinuous_bsupr -> lowerSemicontinuous_bsupᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
-Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_bsupr lowerSemicontinuous_bsuprₓ'. -/
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem lowerSemicontinuous_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem lowerSemicontinuous_bsupᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
     LowerSemicontinuous fun x' => ⨆ (i) (hi), f i hi x' :=
   lowerSemicontinuous_supᵢ fun i => lowerSemicontinuous_supᵢ fun hi => h i hi
-#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupr
+#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupᵢ
 
 end
 
@@ -1731,18 +1731,18 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-/- warning: upper_semicontinuous_within_at_cinfi -> upperSemicontinuousWithinAt_cinfi is a dubious translation:
+/- warning: upper_semicontinuous_within_at_cinfi -> upperSemicontinuousWithinAt_cinfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfiₓ'. -/
-theorem upperSemicontinuousWithinAt_cinfi {f : ι → α → δ'}
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfᵢₓ'. -/
+theorem upperSemicontinuousWithinAt_cinfᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
-  @lowerSemicontinuousWithinAt_csupr α _ x s ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfi
+  @lowerSemicontinuousWithinAt_csupᵢ α _ x s ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfᵢ
 
 /- warning: upper_semicontinuous_within_at_infi -> upperSemicontinuousWithinAt_infᵢ is a dubious translation:
 lean 3 declaration is
@@ -1756,30 +1756,30 @@ theorem upperSemicontinuousWithinAt_infᵢ {f : ι → α → δ}
   @lowerSemicontinuousWithinAt_supᵢ α _ x s ι δᵒᵈ _ f h
 #align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢ
 
-/- warning: upper_semicontinuous_within_at_binfi -> upperSemicontinuousWithinAt_binfi is a dubious translation:
+/- warning: upper_semicontinuous_within_at_binfi -> upperSemicontinuousWithinAt_binfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfiₓ'. -/
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuousWithinAt_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuousWithinAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ (i) (hi), f i hi x') s x :=
   upperSemicontinuousWithinAt_infᵢ fun i => upperSemicontinuousWithinAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfi
+#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfᵢ
 
-/- warning: upper_semicontinuous_at_cinfi -> upperSemicontinuousAt_cinfi is a dubious translation:
+/- warning: upper_semicontinuous_at_cinfi -> upperSemicontinuousAt_cinfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfiₓ'. -/
-theorem upperSemicontinuousAt_cinfi {f : ι → α → δ'}
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfᵢₓ'. -/
+theorem upperSemicontinuousAt_cinfᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
-  @lowerSemicontinuousAt_csupr α _ x ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfi
+  @lowerSemicontinuousAt_csupᵢ α _ x ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfᵢ
 
 /- warning: upper_semicontinuous_at_infi -> upperSemicontinuousAt_infᵢ is a dubious translation:
 lean 3 declaration is
@@ -1792,30 +1792,30 @@ theorem upperSemicontinuousAt_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSem
   @lowerSemicontinuousAt_supᵢ α _ x ι δᵒᵈ _ f h
 #align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢ
 
-/- warning: upper_semicontinuous_at_binfi -> upperSemicontinuousAt_binfi is a dubious translation:
+/- warning: upper_semicontinuous_at_binfi -> upperSemicontinuousAt_binfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfiₓ'. -/
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuousAt_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuousAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
     UpperSemicontinuousAt (fun x' => ⨅ (i) (hi), f i hi x') x :=
   upperSemicontinuousAt_infᵢ fun i => upperSemicontinuousAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfi
+#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfᵢ
 
-/- warning: upper_semicontinuous_on_cinfi -> upperSemicontinuousOn_cinfi is a dubious translation:
+/- warning: upper_semicontinuous_on_cinfi -> upperSemicontinuousOn_cinfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfiₓ'. -/
-theorem upperSemicontinuousOn_cinfi {f : ι → α → δ'}
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfᵢₓ'. -/
+theorem upperSemicontinuousOn_cinfᵢ {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
-  upperSemicontinuousWithinAt_cinfi (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfi
+  upperSemicontinuousWithinAt_cinfᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfᵢ
 
 /- warning: upper_semicontinuous_on_infi -> upperSemicontinuousOn_infᵢ is a dubious translation:
 lean 3 declaration is
@@ -1828,29 +1828,29 @@ theorem upperSemicontinuousOn_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSem
   upperSemicontinuousWithinAt_infᵢ fun i => h i x hx
 #align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢ
 
-/- warning: upper_semicontinuous_on_binfi -> upperSemicontinuousOn_binfi is a dubious translation:
+/- warning: upper_semicontinuous_on_binfi -> upperSemicontinuousOn_binfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfiₓ'. -/
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuousOn_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuousOn_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
     UpperSemicontinuousOn (fun x' => ⨅ (i) (hi), f i hi x') s :=
   upperSemicontinuousOn_infᵢ fun i => upperSemicontinuousOn_infᵢ fun hi => h i hi
-#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfi
+#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfᵢ
 
-/- warning: upper_semicontinuous_cinfi -> upperSemicontinuous_cinfi is a dubious translation:
+/- warning: upper_semicontinuous_cinfi -> upperSemicontinuous_cinfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toInfSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_cinfi upperSemicontinuous_cinfiₓ'. -/
-theorem upperSemicontinuous_cinfi {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_cinfi upperSemicontinuous_cinfᵢₓ'. -/
+theorem upperSemicontinuous_cinfᵢ {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
-  upperSemicontinuousAt_cinfi (eventually_of_forall bdd) fun i => h i x
-#align upper_semicontinuous_cinfi upperSemicontinuous_cinfi
+  upperSemicontinuousAt_cinfᵢ (eventually_of_forall bdd) fun i => h i x
+#align upper_semicontinuous_cinfi upperSemicontinuous_cinfᵢ
 
 /- warning: upper_semicontinuous_infi -> upperSemicontinuous_infᵢ is a dubious translation:
 lean 3 declaration is
@@ -1862,18 +1862,18 @@ theorem upperSemicontinuous_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemic
     UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_infᵢ fun i => h i x
 #align upper_semicontinuous_infi upperSemicontinuous_infᵢ
 
-/- warning: upper_semicontinuous_binfi -> upperSemicontinuous_binfi is a dubious translation:
+/- warning: upper_semicontinuous_binfi -> upperSemicontinuous_binfᵢ is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
 but is expected to have type
   forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
-Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_binfi upperSemicontinuous_binfiₓ'. -/
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_binfi upperSemicontinuous_binfᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem upperSemicontinuous_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
+theorem upperSemicontinuous_binfᵢ {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
     UpperSemicontinuous fun x' => ⨅ (i) (hi), f i hi x' :=
   upperSemicontinuous_infᵢ fun i => upperSemicontinuous_infᵢ fun hi => h i hi
-#align upper_semicontinuous_binfi upperSemicontinuous_binfi
+#align upper_semicontinuous_binfi upperSemicontinuous_binfᵢ
 
 end
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 
 ! This file was ported from Lean 3 source module topology.semicontinuous
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 10bf4f825ad729c5653adc039dafa3622e7f93c9
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Topology.Instances.Ennreal
 /-!
 # Semicontinuous maps
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 A function `f` from a topological space `α` to an ordered space `β` is lower semicontinuous at a
 point `x` if, for any `y < f x`, for any `x'` close enough to `x`, one has `f x' > y`. In other
 words, `f` can jump up, but it can not jump down.
Diff
@@ -67,61 +67,77 @@ variable {α : Type _} [TopologicalSpace α] {β : Type _} [Preorder β] {f g :
 /-! ### Main definitions -/
 
 
+#print LowerSemicontinuousWithinAt /-
 /-- A real function `f` is lower semicontinuous at `x` within a set `s` if, for any `ε > 0`, for all
 `x'` close enough to `x` in  `s`, then `f x'` is at least `f x - ε`. We formulate this in a general
 preordered space, using an arbitrary `y < f x` instead of `f x - ε`. -/
 def LowerSemicontinuousWithinAt (f : α → β) (s : Set α) (x : α) :=
   ∀ y < f x, ∀ᶠ x' in 𝓝[s] x, y < f x'
 #align lower_semicontinuous_within_at LowerSemicontinuousWithinAt
+-/
 
+#print LowerSemicontinuousOn /-
 /-- A real function `f` is lower semicontinuous on a set `s` if, for any `ε > 0`, for any `x ∈ s`,
 for all `x'` close enough to `x` in `s`, then `f x'` is at least `f x - ε`. We formulate this in
 a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`.-/
 def LowerSemicontinuousOn (f : α → β) (s : Set α) :=
   ∀ x ∈ s, LowerSemicontinuousWithinAt f s x
 #align lower_semicontinuous_on LowerSemicontinuousOn
+-/
 
+#print LowerSemicontinuousAt /-
 /-- A real function `f` is lower semicontinuous at `x` if, for any `ε > 0`, for all `x'` close
 enough to `x`, then `f x'` is at least `f x - ε`. We formulate this in a general preordered space,
 using an arbitrary `y < f x` instead of `f x - ε`. -/
 def LowerSemicontinuousAt (f : α → β) (x : α) :=
   ∀ y < f x, ∀ᶠ x' in 𝓝 x, y < f x'
 #align lower_semicontinuous_at LowerSemicontinuousAt
+-/
 
+#print LowerSemicontinuous /-
 /-- A real function `f` is lower semicontinuous if, for any `ε > 0`, for any `x`, for all `x'` close
 enough to `x`, then `f x'` is at least `f x - ε`. We formulate this in a general preordered space,
 using an arbitrary `y < f x` instead of `f x - ε`. -/
 def LowerSemicontinuous (f : α → β) :=
   ∀ x, LowerSemicontinuousAt f x
 #align lower_semicontinuous LowerSemicontinuous
+-/
 
+#print UpperSemicontinuousWithinAt /-
 /-- A real function `f` is upper semicontinuous at `x` within a set `s` if, for any `ε > 0`, for all
 `x'` close enough to `x` in  `s`, then `f x'` is at most `f x + ε`. We formulate this in a general
 preordered space, using an arbitrary `y > f x` instead of `f x + ε`. -/
 def UpperSemicontinuousWithinAt (f : α → β) (s : Set α) (x : α) :=
   ∀ y, f x < y → ∀ᶠ x' in 𝓝[s] x, f x' < y
 #align upper_semicontinuous_within_at UpperSemicontinuousWithinAt
+-/
 
+#print UpperSemicontinuousOn /-
 /-- A real function `f` is upper semicontinuous on a set `s` if, for any `ε > 0`, for any `x ∈ s`,
 for all `x'` close enough to `x` in `s`, then `f x'` is at most `f x + ε`. We formulate this in a
 general preordered space, using an arbitrary `y > f x` instead of `f x + ε`.-/
 def UpperSemicontinuousOn (f : α → β) (s : Set α) :=
   ∀ x ∈ s, UpperSemicontinuousWithinAt f s x
 #align upper_semicontinuous_on UpperSemicontinuousOn
+-/
 
+#print UpperSemicontinuousAt /-
 /-- A real function `f` is upper semicontinuous at `x` if, for any `ε > 0`, for all `x'` close
 enough to `x`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered space,
 using an arbitrary `y > f x` instead of `f x + ε`. -/
 def UpperSemicontinuousAt (f : α → β) (x : α) :=
   ∀ y, f x < y → ∀ᶠ x' in 𝓝 x, f x' < y
 #align upper_semicontinuous_at UpperSemicontinuousAt
+-/
 
+#print UpperSemicontinuous /-
 /-- A real function `f` is upper semicontinuous if, for any `ε > 0`, for any `x`, for all `x'`
 close enough to `x`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered
 space, using an arbitrary `y > f x` instead of `f x + ε`.-/
 def UpperSemicontinuous (f : α → β) :=
   ∀ x, UpperSemicontinuousAt f x
 #align upper_semicontinuous UpperSemicontinuous
+-/
 
 /-!
 ### Lower semicontinuous functions
@@ -131,44 +147,98 @@ def UpperSemicontinuous (f : α → β) :=
 /-! #### Basic dot notation interface for lower semicontinuity -/
 
 
+/- warning: lower_semicontinuous_within_at.mono -> LowerSemicontinuousWithinAt.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α} {t : Set.{u1} α}, (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f t x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α} {t : Set.{u2} α}, (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f t x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at.mono LowerSemicontinuousWithinAt.monoₓ'. -/
 theorem LowerSemicontinuousWithinAt.mono (h : LowerSemicontinuousWithinAt f s x) (hst : t ⊆ s) :
     LowerSemicontinuousWithinAt f t x := fun y hy =>
   Filter.Eventually.filter_mono (nhdsWithin_mono _ hst) (h y hy)
 #align lower_semicontinuous_within_at.mono LowerSemicontinuousWithinAt.mono
 
+/- warning: lower_semicontinuous_within_at_univ_iff -> lowerSemicontinuousWithinAt_univ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α}, Iff (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α) x) (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α}, Iff (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α) x) (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_univ_iff lowerSemicontinuousWithinAt_univ_iffₓ'. -/
 theorem lowerSemicontinuousWithinAt_univ_iff :
     LowerSemicontinuousWithinAt f univ x ↔ LowerSemicontinuousAt f x := by
   simp [LowerSemicontinuousWithinAt, LowerSemicontinuousAt, nhdsWithin_univ]
 #align lower_semicontinuous_within_at_univ_iff lowerSemicontinuousWithinAt_univ_iff
 
+/- warning: lower_semicontinuous_at.lower_semicontinuous_within_at -> LowerSemicontinuousAt.lowerSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} (s : Set.{u1} α), (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} (s : Set.{u2} α), (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at.lower_semicontinuous_within_at LowerSemicontinuousAt.lowerSemicontinuousWithinAtₓ'. -/
 theorem LowerSemicontinuousAt.lowerSemicontinuousWithinAt (s : Set α)
     (h : LowerSemicontinuousAt f x) : LowerSemicontinuousWithinAt f s x := fun y hy =>
   Filter.Eventually.filter_mono nhdsWithin_le_nhds (h y hy)
 #align lower_semicontinuous_at.lower_semicontinuous_within_at LowerSemicontinuousAt.lowerSemicontinuousWithinAt
 
+/- warning: lower_semicontinuous_on.lower_semicontinuous_within_at -> LowerSemicontinuousOn.lowerSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.lower_semicontinuous_within_at LowerSemicontinuousOn.lowerSemicontinuousWithinAtₓ'. -/
 theorem LowerSemicontinuousOn.lowerSemicontinuousWithinAt (h : LowerSemicontinuousOn f s)
     (hx : x ∈ s) : LowerSemicontinuousWithinAt f s x :=
   h x hx
 #align lower_semicontinuous_on.lower_semicontinuous_within_at LowerSemicontinuousOn.lowerSemicontinuousWithinAt
 
+/- warning: lower_semicontinuous_on.mono -> LowerSemicontinuousOn.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {s : Set.{u1} α} {t : Set.{u1} α}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f t)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {s : Set.{u2} α} {t : Set.{u2} α}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f t)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.mono LowerSemicontinuousOn.monoₓ'. -/
 theorem LowerSemicontinuousOn.mono (h : LowerSemicontinuousOn f s) (hst : t ⊆ s) :
     LowerSemicontinuousOn f t := fun x hx => (h x (hst hx)).mono hst
 #align lower_semicontinuous_on.mono LowerSemicontinuousOn.mono
 
+/- warning: lower_semicontinuous_on_univ_iff -> lowerSemicontinuousOn_univ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α)) (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α)) (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_univ_iff lowerSemicontinuousOn_univ_iffₓ'. -/
 theorem lowerSemicontinuousOn_univ_iff : LowerSemicontinuousOn f univ ↔ LowerSemicontinuous f := by
   simp [LowerSemicontinuousOn, LowerSemicontinuous, lowerSemicontinuousWithinAt_univ_iff]
 #align lower_semicontinuous_on_univ_iff lowerSemicontinuousOn_univ_iff
 
+/- warning: lower_semicontinuous.lower_semicontinuous_at -> LowerSemicontinuous.lowerSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (x : α), LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (x : α), LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.lower_semicontinuous_at LowerSemicontinuous.lowerSemicontinuousAtₓ'. -/
 theorem LowerSemicontinuous.lowerSemicontinuousAt (h : LowerSemicontinuous f) (x : α) :
     LowerSemicontinuousAt f x :=
   h x
 #align lower_semicontinuous.lower_semicontinuous_at LowerSemicontinuous.lowerSemicontinuousAt
 
+/- warning: lower_semicontinuous.lower_semicontinuous_within_at -> LowerSemicontinuous.lowerSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α) (x : α), LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α) (x : α), LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.lower_semicontinuous_within_at LowerSemicontinuous.lowerSemicontinuousWithinAtₓ'. -/
 theorem LowerSemicontinuous.lowerSemicontinuousWithinAt (h : LowerSemicontinuous f) (s : Set α)
     (x : α) : LowerSemicontinuousWithinAt f s x :=
   (h x).LowerSemicontinuousWithinAt s
 #align lower_semicontinuous.lower_semicontinuous_within_at LowerSemicontinuous.lowerSemicontinuousWithinAt
 
+/- warning: lower_semicontinuous.lower_semicontinuous_on -> LowerSemicontinuous.lowerSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α), LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α), LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.lower_semicontinuous_on LowerSemicontinuous.lowerSemicontinuousOnₓ'. -/
 theorem LowerSemicontinuous.lowerSemicontinuousOn (h : LowerSemicontinuous f) (s : Set α) :
     LowerSemicontinuousOn f s := fun x hx => h.LowerSemicontinuousWithinAt s x
 #align lower_semicontinuous.lower_semicontinuous_on LowerSemicontinuous.lowerSemicontinuousOn
@@ -176,18 +246,42 @@ theorem LowerSemicontinuous.lowerSemicontinuousOn (h : LowerSemicontinuous f) (s
 /-! #### Constants -/
 
 
+/- warning: lower_semicontinuous_within_at_const -> lowerSemicontinuousWithinAt_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {z : β}, LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s x
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {z : β}, LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s x
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_const lowerSemicontinuousWithinAt_constₓ'. -/
 theorem lowerSemicontinuousWithinAt_const : LowerSemicontinuousWithinAt (fun x => z) s x :=
   fun y hy => Filter.eventually_of_forall fun x => hy
 #align lower_semicontinuous_within_at_const lowerSemicontinuousWithinAt_const
 
+/- warning: lower_semicontinuous_at_const -> lowerSemicontinuousAt_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {z : β}, LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) x
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {z : β}, LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) x
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_const lowerSemicontinuousAt_constₓ'. -/
 theorem lowerSemicontinuousAt_const : LowerSemicontinuousAt (fun x => z) x := fun y hy =>
   Filter.eventually_of_forall fun x => hy
 #align lower_semicontinuous_at_const lowerSemicontinuousAt_const
 
+/- warning: lower_semicontinuous_on_const -> lowerSemicontinuousOn_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {z : β}, LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {z : β}, LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_const lowerSemicontinuousOn_constₓ'. -/
 theorem lowerSemicontinuousOn_const : LowerSemicontinuousOn (fun x => z) s := fun x hx =>
   lowerSemicontinuousWithinAt_const
 #align lower_semicontinuous_on_const lowerSemicontinuousOn_const
 
+/- warning: lower_semicontinuous_const -> lowerSemicontinuous_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {z : β}, LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {z : β}, LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_const lowerSemicontinuous_constₓ'. -/
 theorem lowerSemicontinuous_const : LowerSemicontinuous fun x : α => z := fun x =>
   lowerSemicontinuousAt_const
 #align lower_semicontinuous_const lowerSemicontinuous_const
@@ -199,6 +293,12 @@ section
 
 variable [Zero β]
 
+/- warning: is_open.lower_semicontinuous_indicator -> IsOpen.lowerSemicontinuous_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
+Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_indicator IsOpen.lowerSemicontinuous_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
@@ -210,21 +310,45 @@ theorem IsOpen.lowerSemicontinuous_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     by_cases h' : x' ∈ s <;> simp [h', hz.trans_le hy, hz]
 #align is_open.lower_semicontinuous_indicator IsOpen.lowerSemicontinuous_indicator
 
+/- warning: is_open.lower_semicontinuous_on_indicator -> IsOpen.lowerSemicontinuousOn_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
+Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_on_indicator IsOpen.lowerSemicontinuousOn_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuousOn_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousOn (indicator s fun x => y) t :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousOn t
 #align is_open.lower_semicontinuous_on_indicator IsOpen.lowerSemicontinuousOn_indicator
 
+/- warning: is_open.lower_semicontinuous_at_indicator -> IsOpen.lowerSemicontinuousAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
+Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_at_indicator IsOpen.lowerSemicontinuousAt_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuousAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousAt (indicator s fun x => y) x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousAt x
 #align is_open.lower_semicontinuous_at_indicator IsOpen.lowerSemicontinuousAt_indicator
 
+/- warning: is_open.lower_semicontinuous_within_at_indicator -> IsOpen.lowerSemicontinuousWithinAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
+Case conversion may be inaccurate. Consider using '#align is_open.lower_semicontinuous_within_at_indicator IsOpen.lowerSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsOpen.lowerSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : 0 ≤ y) :
     LowerSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousWithinAt t x
 #align is_open.lower_semicontinuous_within_at_indicator IsOpen.lowerSemicontinuousWithinAt_indicator
 
+/- warning: is_closed.lower_semicontinuous_indicator -> IsClosed.lowerSemicontinuous_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
+Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_indicator IsClosed.lowerSemicontinuous_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuous (indicator s fun x => y) :=
   by
@@ -236,16 +360,34 @@ theorem IsClosed.lowerSemicontinuous_indicator (hs : IsClosed s) (hy : y ≤ 0)
     simp (config := { contextual := true }) [hz]
 #align is_closed.lower_semicontinuous_indicator IsClosed.lowerSemicontinuous_indicator
 
+/- warning: is_closed.lower_semicontinuous_on_indicator -> IsClosed.lowerSemicontinuousOn_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
+Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_on_indicator IsClosed.lowerSemicontinuousOn_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuousOn_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousOn (indicator s fun x => y) t :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousOn t
 #align is_closed.lower_semicontinuous_on_indicator IsClosed.lowerSemicontinuousOn_indicator
 
+/- warning: is_closed.lower_semicontinuous_at_indicator -> IsClosed.lowerSemicontinuousAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
+Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_at_indicator IsClosed.lowerSemicontinuousAt_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuousAt_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousAt (indicator s fun x => y) x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousAt x
 #align is_closed.lower_semicontinuous_at_indicator IsClosed.lowerSemicontinuousAt_indicator
 
+/- warning: is_closed.lower_semicontinuous_within_at_indicator -> IsClosed.lowerSemicontinuousWithinAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
+Case conversion may be inaccurate. Consider using '#align is_closed.lower_semicontinuous_within_at_indicator IsClosed.lowerSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsClosed.lowerSemicontinuousWithinAt_indicator (hs : IsClosed s) (hy : y ≤ 0) :
     LowerSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.lowerSemicontinuous_indicator hy).LowerSemicontinuousWithinAt t x
@@ -256,12 +398,24 @@ end
 /-! #### Relationship with continuity -/
 
 
+/- warning: lower_semicontinuous_iff_is_open_preimage -> lowerSemicontinuous_iff_isOpen_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Ioi.{u2} β _inst_2 y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Ioi.{u1} β _inst_2 y)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_iff_is_open_preimage lowerSemicontinuous_iff_isOpen_preimageₓ'. -/
 theorem lowerSemicontinuous_iff_isOpen_preimage :
     LowerSemicontinuous f ↔ ∀ y, IsOpen (f ⁻¹' Ioi y) :=
   ⟨fun H y => isOpen_iff_mem_nhds.2 fun x hx => H x y hx, fun H x y y_lt =>
     IsOpen.mem_nhds (H y) y_lt⟩
 #align lower_semicontinuous_iff_is_open_preimage lowerSemicontinuous_iff_isOpen_preimage
 
+/- warning: lower_semicontinuous.is_open_preimage -> LowerSemicontinuous.isOpen_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (LowerSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Ioi.{u2} β _inst_2 y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (LowerSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Ioi.{u1} β _inst_2 y)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.is_open_preimage LowerSemicontinuous.isOpen_preimageₓ'. -/
 theorem LowerSemicontinuous.isOpen_preimage (hf : LowerSemicontinuous f) (y : β) :
     IsOpen (f ⁻¹' Ioi y) :=
   lowerSemicontinuous_iff_isOpen_preimage.1 hf y
@@ -271,6 +425,12 @@ section
 
 variable {γ : Type _} [LinearOrder γ]
 
+/- warning: lower_semicontinuous_iff_is_closed_preimage -> lowerSemicontinuous_iff_isClosed_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, Iff (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Iic.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, Iff (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Iic.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_iff_is_closed_preimage lowerSemicontinuous_iff_isClosed_preimageₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
 theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     LowerSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Iic y) :=
@@ -281,6 +441,12 @@ theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Iic]
 #align lower_semicontinuous_iff_is_closed_preimage lowerSemicontinuous_iff_isClosed_preimage
 
+/- warning: lower_semicontinuous.is_closed_preimage -> LowerSemicontinuous.isClosed_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Iic.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) -> (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Iic.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.is_closed_preimage LowerSemicontinuous.isClosed_preimageₓ'. -/
 theorem LowerSemicontinuous.isClosed_preimage {f : α → γ} (hf : LowerSemicontinuous f) (y : γ) :
     IsClosed (f ⁻¹' Iic y) :=
   lowerSemicontinuous_iff_isClosed_preimage.1 hf y
@@ -288,18 +454,42 @@ theorem LowerSemicontinuous.isClosed_preimage {f : α → γ} (hf : LowerSemicon
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
+/- warning: continuous_within_at.lower_semicontinuous_within_at -> ContinuousWithinAt.lowerSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousWithinAt.{u1, u2} α γ _inst_1 _inst_4 f s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousWithinAt.{u2, u1} α γ _inst_1 _inst_4 f s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x)
+Case conversion may be inaccurate. Consider using '#align continuous_within_at.lower_semicontinuous_within_at ContinuousWithinAt.lowerSemicontinuousWithinAtₓ'. -/
 theorem ContinuousWithinAt.lowerSemicontinuousWithinAt {f : α → γ} (h : ContinuousWithinAt f s x) :
     LowerSemicontinuousWithinAt f s x := fun y hy => h (Ioi_mem_nhds hy)
 #align continuous_within_at.lower_semicontinuous_within_at ContinuousWithinAt.lowerSemicontinuousWithinAt
 
+/- warning: continuous_at.lower_semicontinuous_at -> ContinuousAt.lowerSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousAt.{u1, u2} α γ _inst_1 _inst_4 f x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousAt.{u2, u1} α γ _inst_1 _inst_4 f x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.lower_semicontinuous_at ContinuousAt.lowerSemicontinuousAtₓ'. -/
 theorem ContinuousAt.lowerSemicontinuousAt {f : α → γ} (h : ContinuousAt f x) :
     LowerSemicontinuousAt f x := fun y hy => h (Ioi_mem_nhds hy)
 #align continuous_at.lower_semicontinuous_at ContinuousAt.lowerSemicontinuousAt
 
+/- warning: continuous_on.lower_semicontinuous_on -> ContinuousOn.lowerSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousOn.{u1, u2} α γ _inst_1 _inst_4 f s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousOn.{u2, u1} α γ _inst_1 _inst_4 f s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s)
+Case conversion may be inaccurate. Consider using '#align continuous_on.lower_semicontinuous_on ContinuousOn.lowerSemicontinuousOnₓ'. -/
 theorem ContinuousOn.lowerSemicontinuousOn {f : α → γ} (h : ContinuousOn f s) :
     LowerSemicontinuousOn f s := fun x hx => (h x hx).LowerSemicontinuousWithinAt
 #align continuous_on.lower_semicontinuous_on ContinuousOn.lowerSemicontinuousOn
 
+/- warning: continuous.lower_semicontinuous -> Continuous.lowerSemicontinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (Continuous.{u1, u2} α γ _inst_1 _inst_4 f) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (Continuous.{u2, u1} α γ _inst_1 _inst_4 f) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f)
+Case conversion may be inaccurate. Consider using '#align continuous.lower_semicontinuous Continuous.lowerSemicontinuousₓ'. -/
 theorem Continuous.lowerSemicontinuous {f : α → γ} (h : Continuous f) : LowerSemicontinuous f :=
   fun x => h.ContinuousAt.LowerSemicontinuousAt
 #align continuous.lower_semicontinuous Continuous.lowerSemicontinuous
@@ -315,6 +505,12 @@ variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
+/- warning: continuous_at.comp_lower_semicontinuous_within_at -> ContinuousAt.comp_lowerSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAtₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x :=
@@ -332,6 +528,12 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
     exact Filter.eventually_of_forall fun a => hy.trans_le (gmon (h (f a)))
 #align continuous_at.comp_lower_semicontinuous_within_at ContinuousAt.comp_lowerSemicontinuousWithinAt
 
+/- warning: continuous_at.comp_lower_semicontinuous_at -> ContinuousAt.comp_lowerSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAtₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : LowerSemicontinuousAt f x) (gmon : Monotone g) : LowerSemicontinuousAt (g ∘ f) x :=
   by
@@ -339,33 +541,69 @@ theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ}
   exact hg.comp_lower_semicontinuous_within_at hf gmon
 #align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAt
 
+/- warning: continuous.comp_lower_semicontinuous_on -> Continuous.comp_lowerSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
+Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous_on Continuous.comp_lowerSemicontinuousOnₓ'. -/
 theorem Continuous.comp_lowerSemicontinuousOn {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuousOn f s) (gmon : Monotone g) : LowerSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_lowerSemicontinuousWithinAt (hf x hx) gmon
 #align continuous.comp_lower_semicontinuous_on Continuous.comp_lowerSemicontinuousOn
 
+/- warning: continuous.comp_lower_semicontinuous -> Continuous.comp_lowerSemicontinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
+Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous Continuous.comp_lowerSemicontinuousₓ'. -/
 theorem Continuous.comp_lowerSemicontinuous {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuous f) (gmon : Monotone g) : LowerSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_lowerSemicontinuousAt (hf x) gmon
 #align continuous.comp_lower_semicontinuous Continuous.comp_lowerSemicontinuous
 
+/- warning: continuous_at.comp_lower_semicontinuous_within_at_antitone -> ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_within_at_antitone ContinuousAt.comp_lowerSemicontinuousWithinAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Antitone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_lowerSemicontinuousWithinAt α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_lower_semicontinuous_within_at_antitone ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone
 
+/- warning: continuous_at.comp_lower_semicontinuous_at_antitone -> ContinuousAt.comp_lowerSemicontinuousAt_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_lower_semicontinuous_at_antitone ContinuousAt.comp_lowerSemicontinuousAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_lowerSemicontinuousAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousAt f x) (gmon : Antitone g) :
     UpperSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_lowerSemicontinuousAt α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_lower_semicontinuous_at_antitone ContinuousAt.comp_lowerSemicontinuousAt_antitone
 
+/- warning: continuous.comp_lower_semicontinuous_on_antitone -> Continuous.comp_lowerSemicontinuousOn_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
+Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous_on_antitone Continuous.comp_lowerSemicontinuousOn_antitoneₓ'. -/
 theorem Continuous.comp_lowerSemicontinuousOn_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuousOn f s) (gmon : Antitone g) : UpperSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_lowerSemicontinuousWithinAt_antitone (hf x hx) gmon
 #align continuous.comp_lower_semicontinuous_on_antitone Continuous.comp_lowerSemicontinuousOn_antitone
 
+/- warning: continuous.comp_lower_semicontinuous_antitone -> Continuous.comp_lowerSemicontinuous_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
+Case conversion may be inaccurate. Consider using '#align continuous.comp_lower_semicontinuous_antitone Continuous.comp_lowerSemicontinuous_antitoneₓ'. -/
 theorem Continuous.comp_lowerSemicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : LowerSemicontinuous f) (gmon : Antitone g) : UpperSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_lowerSemicontinuousAt_antitone (hf x) gmon
@@ -381,6 +619,12 @@ section
 variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
+/- warning: lower_semicontinuous_within_at.add' -> LowerSemicontinuousWithinAt.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
@@ -462,6 +706,12 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         
 #align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'
 
+/- warning: lower_semicontinuous_at.add' -> LowerSemicontinuousAt.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at.add' LowerSemicontinuousAt.add'ₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -474,6 +724,12 @@ theorem LowerSemicontinuousAt.add' {f g : α → γ} (hf : LowerSemicontinuousAt
   exact hf.add' hg hcont
 #align lower_semicontinuous_at.add' LowerSemicontinuousAt.add'
 
+/- warning: lower_semicontinuous_on.add' -> LowerSemicontinuousOn.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x)))) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x)))) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.add' LowerSemicontinuousOn.add'ₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -484,6 +740,12 @@ theorem LowerSemicontinuousOn.add' {f g : α → γ} (hf : LowerSemicontinuousOn
   (hf x hx).add' (hg x hx) (hcont x hx)
 #align lower_semicontinuous_on.add' LowerSemicontinuousOn.add'
 
+/- warning: lower_semicontinuous.add' -> LowerSemicontinuous.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.add' LowerSemicontinuous.add'ₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -495,6 +757,12 @@ theorem LowerSemicontinuous.add' {f g : α → γ} (hf : LowerSemicontinuous f)
 
 variable [ContinuousAdd γ]
 
+/- warning: lower_semicontinuous_within_at.add -> LowerSemicontinuousWithinAt.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at.add LowerSemicontinuousWithinAt.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -504,6 +772,12 @@ theorem LowerSemicontinuousWithinAt.add {f g : α → γ} (hf : LowerSemicontinu
   hf.add' hg continuous_add.ContinuousAt
 #align lower_semicontinuous_within_at.add LowerSemicontinuousWithinAt.add
 
+/- warning: lower_semicontinuous_at.add -> LowerSemicontinuousAt.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at.add LowerSemicontinuousAt.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -512,6 +786,12 @@ theorem LowerSemicontinuousAt.add {f g : α → γ} (hf : LowerSemicontinuousAt
   hf.add' hg continuous_add.ContinuousAt
 #align lower_semicontinuous_at.add LowerSemicontinuousAt.add
 
+/- warning: lower_semicontinuous_on.add -> LowerSemicontinuousOn.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on.add LowerSemicontinuousOn.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -520,6 +800,12 @@ theorem LowerSemicontinuousOn.add {f g : α → γ} (hf : LowerSemicontinuousOn
   hf.add' hg fun x hx => continuous_add.ContinuousAt
 #align lower_semicontinuous_on.add LowerSemicontinuousOn.add
 
+/- warning: lower_semicontinuous.add -> LowerSemicontinuous.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous.add LowerSemicontinuous.addₓ'. -/
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -528,6 +814,12 @@ theorem LowerSemicontinuous.add {f g : α → γ} (hf : LowerSemicontinuous f)
   hf.add' hg fun x => continuous_add.ContinuousAt
 #align lower_semicontinuous.add LowerSemicontinuous.add
 
+/- warning: lower_semicontinuous_within_at_sum -> lowerSemicontinuousWithinAt_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s x)) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s x)) -> (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sumₓ'. -/
 theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x := by
@@ -540,6 +832,12 @@ theorem lowerSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
           (IH fun j ja => ha j (Finset.mem_insert_of_mem ja))
 #align lower_semicontinuous_within_at_sum lowerSemicontinuousWithinAt_sum
 
+/- warning: lower_semicontinuous_at_sum -> lowerSemicontinuousAt_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) x)) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) x)) -> (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_sum lowerSemicontinuousAt_sumₓ'. -/
 theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun z => ∑ i in a, f i z) x :=
@@ -548,12 +846,24 @@ theorem lowerSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
   exact lowerSemicontinuousWithinAt_sum ha
 #align lower_semicontinuous_at_sum lowerSemicontinuousAt_sum
 
+/- warning: lower_semicontinuous_on_sum -> lowerSemicontinuousOn_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s)) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s)) -> (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_sum lowerSemicontinuousOn_sumₓ'. -/
 theorem lowerSemicontinuousOn_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun z => ∑ i in a, f i z) s := fun x hx =>
   lowerSemicontinuousWithinAt_sum fun i hi => ha i hi x hx
 #align lower_semicontinuous_on_sum lowerSemicontinuousOn_sum
 
+/- warning: lower_semicontinuous_sum -> lowerSemicontinuous_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i))) -> (LowerSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i))) -> (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_sum lowerSemicontinuous_sumₓ'. -/
 theorem lowerSemicontinuous_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, LowerSemicontinuous (f i)) : LowerSemicontinuous fun z => ∑ i in a, f i z :=
   fun x => lowerSemicontinuousAt_sum fun i hi => ha i hi x
@@ -568,6 +878,12 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
+/- warning: lower_semicontinuous_within_at_csupr -> lowerSemicontinuousWithinAt_csupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csuprₓ'. -/
 theorem lowerSemicontinuousWithinAt_csupr {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
@@ -580,12 +896,24 @@ theorem lowerSemicontinuousWithinAt_csupr {f : ι → α → δ'}
     filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_csupᵢ hy' i)
 #align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupr
 
+/- warning: lower_semicontinuous_within_at_supr -> lowerSemicontinuousWithinAt_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢₓ'. -/
 theorem lowerSemicontinuousWithinAt_supᵢ {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
   lowerSemicontinuousWithinAt_csupr (by simp) h
 #align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢ
 
+/- warning: lower_semicontinuous_within_at_bsupr -> lowerSemicontinuousWithinAt_bsupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (LowerSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsuprₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuousWithinAt_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
@@ -593,6 +921,12 @@ theorem lowerSemicontinuousWithinAt_bsupr {p : ι → Prop} {f : ∀ (i) (h : p
   lowerSemicontinuousWithinAt_supᵢ fun i => lowerSemicontinuousWithinAt_supᵢ fun hi => h i hi
 #align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupr
 
+/- warning: lower_semicontinuous_at_csupr -> lowerSemicontinuousAt_csupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csuprₓ'. -/
 theorem lowerSemicontinuousAt_csupr {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
@@ -602,11 +936,23 @@ theorem lowerSemicontinuousAt_csupr {f : ι → α → δ'}
   exact lowerSemicontinuousWithinAt_csupr bdd h
 #align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupr
 
+/- warning: lower_semicontinuous_at_supr -> lowerSemicontinuousAt_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢₓ'. -/
 theorem lowerSemicontinuousAt_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
   lowerSemicontinuousAt_csupr (by simp) h
 #align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢ
 
+/- warning: lower_semicontinuous_at_bsupr -> lowerSemicontinuousAt_bsupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (LowerSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsuprₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuousAt_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
@@ -614,17 +960,35 @@ theorem lowerSemicontinuousAt_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α
   lowerSemicontinuousAt_supᵢ fun i => lowerSemicontinuousAt_supᵢ fun hi => h i hi
 #align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupr
 
+/- warning: lower_semicontinuous_on_csupr -> lowerSemicontinuousOn_csupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddAbove.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toSupSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csuprₓ'. -/
 theorem lowerSemicontinuousOn_csupr {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
   lowerSemicontinuousWithinAt_csupr (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
 #align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupr
 
+/- warning: lower_semicontinuous_on_supr -> lowerSemicontinuousOn_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢₓ'. -/
 theorem lowerSemicontinuousOn_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
   lowerSemicontinuousOn_csupr (by simp) h
 #align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢ
 
+/- warning: lower_semicontinuous_on_bsupr -> lowerSemicontinuousOn_bsupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (LowerSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsuprₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuousOn_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
@@ -632,16 +996,34 @@ theorem lowerSemicontinuousOn_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α
   lowerSemicontinuousOn_supᵢ fun i => lowerSemicontinuousOn_supᵢ fun hi => h i hi
 #align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupr
 
+/- warning: lower_semicontinuous_csupr -> lowerSemicontinuous_csupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasSup.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddAbove.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => supᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toSupSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_csupr lowerSemicontinuous_csuprₓ'. -/
 theorem lowerSemicontinuous_csupr {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
   lowerSemicontinuousAt_csupr (eventually_of_forall bdd) fun i => h i x
 #align lower_semicontinuous_csupr lowerSemicontinuous_csupr
 
+/- warning: lower_semicontinuous_supr -> lowerSemicontinuous_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_supr lowerSemicontinuous_supᵢₓ'. -/
 theorem lowerSemicontinuous_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
   lowerSemicontinuous_csupr (by simp) h
 #align lower_semicontinuous_supr lowerSemicontinuous_supᵢ
 
+/- warning: lower_semicontinuous_bsupr -> lowerSemicontinuous_bsupr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => supᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => supᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasSup.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (LowerSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => supᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => supᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toSupSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_bsupr lowerSemicontinuous_bsuprₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem lowerSemicontinuous_bsupr {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
@@ -658,6 +1040,12 @@ section
 
 variable {ι : Type _}
 
+/- warning: lower_semicontinuous_within_at_tsum -> lowerSemicontinuousWithinAt_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousWithinAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousWithinAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i) s x) -> (LowerSemicontinuousWithinAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsumₓ'. -/
 theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ∑' i, f i x') s x :=
@@ -667,6 +1055,12 @@ theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
   exact lowerSemicontinuousWithinAt_sum fun i hi => h i
 #align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsum
 
+/- warning: lower_semicontinuous_at_tsum -> lowerSemicontinuousAt_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i) x) -> (LowerSemicontinuousAt.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i) x) -> (LowerSemicontinuousAt.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_at_tsum lowerSemicontinuousAt_tsumₓ'. -/
 theorem lowerSemicontinuousAt_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ∑' i, f i x') x :=
   by
@@ -674,11 +1068,23 @@ theorem lowerSemicontinuousAt_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, Lo
   exact lowerSemicontinuousWithinAt_tsum h
 #align lower_semicontinuous_at_tsum lowerSemicontinuousAt_tsum
 
+/- warning: lower_semicontinuous_on_tsum -> lowerSemicontinuousOn_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousOn.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i) s) -> (LowerSemicontinuousOn.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuousOn.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i) s) -> (LowerSemicontinuousOn.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_on_tsum lowerSemicontinuousOn_tsumₓ'. -/
 theorem lowerSemicontinuousOn_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ∑' i, f i x') s := fun x hx =>
   lowerSemicontinuousWithinAt_tsum fun i => h i x hx
 #align lower_semicontinuous_on_tsum lowerSemicontinuousOn_tsum
 
+/- warning: lower_semicontinuous_tsum -> lowerSemicontinuous_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuous.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (f i)) -> (LowerSemicontinuous.{u1, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedAddCommMonoid.toPartialOrder.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (x' : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => f i x')))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {ι : Type.{u1}} {f : ι -> α -> ENNReal}, (forall (i : ι), LowerSemicontinuous.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (f i)) -> (LowerSemicontinuous.{u2, 0} α _inst_1 ENNReal (PartialOrder.toPreorder.{0} ENNReal (OrderedSemiring.toPartialOrder.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (fun (x' : α) => tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align lower_semicontinuous_tsum lowerSemicontinuous_tsumₓ'. -/
 theorem lowerSemicontinuous_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ∑' i, f i x' := fun x => lowerSemicontinuousAt_tsum fun i => h i x
 #align lower_semicontinuous_tsum lowerSemicontinuous_tsum
@@ -693,44 +1099,98 @@ end
 /-! #### Basic dot notation interface for upper semicontinuity -/
 
 
+/- warning: upper_semicontinuous_within_at.mono -> UpperSemicontinuousWithinAt.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α} {t : Set.{u1} α}, (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f t x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α} {t : Set.{u2} α}, (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f t x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at.mono UpperSemicontinuousWithinAt.monoₓ'. -/
 theorem UpperSemicontinuousWithinAt.mono (h : UpperSemicontinuousWithinAt f s x) (hst : t ⊆ s) :
     UpperSemicontinuousWithinAt f t x := fun y hy =>
   Filter.Eventually.filter_mono (nhdsWithin_mono _ hst) (h y hy)
 #align upper_semicontinuous_within_at.mono UpperSemicontinuousWithinAt.mono
 
+/- warning: upper_semicontinuous_within_at_univ_iff -> upperSemicontinuousWithinAt_univ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α}, Iff (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α) x) (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α}, Iff (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α) x) (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_univ_iff upperSemicontinuousWithinAt_univ_iffₓ'. -/
 theorem upperSemicontinuousWithinAt_univ_iff :
     UpperSemicontinuousWithinAt f univ x ↔ UpperSemicontinuousAt f x := by
   simp [UpperSemicontinuousWithinAt, UpperSemicontinuousAt, nhdsWithin_univ]
 #align upper_semicontinuous_within_at_univ_iff upperSemicontinuousWithinAt_univ_iff
 
+/- warning: upper_semicontinuous_at.upper_semicontinuous_within_at -> UpperSemicontinuousAt.upperSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} (s : Set.{u1} α), (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} (s : Set.{u2} α), (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at.upper_semicontinuous_within_at UpperSemicontinuousAt.upperSemicontinuousWithinAtₓ'. -/
 theorem UpperSemicontinuousAt.upperSemicontinuousWithinAt (s : Set α)
     (h : UpperSemicontinuousAt f x) : UpperSemicontinuousWithinAt f s x := fun y hy =>
   Filter.Eventually.filter_mono nhdsWithin_le_nhds (h y hy)
 #align upper_semicontinuous_at.upper_semicontinuous_within_at UpperSemicontinuousAt.upperSemicontinuousWithinAt
 
+/- warning: upper_semicontinuous_on.upper_semicontinuous_within_at -> UpperSemicontinuousOn.upperSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {x : α} {s : Set.{u1} α}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {x : α} {s : Set.{u2} α}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.upper_semicontinuous_within_at UpperSemicontinuousOn.upperSemicontinuousWithinAtₓ'. -/
 theorem UpperSemicontinuousOn.upperSemicontinuousWithinAt (h : UpperSemicontinuousOn f s)
     (hx : x ∈ s) : UpperSemicontinuousWithinAt f s x :=
   h x hx
 #align upper_semicontinuous_on.upper_semicontinuous_within_at UpperSemicontinuousOn.upperSemicontinuousWithinAt
 
+/- warning: upper_semicontinuous_on.mono -> UpperSemicontinuousOn.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {s : Set.{u1} α} {t : Set.{u1} α}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f t)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {s : Set.{u2} α} {t : Set.{u2} α}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) t s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f t)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.mono UpperSemicontinuousOn.monoₓ'. -/
 theorem UpperSemicontinuousOn.mono (h : UpperSemicontinuousOn f s) (hst : t ⊆ s) :
     UpperSemicontinuousOn f t := fun x hx => (h x (hst hx)).mono hst
 #align upper_semicontinuous_on.mono UpperSemicontinuousOn.mono
 
+/- warning: upper_semicontinuous_on_univ_iff -> upperSemicontinuousOn_univ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f (Set.univ.{u1} α)) (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f (Set.univ.{u2} α)) (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_univ_iff upperSemicontinuousOn_univ_iffₓ'. -/
 theorem upperSemicontinuousOn_univ_iff : UpperSemicontinuousOn f univ ↔ UpperSemicontinuous f := by
   simp [UpperSemicontinuousOn, UpperSemicontinuous, upperSemicontinuousWithinAt_univ_iff]
 #align upper_semicontinuous_on_univ_iff upperSemicontinuousOn_univ_iff
 
+/- warning: upper_semicontinuous.upper_semicontinuous_at -> UpperSemicontinuous.upperSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (x : α), UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 f x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (x : α), UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 f x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.upper_semicontinuous_at UpperSemicontinuous.upperSemicontinuousAtₓ'. -/
 theorem UpperSemicontinuous.upperSemicontinuousAt (h : UpperSemicontinuous f) (x : α) :
     UpperSemicontinuousAt f x :=
   h x
 #align upper_semicontinuous.upper_semicontinuous_at UpperSemicontinuous.upperSemicontinuousAt
 
+/- warning: upper_semicontinuous.upper_semicontinuous_within_at -> UpperSemicontinuous.upperSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α) (x : α), UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α) (x : α), UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 f s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.upper_semicontinuous_within_at UpperSemicontinuous.upperSemicontinuousWithinAtₓ'. -/
 theorem UpperSemicontinuous.upperSemicontinuousWithinAt (h : UpperSemicontinuous f) (s : Set α)
     (x : α) : UpperSemicontinuousWithinAt f s x :=
   (h x).UpperSemicontinuousWithinAt s
 #align upper_semicontinuous.upper_semicontinuous_within_at UpperSemicontinuous.upperSemicontinuousWithinAt
 
+/- warning: upper_semicontinuous.upper_semicontinuous_on -> UpperSemicontinuous.upperSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u1} α), UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 f s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (s : Set.{u2} α), UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 f s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.upper_semicontinuous_on UpperSemicontinuous.upperSemicontinuousOnₓ'. -/
 theorem UpperSemicontinuous.upperSemicontinuousOn (h : UpperSemicontinuous f) (s : Set α) :
     UpperSemicontinuousOn f s := fun x hx => h.UpperSemicontinuousWithinAt s x
 #align upper_semicontinuous.upper_semicontinuous_on UpperSemicontinuous.upperSemicontinuousOn
@@ -738,18 +1198,42 @@ theorem UpperSemicontinuous.upperSemicontinuousOn (h : UpperSemicontinuous f) (s
 /-! #### Constants -/
 
 
+/- warning: upper_semicontinuous_within_at_const -> upperSemicontinuousWithinAt_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {z : β}, UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s x
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {z : β}, UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s x
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_const upperSemicontinuousWithinAt_constₓ'. -/
 theorem upperSemicontinuousWithinAt_const : UpperSemicontinuousWithinAt (fun x => z) s x :=
   fun y hy => Filter.eventually_of_forall fun x => hy
 #align upper_semicontinuous_within_at_const upperSemicontinuousWithinAt_const
 
+/- warning: upper_semicontinuous_at_const -> upperSemicontinuousAt_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {z : β}, UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) x
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {z : β}, UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) x
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_const upperSemicontinuousAt_constₓ'. -/
 theorem upperSemicontinuousAt_const : UpperSemicontinuousAt (fun x => z) x := fun y hy =>
   Filter.eventually_of_forall fun x => hy
 #align upper_semicontinuous_at_const upperSemicontinuousAt_const
 
+/- warning: upper_semicontinuous_on_const -> upperSemicontinuousOn_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {z : β}, UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z) s
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {z : β}, UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z) s
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_const upperSemicontinuousOn_constₓ'. -/
 theorem upperSemicontinuousOn_const : UpperSemicontinuousOn (fun x => z) s := fun x hx =>
   upperSemicontinuousWithinAt_const
 #align upper_semicontinuous_on_const upperSemicontinuousOn_const
 
+/- warning: upper_semicontinuous_const -> upperSemicontinuous_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {z : β}, UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (fun (x : α) => z)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {z : β}, UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (fun (x : α) => z)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_const upperSemicontinuous_constₓ'. -/
 theorem upperSemicontinuous_const : UpperSemicontinuous fun x : α => z := fun x =>
   upperSemicontinuousAt_const
 #align upper_semicontinuous_const upperSemicontinuous_const
@@ -761,41 +1245,89 @@ section
 
 variable [Zero β]
 
+/- warning: is_open.upper_semicontinuous_indicator -> IsOpen.upperSemicontinuous_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
+Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_indicator IsOpen.upperSemicontinuous_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuous_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuous (indicator s fun x => y) :=
   @IsOpen.lowerSemicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy
 #align is_open.upper_semicontinuous_indicator IsOpen.upperSemicontinuous_indicator
 
+/- warning: is_open.upper_semicontinuous_on_indicator -> IsOpen.upperSemicontinuousOn_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
+Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_on_indicator IsOpen.upperSemicontinuousOn_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuousOn_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousOn (indicator s fun x => y) t :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousOn t
 #align is_open.upper_semicontinuous_on_indicator IsOpen.upperSemicontinuousOn_indicator
 
+/- warning: is_open.upper_semicontinuous_at_indicator -> IsOpen.upperSemicontinuousAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
+Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_at_indicator IsOpen.upperSemicontinuousAt_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuousAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousAt (indicator s fun x => y) x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousAt x
 #align is_open.upper_semicontinuous_at_indicator IsOpen.upperSemicontinuousAt_indicator
 
+/- warning: is_open.upper_semicontinuous_within_at_indicator -> IsOpen.upperSemicontinuousWithinAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsOpen.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) y (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3)))) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsOpen.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) y (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3))) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
+Case conversion may be inaccurate. Consider using '#align is_open.upper_semicontinuous_within_at_indicator IsOpen.upperSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsOpen.upperSemicontinuousWithinAt_indicator (hs : IsOpen s) (hy : y ≤ 0) :
     UpperSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousWithinAt t x
 #align is_open.upper_semicontinuous_within_at_indicator IsOpen.upperSemicontinuousWithinAt_indicator
 
+/- warning: is_closed.upper_semicontinuous_indicator -> IsClosed.upperSemicontinuous_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)))
+Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_indicator IsClosed.upperSemicontinuous_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuous_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuous (indicator s fun x => y) :=
   @IsClosed.lowerSemicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy
 #align is_closed.upper_semicontinuous_indicator IsClosed.upperSemicontinuous_indicator
 
+/- warning: is_closed.upper_semicontinuous_on_indicator -> IsClosed.upperSemicontinuousOn_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t)
+Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_on_indicator IsClosed.upperSemicontinuousOn_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuousOn_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousOn (indicator s fun x => y) t :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousOn t
 #align is_closed.upper_semicontinuous_on_indicator IsClosed.upperSemicontinuousOn_indicator
 
+/- warning: is_closed.upper_semicontinuous_at_indicator -> IsClosed.upperSemicontinuousAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) x)
+Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_at_indicator IsClosed.upperSemicontinuousAt_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuousAt_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousAt (indicator s fun x => y) x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousAt x
 #align is_closed.upper_semicontinuous_at_indicator IsClosed.upperSemicontinuousAt_indicator
 
+/- warning: is_closed.upper_semicontinuous_within_at_indicator -> IsClosed.upperSemicontinuousWithinAt_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {x : α} {s : Set.{u1} α} {t : Set.{u1} α} {y : β} [_inst_3 : Zero.{u2} β], (IsClosed.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_3))) y) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 β _inst_2 (Set.indicator.{u1, u2} α β _inst_3 s (fun (x : α) => y)) t x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {x : α} {s : Set.{u2} α} {t : Set.{u2} α} {y : β} [_inst_3 : Zero.{u1} β], (IsClosed.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β _inst_3)) y) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 β _inst_2 (Set.indicator.{u2, u1} α β _inst_3 s (fun (x : α) => y)) t x)
+Case conversion may be inaccurate. Consider using '#align is_closed.upper_semicontinuous_within_at_indicator IsClosed.upperSemicontinuousWithinAt_indicatorₓ'. -/
 theorem IsClosed.upperSemicontinuousWithinAt_indicator (hs : IsClosed s) (hy : 0 ≤ y) :
     UpperSemicontinuousWithinAt (indicator s fun x => y) t x :=
   (hs.upperSemicontinuous_indicator hy).UpperSemicontinuousWithinAt t x
@@ -806,12 +1338,24 @@ end
 /-! #### Relationship with continuity -/
 
 
+/- warning: upper_semicontinuous_iff_is_open_preimage -> upperSemicontinuous_iff_isOpen_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, Iff (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Iio.{u2} β _inst_2 y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, Iff (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Iio.{u1} β _inst_2 y)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_iff_is_open_preimage upperSemicontinuous_iff_isOpen_preimageₓ'. -/
 theorem upperSemicontinuous_iff_isOpen_preimage :
     UpperSemicontinuous f ↔ ∀ y, IsOpen (f ⁻¹' Iio y) :=
   ⟨fun H y => isOpen_iff_mem_nhds.2 fun x hx => H x y hx, fun H x y y_lt =>
     IsOpen.mem_nhds (H y) y_lt⟩
 #align upper_semicontinuous_iff_is_open_preimage upperSemicontinuous_iff_isOpen_preimage
 
+/- warning: upper_semicontinuous.is_open_preimage -> UpperSemicontinuous.isOpen_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β}, (UpperSemicontinuous.{u1, u2} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u1} α _inst_1 (Set.preimage.{u1, u2} α β f (Set.Iio.{u2} β _inst_2 y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β}, (UpperSemicontinuous.{u2, u1} α _inst_1 β _inst_2 f) -> (forall (y : β), IsOpen.{u2} α _inst_1 (Set.preimage.{u2, u1} α β f (Set.Iio.{u1} β _inst_2 y)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.is_open_preimage UpperSemicontinuous.isOpen_preimageₓ'. -/
 theorem UpperSemicontinuous.isOpen_preimage (hf : UpperSemicontinuous f) (y : β) :
     IsOpen (f ⁻¹' Iio y) :=
   upperSemicontinuous_iff_isOpen_preimage.1 hf y
@@ -821,6 +1365,12 @@ section
 
 variable {γ : Type _} [LinearOrder γ]
 
+/- warning: upper_semicontinuous_iff_is_closed_preimage -> upperSemicontinuous_iff_isClosed_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, Iff (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Ici.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, Iff (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Ici.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_iff_is_closed_preimage upperSemicontinuous_iff_isClosed_preimageₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
 theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     UpperSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Ici y) :=
@@ -831,6 +1381,12 @@ theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Ici]
 #align upper_semicontinuous_iff_is_closed_preimage upperSemicontinuous_iff_isClosed_preimage
 
+/- warning: upper_semicontinuous.is_closed_preimage -> UpperSemicontinuous.isClosed_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] {f : α -> γ}, (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (forall (y : γ), IsClosed.{u1} α _inst_1 (Set.preimage.{u1, u2} α γ f (Set.Ici.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) y)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] {f : α -> γ}, (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) -> (forall (y : γ), IsClosed.{u2} α _inst_1 (Set.preimage.{u2, u1} α γ f (Set.Ici.{u1} γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) y)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.is_closed_preimage UpperSemicontinuous.isClosed_preimageₓ'. -/
 theorem UpperSemicontinuous.isClosed_preimage {f : α → γ} (hf : UpperSemicontinuous f) (y : γ) :
     IsClosed (f ⁻¹' Ici y) :=
   upperSemicontinuous_iff_isClosed_preimage.1 hf y
@@ -838,18 +1394,42 @@ theorem UpperSemicontinuous.isClosed_preimage {f : α → γ} (hf : UpperSemicon
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
+/- warning: continuous_within_at.upper_semicontinuous_within_at -> ContinuousWithinAt.upperSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousWithinAt.{u1, u2} α γ _inst_1 _inst_4 f s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousWithinAt.{u2, u1} α γ _inst_1 _inst_4 f s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x)
+Case conversion may be inaccurate. Consider using '#align continuous_within_at.upper_semicontinuous_within_at ContinuousWithinAt.upperSemicontinuousWithinAtₓ'. -/
 theorem ContinuousWithinAt.upperSemicontinuousWithinAt {f : α → γ} (h : ContinuousWithinAt f s x) :
     UpperSemicontinuousWithinAt f s x := fun y hy => h (Iio_mem_nhds hy)
 #align continuous_within_at.upper_semicontinuous_within_at ContinuousWithinAt.upperSemicontinuousWithinAt
 
+/- warning: continuous_at.upper_semicontinuous_at -> ContinuousAt.upperSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousAt.{u1, u2} α γ _inst_1 _inst_4 f x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousAt.{u2, u1} α γ _inst_1 _inst_4 f x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.upper_semicontinuous_at ContinuousAt.upperSemicontinuousAtₓ'. -/
 theorem ContinuousAt.upperSemicontinuousAt {f : α → γ} (h : ContinuousAt f x) :
     UpperSemicontinuousAt f x := fun y hy => h (Iio_mem_nhds hy)
 #align continuous_at.upper_semicontinuous_at ContinuousAt.upperSemicontinuousAt
 
+/- warning: continuous_on.upper_semicontinuous_on -> ContinuousOn.upperSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (ContinuousOn.{u1, u2} α γ _inst_1 _inst_4 f s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (ContinuousOn.{u2, u1} α γ _inst_1 _inst_4 f s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s)
+Case conversion may be inaccurate. Consider using '#align continuous_on.upper_semicontinuous_on ContinuousOn.upperSemicontinuousOnₓ'. -/
 theorem ContinuousOn.upperSemicontinuousOn {f : α → γ} (h : ContinuousOn f s) :
     UpperSemicontinuousOn f s := fun x hx => (h x hx).UpperSemicontinuousWithinAt
 #align continuous_on.upper_semicontinuous_on ContinuousOn.upperSemicontinuousOn
 
+/- warning: continuous.upper_semicontinuous -> Continuous.upperSemicontinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, (Continuous.{u1, u2} α γ _inst_1 _inst_4 f) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, (Continuous.{u2, u1} α γ _inst_1 _inst_4 f) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f)
+Case conversion may be inaccurate. Consider using '#align continuous.upper_semicontinuous Continuous.upperSemicontinuousₓ'. -/
 theorem Continuous.upperSemicontinuous {f : α → γ} (h : Continuous f) : UpperSemicontinuous f :=
   fun x => h.ContinuousAt.UpperSemicontinuousAt
 #align continuous.upper_semicontinuous Continuous.upperSemicontinuous
@@ -865,44 +1445,92 @@ variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
+/- warning: continuous_at.comp_upper_semicontinuous_within_at -> ContinuousAt.comp_upperSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_within_at ContinuousAt.comp_upperSemicontinuousWithinAtₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_lowerSemicontinuousWithinAt α _ x s γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual
 #align continuous_at.comp_upper_semicontinuous_within_at ContinuousAt.comp_upperSemicontinuousWithinAt
 
+/- warning: continuous_at.comp_upper_semicontinuous_at -> ContinuousAt.comp_upperSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_at ContinuousAt.comp_upperSemicontinuousAtₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : UpperSemicontinuousAt f x) (gmon : Monotone g) : UpperSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_lowerSemicontinuousAt α _ x γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual
 #align continuous_at.comp_upper_semicontinuous_at ContinuousAt.comp_upperSemicontinuousAt
 
+/- warning: continuous.comp_upper_semicontinuous_on -> Continuous.comp_upperSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
+Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous_on Continuous.comp_upperSemicontinuousOnₓ'. -/
 theorem Continuous.comp_upperSemicontinuousOn {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuousOn f s) (gmon : Monotone g) : UpperSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_upperSemicontinuousWithinAt (hf x hx) gmon
 #align continuous.comp_upper_semicontinuous_on Continuous.comp_upperSemicontinuousOn
 
+/- warning: continuous.comp_upper_semicontinuous -> Continuous.comp_upperSemicontinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Monotone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Monotone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
+Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous Continuous.comp_upperSemicontinuousₓ'. -/
 theorem Continuous.comp_upperSemicontinuous {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuous f) (gmon : Monotone g) : UpperSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_upperSemicontinuousAt (hf x) gmon
 #align continuous.comp_upper_semicontinuous Continuous.comp_upperSemicontinuous
 
+/- warning: continuous_at.comp_upper_semicontinuous_within_at_antitone -> ContinuousAt.comp_upperSemicontinuousWithinAt_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_within_at_antitone ContinuousAt.comp_upperSemicontinuousWithinAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Antitone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x :=
   @ContinuousAt.comp_upperSemicontinuousWithinAt α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_upper_semicontinuous_within_at_antitone ContinuousAt.comp_upperSemicontinuousWithinAt_antitone
 
+/- warning: continuous_at.comp_upper_semicontinuous_at_antitone -> ContinuousAt.comp_upperSemicontinuousAt_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u2, u3} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (ContinuousAt.{u3, u2} γ δ _inst_4 _inst_7 g (f x)) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f x) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousAt.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) x)
+Case conversion may be inaccurate. Consider using '#align continuous_at.comp_upper_semicontinuous_at_antitone ContinuousAt.comp_upperSemicontinuousAt_antitoneₓ'. -/
 theorem ContinuousAt.comp_upperSemicontinuousAt_antitone {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousAt f x) (gmon : Antitone g) :
     LowerSemicontinuousAt (g ∘ f) x :=
   @ContinuousAt.comp_upperSemicontinuousAt α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon
 #align continuous_at.comp_upper_semicontinuous_at_antitone ContinuousAt.comp_upperSemicontinuousAt_antitone
 
+/- warning: continuous.comp_upper_semicontinuous_on_antitone -> Continuous.comp_upperSemicontinuousOn_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f) s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f s) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuousOn.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f) s)
+Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous_on_antitone Continuous.comp_upperSemicontinuousOn_antitoneₓ'. -/
 theorem Continuous.comp_upperSemicontinuousOn_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuousOn f s) (gmon : Antitone g) : LowerSemicontinuousOn (g ∘ f) s :=
   fun x hx => hg.ContinuousAt.comp_upperSemicontinuousWithinAt_antitone (hf x hx) gmon
 #align continuous.comp_upper_semicontinuous_on_antitone Continuous.comp_upperSemicontinuousOn_antitone
 
+/- warning: continuous.comp_upper_semicontinuous_antitone -> Continuous.comp_upperSemicontinuous_antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {δ : Type.{u3}} [_inst_6 : LinearOrder.{u3} δ] [_inst_7 : TopologicalSpace.{u3} δ] [_inst_8 : OrderTopology.{u3} δ _inst_7 (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u2, u3} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) -> (Antitone.{u2, u3} γ δ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) g) -> (LowerSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ (LinearOrder.toLattice.{u3} δ _inst_6)))) (Function.comp.{succ u1, succ u2, succ u3} α γ δ g f))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u3}} [_inst_3 : LinearOrder.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3)))))] {δ : Type.{u2}} [_inst_6 : LinearOrder.{u2} δ] [_inst_7 : TopologicalSpace.{u2} δ] [_inst_8 : OrderTopology.{u2} δ _inst_7 (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6)))))] {g : γ -> δ} {f : α -> γ}, (Continuous.{u3, u2} γ δ _inst_4 _inst_7 g) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) f) -> (Antitone.{u3, u2} γ δ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (DistribLattice.toLattice.{u3} γ (instDistribLattice.{u3} γ _inst_3))))) (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) g) -> (LowerSemicontinuous.{u1, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (SemilatticeInf.toPartialOrder.{u2} δ (Lattice.toSemilatticeInf.{u2} δ (DistribLattice.toLattice.{u2} δ (instDistribLattice.{u2} δ _inst_6))))) (Function.comp.{succ u1, succ u3, succ u2} α γ δ g f))
+Case conversion may be inaccurate. Consider using '#align continuous.comp_upper_semicontinuous_antitone Continuous.comp_upperSemicontinuous_antitoneₓ'. -/
 theorem Continuous.comp_upperSemicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : Continuous g)
     (hf : UpperSemicontinuous f) (gmon : Antitone g) : LowerSemicontinuous (g ∘ f) := fun x =>
   hg.ContinuousAt.comp_upperSemicontinuousAt_antitone (hf x) gmon
@@ -918,6 +1546,12 @@ section
 variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
+/- warning: upper_semicontinuous_within_at.add' -> UpperSemicontinuousWithinAt.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at.add' UpperSemicontinuousWithinAt.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -928,6 +1562,12 @@ theorem UpperSemicontinuousWithinAt.add' {f g : α → γ} (hf : UpperSemicontin
   @LowerSemicontinuousWithinAt.add' α _ x s γᵒᵈ _ _ _ _ _ hf hg hcont
 #align upper_semicontinuous_within_at.add' UpperSemicontinuousWithinAt.add'
 
+/- warning: upper_semicontinuous_at.add' -> UpperSemicontinuousAt.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at.add' UpperSemicontinuousAt.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -940,6 +1580,12 @@ theorem UpperSemicontinuousAt.add' {f g : α → γ} (hf : UpperSemicontinuousAt
   exact hf.add' hg hcont
 #align upper_semicontinuous_at.add' UpperSemicontinuousAt.add'
 
+/- warning: upper_semicontinuous_on.add' -> UpperSemicontinuousOn.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x)))) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x)))) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.add' UpperSemicontinuousOn.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -950,6 +1596,12 @@ theorem UpperSemicontinuousOn.add' {f g : α → γ} (hf : UpperSemicontinuousOn
   (hf x hx).add' (hg x hx) (hcont x hx)
 #align upper_semicontinuous_on.add' UpperSemicontinuousOn.add'
 
+/- warning: upper_semicontinuous.add' -> UpperSemicontinuous.add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u2, u2} (Prod.{u2, u2} γ γ) γ (Prod.topologicalSpace.{u2, u2} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u2, u2} γ γ) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (Prod.fst.{u2, u2} γ γ p) (Prod.snd.{u2, u2} γ γ p)) (Prod.mk.{u2, u2} γ γ (f x) (g x))) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (forall (x : α), ContinuousAt.{u1, u1} (Prod.{u1, u1} γ γ) γ (instTopologicalSpaceProd.{u1, u1} γ γ _inst_4 _inst_4) _inst_4 (fun (p : Prod.{u1, u1} γ γ) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (Prod.fst.{u1, u1} γ γ p) (Prod.snd.{u1, u1} γ γ p)) (Prod.mk.{u1, u1} γ γ (f x) (g x))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.add' UpperSemicontinuous.add'ₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
 explicit continuity assumption on addition, for application to `ereal`. The unprimed version of
 the lemma uses `[has_continuous_add]`. -/
@@ -961,6 +1613,12 @@ theorem UpperSemicontinuous.add' {f g : α → γ} (hf : UpperSemicontinuous f)
 
 variable [ContinuousAdd γ]
 
+/- warning: upper_semicontinuous_within_at.add -> UpperSemicontinuousWithinAt.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s x) -> (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s x) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at.add UpperSemicontinuousWithinAt.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -970,6 +1628,12 @@ theorem UpperSemicontinuousWithinAt.add {f g : α → γ} (hf : UpperSemicontinu
   hf.add' hg continuous_add.ContinuousAt
 #align upper_semicontinuous_within_at.add UpperSemicontinuousWithinAt.add
 
+/- warning: upper_semicontinuous_at.add -> UpperSemicontinuousAt.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g x) -> (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g x) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at.add UpperSemicontinuousAt.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -978,6 +1642,12 @@ theorem UpperSemicontinuousAt.add {f g : α → γ} (hf : UpperSemicontinuousAt
   hf.add' hg continuous_add.ContinuousAt
 #align upper_semicontinuous_at.add UpperSemicontinuousAt.add
 
+/- warning: upper_semicontinuous_on.add -> UpperSemicontinuousOn.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g s) -> (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g s) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on.add UpperSemicontinuousOn.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -986,6 +1656,12 @@ theorem UpperSemicontinuousOn.add {f g : α → γ} (hf : UpperSemicontinuousOn
   hf.add' hg fun x hx => continuous_add.ContinuousAt
 #align upper_semicontinuous_on.add UpperSemicontinuousOn.add
 
+/- warning: upper_semicontinuous.add -> UpperSemicontinuous.add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrderedAddCommMonoid.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u2} γ _inst_4 (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) f) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) g) -> (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (OrderedAddCommMonoid.toPartialOrder.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u2, u2, u2} γ γ γ (instHAdd.{u2} γ (AddZeroClass.toHasAdd.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (OrderedAddCommMonoid.toAddCommMonoid.{u2} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u2} γ _inst_3)))))) (f z) (g z)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : α -> γ} {g : α -> γ}, (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) f) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) g) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => HAdd.hAdd.{u1, u1, u1} γ γ γ (instHAdd.{u1} γ (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))) (f z) (g z)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous.add UpperSemicontinuous.addₓ'. -/
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with
 `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on
 addition, for application to `ereal`. -/
@@ -994,12 +1670,24 @@ theorem UpperSemicontinuous.add {f g : α → γ} (hf : UpperSemicontinuous f)
   hf.add' hg fun x => continuous_add.ContinuousAt
 #align upper_semicontinuous.add UpperSemicontinuous.add
 
+/- warning: upper_semicontinuous_within_at_sum -> upperSemicontinuousWithinAt_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s x)) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s x)) -> (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_sum upperSemicontinuousWithinAt_sumₓ'. -/
 theorem upperSemicontinuousWithinAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun z => ∑ i in a, f i z) s x :=
   @lowerSemicontinuousWithinAt_sum α _ x s ι γᵒᵈ _ _ _ _ f a ha
 #align upper_semicontinuous_within_at_sum upperSemicontinuousWithinAt_sum
 
+/- warning: upper_semicontinuous_at_sum -> upperSemicontinuousAt_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) x)) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) x)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) x)) -> (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_sum upperSemicontinuousAt_sumₓ'. -/
 theorem upperSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun z => ∑ i in a, f i z) x :=
@@ -1008,12 +1696,24 @@ theorem upperSemicontinuousAt_sum {f : ι → α → γ} {a : Finset ι}
   exact upperSemicontinuousWithinAt_sum ha
 #align upper_semicontinuous_at_sum upperSemicontinuousAt_sum
 
+/- warning: upper_semicontinuous_on_sum -> upperSemicontinuousOn_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i) s)) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)) s)
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i) s)) -> (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_sum upperSemicontinuousOn_sumₓ'. -/
 theorem upperSemicontinuousOn_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun z => ∑ i in a, f i z) s := fun x hx =>
   upperSemicontinuousWithinAt_sum fun i hi => ha i hi x hx
 #align upper_semicontinuous_on_sum upperSemicontinuousOn_sum
 
+/- warning: upper_semicontinuous_sum -> upperSemicontinuous_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {γ : Type.{u3}} [_inst_3 : LinearOrderedAddCommMonoid.{u3} γ] [_inst_4 : TopologicalSpace.{u3} γ] [_inst_5 : OrderTopology.{u3} γ _inst_4 (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u3} γ _inst_4 (AddZeroClass.toHasAdd.{u3} γ (AddMonoid.toAddZeroClass.{u3} γ (AddCommMonoid.toAddMonoid.{u3} γ (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)))))] {f : ι -> α -> γ} {a : Finset.{u2} ι}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i a) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (f i))) -> (UpperSemicontinuous.{u1, u3} α _inst_1 γ (PartialOrder.toPreorder.{u3} γ (OrderedAddCommMonoid.toPartialOrder.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3))) (fun (z : α) => Finset.sum.{u3, u2} γ ι (OrderedAddCommMonoid.toAddCommMonoid.{u3} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u3} γ _inst_3)) a (fun (i : ι) => f i z)))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {ι : Type.{u3}} {γ : Type.{u1}} [_inst_3 : LinearOrderedAddCommMonoid.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3)))] [_inst_6 : ContinuousAdd.{u1} γ _inst_4 (AddZeroClass.toAdd.{u1} γ (AddMonoid.toAddZeroClass.{u1} γ (AddCommMonoid.toAddMonoid.{u1} γ (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3))))] {f : ι -> α -> γ} {a : Finset.{u3} ι}, (forall (i : ι), (Membership.mem.{u3, u3} ι (Finset.{u3} ι) (Finset.instMembershipFinset.{u3} ι) i a) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (f i))) -> (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (OrderedAddCommMonoid.toPartialOrder.{u1} γ (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} γ _inst_3))) (fun (z : α) => Finset.sum.{u1, u3} γ ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{u1} γ _inst_3) a (fun (i : ι) => f i z)))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_sum upperSemicontinuous_sumₓ'. -/
 theorem upperSemicontinuous_sum {f : ι → α → γ} {a : Finset ι}
     (ha : ∀ i ∈ a, UpperSemicontinuous (f i)) : UpperSemicontinuous fun z => ∑ i in a, f i z :=
   fun x => upperSemicontinuousAt_sum fun i hi => ha i hi x
@@ -1028,6 +1728,12 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
+/- warning: upper_semicontinuous_within_at_cinfi -> upperSemicontinuousWithinAt_cinfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u1} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhdsWithin.{u3} α _inst_1 x s)) -> (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfiₓ'. -/
 theorem upperSemicontinuousWithinAt_cinfi {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
@@ -1035,12 +1741,24 @@ theorem upperSemicontinuousWithinAt_cinfi {f : ι → α → δ'}
   @lowerSemicontinuousWithinAt_csupr α _ x s ι δ'ᵒᵈ _ f bdd h
 #align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfi
 
+/- warning: upper_semicontinuous_within_at_infi -> upperSemicontinuousWithinAt_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢₓ'. -/
 theorem upperSemicontinuousWithinAt_infᵢ {f : ι → α → δ}
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
   @lowerSemicontinuousWithinAt_supᵢ α _ x s ι δᵒᵈ _ f h
 #align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢ
 
+/- warning: upper_semicontinuous_within_at_binfi -> upperSemicontinuousWithinAt_binfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s x) -> (UpperSemicontinuousWithinAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfiₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuousWithinAt_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
@@ -1048,17 +1766,35 @@ theorem upperSemicontinuousWithinAt_binfi {p : ι → Prop} {f : ∀ (i) (h : p
   upperSemicontinuousWithinAt_infᵢ fun i => upperSemicontinuousWithinAt_infᵢ fun hi => h i hi
 #align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfi
 
+/- warning: upper_semicontinuous_at_cinfi -> upperSemicontinuousAt_cinfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u1} α (fun (y : α) => BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i y))) (nhds.{u1} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (Filter.Eventually.{u3} α (fun (y : α) => BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i y))) (nhds.{u3} α _inst_1 x)) -> (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfiₓ'. -/
 theorem upperSemicontinuousAt_cinfi {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_csupr α _ x ι δ'ᵒᵈ _ f bdd h
 #align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfi
 
+/- warning: upper_semicontinuous_at_infi -> upperSemicontinuousAt_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢₓ'. -/
 theorem upperSemicontinuousAt_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_supᵢ α _ x ι δᵒᵈ _ f h
 #align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢ
 
+/- warning: upper_semicontinuous_at_binfi -> upperSemicontinuousAt_binfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) x)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {x : α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) x) -> (UpperSemicontinuousAt.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) x)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfiₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuousAt_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
@@ -1066,17 +1802,35 @@ theorem upperSemicontinuousAt_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α
   upperSemicontinuousAt_infᵢ fun i => upperSemicontinuousAt_infᵢ fun hi => h i hi
 #align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfi
 
+/- warning: upper_semicontinuous_on_cinfi -> upperSemicontinuousOn_cinfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ' : Type.{u2}} [_inst_4 : ConditionallyCompleteLinearOrder.{u2} δ'] {f : ι -> α -> δ'}, (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (BddBelow.{u2} δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (Set.range.{u2, u1} δ' ι (fun (i : ι) => f i x)))) -> (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ' (PartialOrder.toPreorder.{u2} δ' (SemilatticeInf.toPartialOrder.{u2} δ' (Lattice.toSemilatticeInf.{u2} δ' (ConditionallyCompleteLattice.toLattice.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u2, u1} δ' (ConditionallyCompleteLattice.toInfSet.{u2} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ' _inst_4)) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfiₓ'. -/
 theorem upperSemicontinuousOn_cinfi {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_cinfi (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
 #align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfi
 
+/- warning: upper_semicontinuous_on_infi -> upperSemicontinuousOn_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')) s)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢₓ'. -/
 theorem upperSemicontinuousOn_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_infᵢ fun i => h i x hx
 #align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢ
 
+/- warning: upper_semicontinuous_on_binfi -> upperSemicontinuousOn_binfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))) s)
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {s : Set.{u3} α} {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi) s) -> (UpperSemicontinuousOn.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))) s)
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfiₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuousOn_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
@@ -1084,15 +1838,33 @@ theorem upperSemicontinuousOn_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α
   upperSemicontinuousOn_infᵢ fun i => upperSemicontinuousOn_infᵢ fun hi => h i hi
 #align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfi
 
+/- warning: upper_semicontinuous_cinfi -> upperSemicontinuous_cinfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toHasInf.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ' : Type.{u3}} [_inst_4 : ConditionallyCompleteLinearOrder.{u3} δ'] {f : ι -> α -> δ'}, (forall (x : α), BddBelow.{u3} δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (Set.range.{u3, u2} δ' ι (fun (i : ι) => f i x))) -> (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ' (PartialOrder.toPreorder.{u3} δ' (SemilatticeInf.toPartialOrder.{u3} δ' (Lattice.toSemilatticeInf.{u3} δ' (ConditionallyCompleteLattice.toLattice.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4))))) (fun (x' : α) => infᵢ.{u3, u2} δ' (ConditionallyCompleteLattice.toInfSet.{u3} δ' (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u3} δ' _inst_4)) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_cinfi upperSemicontinuous_cinfiₓ'. -/
 theorem upperSemicontinuous_cinfi {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
   upperSemicontinuousAt_cinfi (eventually_of_forall bdd) fun i => h i x
 #align upper_semicontinuous_cinfi upperSemicontinuous_cinfi
 
+/- warning: upper_semicontinuous_infi -> upperSemicontinuous_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => f i x')))
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {f : ι -> α -> δ}, (forall (i : ι), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => f i x')))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_infi upperSemicontinuous_infᵢₓ'. -/
 theorem upperSemicontinuous_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
     UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_infᵢ fun i => h i x
 #align upper_semicontinuous_infi upperSemicontinuous_infᵢ
 
+/- warning: upper_semicontinuous_binfi -> upperSemicontinuous_binfi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Sort.{u2}} {δ : Type.{u3}} [_inst_3 : CompleteLinearOrder.{u3} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u1, u3} α _inst_1 δ (PartialOrder.toPreorder.{u3} δ (CompleteSemilatticeInf.toPartialOrder.{u3} δ (CompleteLattice.toCompleteSemilatticeInf.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3)))) (fun (x' : α) => infᵢ.{u3, u2} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) ι (fun (i : ι) => infᵢ.{u3, 0} δ (ConditionallyCompleteLattice.toHasInf.{u3} δ (CompleteLattice.toConditionallyCompleteLattice.{u3} δ (CompleteLinearOrder.toCompleteLattice.{u3} δ _inst_3))) (p i) (fun (hi : p i) => f i hi x'))))
+but is expected to have type
+  forall {α : Type.{u3}} [_inst_1 : TopologicalSpace.{u3} α] {ι : Sort.{u1}} {δ : Type.{u2}} [_inst_3 : CompleteLinearOrder.{u2} δ] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α -> δ}, (forall (i : ι) (hi : p i), UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (f i hi)) -> (UpperSemicontinuous.{u3, u2} α _inst_1 δ (PartialOrder.toPreorder.{u2} δ (CompleteSemilatticeInf.toPartialOrder.{u2} δ (CompleteLattice.toCompleteSemilatticeInf.{u2} δ (CompleteLinearOrder.toCompleteLattice.{u2} δ _inst_3)))) (fun (x' : α) => infᵢ.{u2, u1} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) ι (fun (i : ι) => infᵢ.{u2, 0} δ (ConditionallyCompleteLattice.toInfSet.{u2} δ (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} δ (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} δ (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{u2} δ _inst_3)))) (p i) (fun (hi : p i) => f i hi x'))))
+Case conversion may be inaccurate. Consider using '#align upper_semicontinuous_binfi upperSemicontinuous_binfiₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem upperSemicontinuous_binfi {p : ι → Prop} {f : ∀ (i) (h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
@@ -1106,6 +1878,12 @@ section
 
 variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
+/- warning: continuous_within_at_iff_lower_upper_semicontinuous_within_at -> continuousWithinAt_iff_lower_upperSemicontinuousWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (ContinuousWithinAt.{u1, u2} α γ _inst_1 _inst_4 f s x) (And (LowerSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x) (UpperSemicontinuousWithinAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s x))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (ContinuousWithinAt.{u2, u1} α γ _inst_1 _inst_4 f s x) (And (LowerSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x) (UpperSemicontinuousWithinAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s x))
+Case conversion may be inaccurate. Consider using '#align continuous_within_at_iff_lower_upper_semicontinuous_within_at continuousWithinAt_iff_lower_upperSemicontinuousWithinAtₓ'. -/
 theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ} :
     ContinuousWithinAt f s x ↔
       LowerSemicontinuousWithinAt f s x ∧ UpperSemicontinuousWithinAt f s x :=
@@ -1138,12 +1916,24 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
       exact mem_of_mem_nhds hv
 #align continuous_within_at_iff_lower_upper_semicontinuous_within_at continuousWithinAt_iff_lower_upperSemicontinuousWithinAt
 
+/- warning: continuous_at_iff_lower_upper_semicontinuous_at -> continuousAt_iff_lower_upperSemicontinuousAt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {x : α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (ContinuousAt.{u1, u2} α γ _inst_1 _inst_4 f x) (And (LowerSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x) (UpperSemicontinuousAt.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f x))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {x : α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (ContinuousAt.{u2, u1} α γ _inst_1 _inst_4 f x) (And (LowerSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x) (UpperSemicontinuousAt.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f x))
+Case conversion may be inaccurate. Consider using '#align continuous_at_iff_lower_upper_semicontinuous_at continuousAt_iff_lower_upperSemicontinuousAtₓ'. -/
 theorem continuousAt_iff_lower_upperSemicontinuousAt {f : α → γ} :
     ContinuousAt f x ↔ LowerSemicontinuousAt f x ∧ UpperSemicontinuousAt f x := by
   simp_rw [← continuousWithinAt_univ, ← lowerSemicontinuousWithinAt_univ_iff, ←
     upperSemicontinuousWithinAt_univ_iff, continuousWithinAt_iff_lower_upperSemicontinuousWithinAt]
 #align continuous_at_iff_lower_upper_semicontinuous_at continuousAt_iff_lower_upperSemicontinuousAt
 
+/- warning: continuous_on_iff_lower_upper_semicontinuous_on -> continuousOn_iff_lower_upperSemicontinuousOn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {s : Set.{u1} α} {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (ContinuousOn.{u1, u2} α γ _inst_1 _inst_4 f s) (And (LowerSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s) (UpperSemicontinuousOn.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f s))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {s : Set.{u2} α} {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (ContinuousOn.{u2, u1} α γ _inst_1 _inst_4 f s) (And (LowerSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s) (UpperSemicontinuousOn.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f s))
+Case conversion may be inaccurate. Consider using '#align continuous_on_iff_lower_upper_semicontinuous_on continuousOn_iff_lower_upperSemicontinuousOnₓ'. -/
 theorem continuousOn_iff_lower_upperSemicontinuousOn {f : α → γ} :
     ContinuousOn f s ↔ LowerSemicontinuousOn f s ∧ UpperSemicontinuousOn f s :=
   by
@@ -1152,6 +1942,12 @@ theorem continuousOn_iff_lower_upperSemicontinuousOn {f : α → γ} :
     ⟨fun H => ⟨fun x hx => (H x hx).1, fun x hx => (H x hx).2⟩, fun H x hx => ⟨H.1 x hx, H.2 x hx⟩⟩
 #align continuous_on_iff_lower_upper_semicontinuous_on continuousOn_iff_lower_upperSemicontinuousOn
 
+/- warning: continuous_iff_lower_upper_semicontinuous -> continuous_iff_lower_upperSemicontinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {γ : Type.{u2}} [_inst_3 : LinearOrder.{u2} γ] [_inst_4 : TopologicalSpace.{u2} γ] [_inst_5 : OrderTopology.{u2} γ _inst_4 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3))))] {f : α -> γ}, Iff (Continuous.{u1, u2} α γ _inst_1 _inst_4 f) (And (LowerSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f) (UpperSemicontinuous.{u1, u2} α _inst_1 γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_3)))) f))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} α] {γ : Type.{u1}} [_inst_3 : LinearOrder.{u1} γ] [_inst_4 : TopologicalSpace.{u1} γ] [_inst_5 : OrderTopology.{u1} γ _inst_4 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3)))))] {f : α -> γ}, Iff (Continuous.{u2, u1} α γ _inst_1 _inst_4 f) (And (LowerSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f) (UpperSemicontinuous.{u2, u1} α _inst_1 γ (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_3))))) f))
+Case conversion may be inaccurate. Consider using '#align continuous_iff_lower_upper_semicontinuous continuous_iff_lower_upperSemicontinuousₓ'. -/
 theorem continuous_iff_lower_upperSemicontinuous {f : α → γ} :
     Continuous f ↔ LowerSemicontinuous f ∧ UpperSemicontinuous f := by
   simp_rw [continuous_iff_continuousOn_univ, continuousOn_iff_lower_upperSemicontinuousOn,
Diff
@@ -271,13 +271,13 @@ section
 
 variable {γ : Type _} [LinearOrder γ]
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
 theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     LowerSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Iic y) :=
   by
   rw [lowerSemicontinuous_iff_isOpen_preimage]
   trace
-    "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]]"
+    "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]]"
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Iic]
 #align lower_semicontinuous_iff_is_closed_preimage lowerSemicontinuous_iff_isClosed_preimage
 
@@ -821,13 +821,13 @@ section
 
 variable {γ : Type _} [LinearOrder γ]
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]] -/
 theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     UpperSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Ici y) :=
   by
   rw [upperSemicontinuous_iff_isOpen_preimage]
   trace
-    "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]]"
+    "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr ∀ y, (_ : exprProp())]]"
   rw [← isOpen_compl_iff, ← preimage_compl, compl_Ici]
 #align upper_semicontinuous_iff_is_closed_preimage upperSemicontinuous_iff_isClosed_preimage
 
Diff
@@ -57,7 +57,7 @@ ones for lower semicontinuous functions using `order_dual`.
 -/
 
 
-open Topology BigOperators Ennreal
+open Topology BigOperators ENNReal
 
 open Set Function Filter
 
@@ -662,7 +662,7 @@ theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ∑' i, f i x') s x :=
   by
-  simp_rw [Ennreal.tsum_eq_supᵢ_sum]
+  simp_rw [ENNReal.tsum_eq_supᵢ_sum]
   apply lowerSemicontinuousWithinAt_supᵢ fun b => _
   exact lowerSemicontinuousWithinAt_sum fun i hi => h i
 #align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsum

Changes in mathlib4

mathlib3
mathlib4
chore: make some proofs more robust (#12466)

Notably, these cause issues on nightly-2024-04-25

Co-authored-by: adamtopaz <github@adamtopaz.com>

Diff
@@ -358,7 +358,9 @@ theorem lowerSemicontinuous_iff_isClosed_epigraph {f : α → γ} :
     rw [nhds_prod_eq, le_prod] at h'
     calc f x ≤ liminf f (𝓝 x) := hf x
     _ ≤ liminf f (map Prod.fst F) := liminf_le_liminf_of_le h'.1
-    _ ≤ liminf Prod.snd F := liminf_le_liminf <| (eventually_principal.2 fun _ ↦ id).filter_mono h
+    _ = liminf (f ∘ Prod.fst) F := (Filter.liminf_comp _ _ _).symm
+    _ ≤ liminf Prod.snd F := liminf_le_liminf <| by
+          simpa using (eventually_principal.2 fun (_ : α × γ) ↦ id).filter_mono h
     _ = y := h'.2.liminf_eq
   · rw [lowerSemicontinuous_iff_isClosed_preimage]
     exact fun hf y ↦ hf.preimage (Continuous.Prod.mk_left y)
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -87,7 +87,7 @@ def LowerSemicontinuousWithinAt (f : α → β) (s : Set α) (x : α) :=
 
 /-- A real function `f` is lower semicontinuous on a set `s` if, for any `ε > 0`, for any `x ∈ s`,
 for all `x'` close enough to `x` in `s`, then `f x'` is at least `f x - ε`. We formulate this in
-a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`.-/
+a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`. -/
 def LowerSemicontinuousOn (f : α → β) (s : Set α) :=
   ∀ x ∈ s, LowerSemicontinuousWithinAt f s x
 #align lower_semicontinuous_on LowerSemicontinuousOn
@@ -115,7 +115,7 @@ def UpperSemicontinuousWithinAt (f : α → β) (s : Set α) (x : α) :=
 
 /-- A real function `f` is upper semicontinuous on a set `s` if, for any `ε > 0`, for any `x ∈ s`,
 for all `x'` close enough to `x` in `s`, then `f x'` is at most `f x + ε`. We formulate this in a
-general preordered space, using an arbitrary `y > f x` instead of `f x + ε`.-/
+general preordered space, using an arbitrary `y > f x` instead of `f x + ε`. -/
 def UpperSemicontinuousOn (f : α → β) (s : Set α) :=
   ∀ x ∈ s, UpperSemicontinuousWithinAt f s x
 #align upper_semicontinuous_on UpperSemicontinuousOn
@@ -129,7 +129,7 @@ def UpperSemicontinuousAt (f : α → β) (x : α) :=
 
 /-- A real function `f` is upper semicontinuous if, for any `ε > 0`, for any `x`, for all `x'`
 close enough to `x`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered
-space, using an arbitrary `y > f x` instead of `f x + ε`.-/
+space, using an arbitrary `y > f x` instead of `f x + ε`. -/
 def UpperSemicontinuous (f : α → β) :=
   ∀ x, UpperSemicontinuousAt f x
 #align upper_semicontinuous UpperSemicontinuous
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -379,9 +379,7 @@ end
 section
 
 variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
-
 variable {δ : Type*} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
-
 variable {ι : Type*} [TopologicalSpace ι]
 
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
@@ -961,9 +959,7 @@ end
 section
 
 variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
-
 variable {δ : Type*} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
-
 variable {ι : Type*} [TopologicalSpace ι]
 
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
feat: Semicontinuity of f ∘ g for f semicontinuous, g continuous (#10822)

Only the other direction exists currently, it seems.

Diff
@@ -34,9 +34,10 @@ We build a basic API using dot notation around these notions, and we prove that
 * `indicator s (fun _ ↦ y)` is lower semicontinuous when `s` is open and `0 ≤ y`,
   or when `s` is closed and `y ≤ 0`;
 * continuous functions are lower semicontinuous;
-* composition with a continuous monotone functions maps lower semicontinuous functions to lower
+* left composition with a continuous monotone functions maps lower semicontinuous functions to lower
   semicontinuous functions. If the function is anti-monotone, it instead maps lower semicontinuous
   functions to upper semicontinuous functions;
+* right composition with continuous functions preserves lower and upper semicontinuity;
 * a sum of two (or finitely many) lower semicontinuous functions is lower semicontinuous;
 * a supremum of a family of lower semicontinuous functions is lower semicontinuous;
 * An infinite sum of `ℝ≥0∞`-valued lower semicontinuous functions is lower semicontinuous.
@@ -381,6 +382,8 @@ variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type*} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
+variable {ι : Type*} [TopologicalSpace ι]
+
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     LowerSemicontinuousWithinAt (g ∘ f) s x := by
@@ -435,6 +438,21 @@ theorem Continuous.comp_lowerSemicontinuous_antitone {g : γ → δ} {f : α →
   hg.continuousAt.comp_lowerSemicontinuousAt_antitone (hf x) gmon
 #align continuous.comp_lower_semicontinuous_antitone Continuous.comp_lowerSemicontinuous_antitone
 
+theorem LowerSemicontinuousAt.comp_continuousAt {f : α → β} {g : ι → α} {x : ι}
+    (hf : LowerSemicontinuousAt f (g x)) (hg : ContinuousAt g x) :
+    LowerSemicontinuousAt (fun x ↦ f (g x)) x :=
+  fun _ lt ↦ hg.eventually (hf _ lt)
+
+theorem LowerSemicontinuousAt.comp_continuousAt_of_eq {f : α → β} {g : ι → α} {y : α} {x : ι}
+    (hf : LowerSemicontinuousAt f y) (hg : ContinuousAt g x) (hy : g x = y) :
+    LowerSemicontinuousAt (fun x ↦ f (g x)) x := by
+  rw [← hy] at hf
+  exact comp_continuousAt hf hg
+
+theorem LowerSemicontinuous.comp_continuous {f : α → β} {g : ι → α}
+    (hf : LowerSemicontinuous f) (hg : Continuous g) : LowerSemicontinuous fun x ↦ f (g x) :=
+  fun x ↦ (hf (g x)).comp_continuousAt hg.continuousAt
+
 end
 
 /-! #### Addition -/
@@ -946,6 +964,8 @@ variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 variable {δ : Type*} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
+variable {ι : Type*} [TopologicalSpace ι]
+
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Monotone g) :
     UpperSemicontinuousWithinAt (g ∘ f) s x :=
@@ -989,6 +1009,21 @@ theorem Continuous.comp_upperSemicontinuous_antitone {g : γ → δ} {f : α →
   hg.continuousAt.comp_upperSemicontinuousAt_antitone (hf x) gmon
 #align continuous.comp_upper_semicontinuous_antitone Continuous.comp_upperSemicontinuous_antitone
 
+theorem UpperSemicontinuousAt.comp_continuousAt {f : α → β} {g : ι → α} {x : ι}
+    (hf : UpperSemicontinuousAt f (g x)) (hg : ContinuousAt g x) :
+    UpperSemicontinuousAt (fun x ↦ f (g x)) x :=
+  fun _ lt ↦ hg.eventually (hf _ lt)
+
+theorem UpperSemicontinuousAt.comp_continuousAt_of_eq {f : α → β} {g : ι → α} {y : α} {x : ι}
+    (hf : UpperSemicontinuousAt f y) (hg : ContinuousAt g x) (hy : g x = y) :
+    UpperSemicontinuousAt (fun x ↦ f (g x)) x := by
+  rw [← hy] at hf
+  exact comp_continuousAt hf hg
+
+theorem UpperSemicontinuous.comp_continuous {f : α → β} {g : ι → α}
+    (hf : UpperSemicontinuous f) (hg : Continuous g) : UpperSemicontinuous fun x ↦ f (g x) :=
+  fun x ↦ (hf (g x)).comp_continuousAt hg.continuousAt
+
 end
 
 /-! #### Addition -/
chore: replace λ by fun (#11301)

Per the style guidelines, λ is disallowed in mathlib. This is close to exhaustive; I left some tactic code alone when it seemed to me that tactic could be upstreamed soon.

Notes

  • In lines I was modifying anyway, I also converted => to .
  • Also contains some mild in-passing indentation fixes in Mathlib/Order/SupClosed.
  • Some doc comments still contained Lean 3 syntax λ x, , which I also replaced.
Diff
@@ -31,8 +31,8 @@ We introduce 4 definitions related to lower semicontinuity:
 
 We build a basic API using dot notation around these notions, and we prove that
 * constant functions are lower semicontinuous;
-* `indicator s (λ _, y)` is lower semicontinuous when `s` is open and `0 ≤ y`, or when `s` is closed
-  and `y ≤ 0`;
+* `indicator s (fun _ ↦ y)` is lower semicontinuous when `s` is open and `0 ≤ y`,
+  or when `s` is closed and `y ≤ 0`;
 * continuous functions are lower semicontinuous;
 * composition with a continuous monotone functions maps lower semicontinuous functions to lower
   semicontinuous functions. If the function is anti-monotone, it instead maps lower semicontinuous
chore: adjust some lemmas to the naming convention (#11118)
Diff
@@ -51,7 +51,7 @@ restrictions on the order on the codomain):
 * `lowerSemicontinuous_iff_isOpen_preimage` in a linear order;
 * `lowerSemicontinuous_iff_isClosed_preimage` in a linear order;
 * `lowerSemicontinuousAt_iff_le_liminf` in a dense complete linear order;
-* `lowerSemicontinuous_iff_IsClosed_epigraph` in a dense complete linear order with the order
+* `lowerSemicontinuous_iff_isClosed_epigraph` in a dense complete linear order with the order
   topology.
 
 ## Implementation details
@@ -349,7 +349,7 @@ alias ⟨LowerSemicontinuousOn.le_liminf, _⟩ := lowerSemicontinuousOn_iff_le_l
 
 variable [TopologicalSpace γ] [OrderTopology γ]
 
-theorem lowerSemicontinuous_iff_IsClosed_epigraph {f : α → γ} :
+theorem lowerSemicontinuous_iff_isClosed_epigraph {f : α → γ} :
     LowerSemicontinuous f ↔ IsClosed {p : α × γ | f p.1 ≤ p.2} := by
   constructor
   · rw [lowerSemicontinuous_iff_le_liminf, isClosed_iff_forall_filter]
@@ -362,7 +362,13 @@ theorem lowerSemicontinuous_iff_IsClosed_epigraph {f : α → γ} :
   · rw [lowerSemicontinuous_iff_isClosed_preimage]
     exact fun hf y ↦ hf.preimage (Continuous.Prod.mk_left y)
 
-alias ⟨LowerSemicontinuous.IsClosed_epigraph, _⟩ := lowerSemicontinuous_iff_IsClosed_epigraph
+@[deprecated] -- 2024-03-02
+alias lowerSemicontinuous_iff_IsClosed_epigraph := lowerSemicontinuous_iff_isClosed_epigraph
+
+alias ⟨LowerSemicontinuous.isClosed_epigraph, _⟩ := lowerSemicontinuous_iff_isClosed_epigraph
+
+@[deprecated] -- 2024-03-02
+alias LowerSemicontinuous.IsClosed_epigraph := LowerSemicontinuous.isClosed_epigraph
 
 end
 
@@ -926,7 +932,7 @@ variable [TopologicalSpace γ] [OrderTopology γ]
 
 theorem upperSemicontinuous_iff_IsClosed_hypograph {f : α → γ} :
     UpperSemicontinuous f ↔ IsClosed {p : α × γ | p.2 ≤ f p.1} :=
-  lowerSemicontinuous_iff_IsClosed_epigraph (γ := γᵒᵈ)
+  lowerSemicontinuous_iff_isClosed_epigraph (γ := γᵒᵈ)
 
 alias ⟨UpperSemicontinuous.IsClosed_hypograph, _⟩ := upperSemicontinuous_iff_IsClosed_hypograph
 
feat: Equivalent characterizations of lower- and upper-semicontinuous functions (#7851)

We add lowerSemicontinuousAt_iff_le_liminf, lowerSemicontinuous_iff_IsClosed_epigraph and variants.

Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -46,11 +46,24 @@ Similar results are stated and proved for upper semicontinuity.
 We also prove that a function is continuous if and only if it is both lower and upper
 semicontinuous.
 
+We have some equivalent definitions of lower- and upper-semicontinuity (under certain
+restrictions on the order on the codomain):
+* `lowerSemicontinuous_iff_isOpen_preimage` in a linear order;
+* `lowerSemicontinuous_iff_isClosed_preimage` in a linear order;
+* `lowerSemicontinuousAt_iff_le_liminf` in a dense complete linear order;
+* `lowerSemicontinuous_iff_IsClosed_epigraph` in a dense complete linear order with the order
+  topology.
+
 ## Implementation details
 
 All the nontrivial results for upper semicontinuous functions are deduced from the corresponding
 ones for lower semicontinuous functions using `OrderDual`.
 
+## References
+
+* <https://en.wikipedia.org/wiki/Closed_convex_function>
+* <https://en.wikipedia.org/wiki/Semi-continuity>
+
 -/
 
 
@@ -297,6 +310,62 @@ theorem Continuous.lowerSemicontinuous {f : α → γ} (h : Continuous f) : Lowe
 
 end
 
+/-! #### Equivalent definitions -/
+
+section
+
+variable {γ : Type*} [CompleteLinearOrder γ] [DenselyOrdered γ]
+
+theorem lowerSemicontinuousWithinAt_iff_le_liminf {f : α → γ} :
+    LowerSemicontinuousWithinAt f s x ↔ f x ≤ liminf f (𝓝[s] x) := by
+  constructor
+  · intro hf; unfold LowerSemicontinuousWithinAt at hf
+    contrapose! hf
+    obtain ⟨y, lty, ylt⟩ := exists_between hf; use y
+    exact ⟨ylt, fun h => lty.not_le
+      (le_liminf_of_le (by isBoundedDefault) (h.mono fun _ hx => le_of_lt hx))⟩
+  exact fun hf y ylt => eventually_lt_of_lt_liminf (ylt.trans_le hf)
+
+alias ⟨LowerSemicontinuousWithinAt.le_liminf, _⟩ := lowerSemicontinuousWithinAt_iff_le_liminf
+
+theorem lowerSemicontinuousAt_iff_le_liminf {f : α → γ} :
+    LowerSemicontinuousAt f x ↔ f x ≤ liminf f (𝓝 x) := by
+  rw [← lowerSemicontinuousWithinAt_univ_iff, lowerSemicontinuousWithinAt_iff_le_liminf,
+    ← nhdsWithin_univ]
+
+alias ⟨LowerSemicontinuousAt.le_liminf, _⟩ := lowerSemicontinuousAt_iff_le_liminf
+
+theorem lowerSemicontinuous_iff_le_liminf {f : α → γ} :
+    LowerSemicontinuous f ↔ ∀ x, f x ≤ liminf f (𝓝 x) := by
+  simp only [← lowerSemicontinuousAt_iff_le_liminf, LowerSemicontinuous]
+
+alias ⟨LowerSemicontinuous.le_liminf, _⟩ := lowerSemicontinuous_iff_le_liminf
+
+theorem lowerSemicontinuousOn_iff_le_liminf {f : α → γ} :
+    LowerSemicontinuousOn f s ↔ ∀ x ∈ s, f x ≤ liminf f (𝓝[s] x) := by
+  simp only [← lowerSemicontinuousWithinAt_iff_le_liminf, LowerSemicontinuousOn]
+
+alias ⟨LowerSemicontinuousOn.le_liminf, _⟩ := lowerSemicontinuousOn_iff_le_liminf
+
+variable [TopologicalSpace γ] [OrderTopology γ]
+
+theorem lowerSemicontinuous_iff_IsClosed_epigraph {f : α → γ} :
+    LowerSemicontinuous f ↔ IsClosed {p : α × γ | f p.1 ≤ p.2} := by
+  constructor
+  · rw [lowerSemicontinuous_iff_le_liminf, isClosed_iff_forall_filter]
+    rintro hf ⟨x, y⟩ F F_ne h h'
+    rw [nhds_prod_eq, le_prod] at h'
+    calc f x ≤ liminf f (𝓝 x) := hf x
+    _ ≤ liminf f (map Prod.fst F) := liminf_le_liminf_of_le h'.1
+    _ ≤ liminf Prod.snd F := liminf_le_liminf <| (eventually_principal.2 fun _ ↦ id).filter_mono h
+    _ = y := h'.2.liminf_eq
+  · rw [lowerSemicontinuous_iff_isClosed_preimage]
+    exact fun hf y ↦ hf.preimage (Continuous.Prod.mk_left y)
+
+alias ⟨LowerSemicontinuous.IsClosed_epigraph, _⟩ := lowerSemicontinuous_iff_IsClosed_epigraph
+
+end
+
 /-! ### Composition -/
 
 
@@ -823,8 +892,47 @@ theorem Continuous.upperSemicontinuous {f : α → γ} (h : Continuous f) : Uppe
 
 end
 
-/-! ### Composition -/
+/-! #### Equivalent definitions -/
+
+section
+
+variable {γ : Type*} [CompleteLinearOrder γ] [DenselyOrdered γ]
+
+theorem upperSemicontinuousWithinAt_iff_limsup_le {f : α → γ} :
+    UpperSemicontinuousWithinAt f s x ↔ limsup f (𝓝[s] x) ≤ f x :=
+  lowerSemicontinuousWithinAt_iff_le_liminf (γ := γᵒᵈ)
+
+alias ⟨UpperSemicontinuousWithinAt.limsup_le, _⟩ := upperSemicontinuousWithinAt_iff_limsup_le
+
+theorem upperSemicontinuousAt_iff_limsup_le {f : α → γ} :
+    UpperSemicontinuousAt f x ↔ limsup f (𝓝 x) ≤ f x :=
+  lowerSemicontinuousAt_iff_le_liminf (γ := γᵒᵈ)
+
+alias ⟨UpperSemicontinuousAt.limsup_le, _⟩ := upperSemicontinuousAt_iff_limsup_le
+
+theorem upperSemicontinuous_iff_limsup_le {f : α → γ} :
+    UpperSemicontinuous f ↔ ∀ x, limsup f (𝓝 x) ≤ f x :=
+  lowerSemicontinuous_iff_le_liminf (γ := γᵒᵈ)
+
+alias ⟨UpperSemicontinuous.limsup_le, _⟩ := upperSemicontinuous_iff_limsup_le
 
+theorem upperSemicontinuousOn_iff_limsup_le {f : α → γ} :
+    UpperSemicontinuousOn f s ↔ ∀ x ∈ s, limsup f (𝓝[s] x) ≤ f x :=
+  lowerSemicontinuousOn_iff_le_liminf (γ := γᵒᵈ)
+
+alias ⟨UpperSemicontinuousOn.limsup_le, _⟩ := upperSemicontinuousOn_iff_limsup_le
+
+variable [TopologicalSpace γ] [OrderTopology γ]
+
+theorem upperSemicontinuous_iff_IsClosed_hypograph {f : α → γ} :
+    UpperSemicontinuous f ↔ IsClosed {p : α × γ | p.2 ≤ f p.1} :=
+  lowerSemicontinuous_iff_IsClosed_epigraph (γ := γᵒᵈ)
+
+alias ⟨UpperSemicontinuous.IsClosed_hypograph, _⟩ := upperSemicontinuous_iff_IsClosed_hypograph
+
+end
+
+/-! ### Composition -/
 
 section
 
chore(*): use ∀ s ⊆ t, _ etc (#9276)

Changes in this PR shouldn't change the public API. The only changes about ∃ x ∈ s, _ is inside a proof.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -564,7 +564,7 @@ theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
   lowerSemicontinuousWithinAt_ciSup (by simp) h
 #align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSup
 
-theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ (i) (hi), f i hi x') s x :=
   lowerSemicontinuousWithinAt_iSup fun i => lowerSemicontinuousWithinAt_iSup fun hi => h i hi
@@ -583,7 +583,7 @@ theorem lowerSemicontinuousAt_iSup {f : ι → α → δ} (h : ∀ i, LowerSemic
   lowerSemicontinuousAt_ciSup (by simp) h
 #align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSup
 
-theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
     LowerSemicontinuousAt (fun x' => ⨆ (i) (hi), f i hi x') x :=
   lowerSemicontinuousAt_iSup fun i => lowerSemicontinuousAt_iSup fun hi => h i hi
@@ -600,7 +600,7 @@ theorem lowerSemicontinuousOn_iSup {f : ι → α → δ} (h : ∀ i, LowerSemic
   lowerSemicontinuousOn_ciSup (by simp) h
 #align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSup
 
-theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
     LowerSemicontinuousOn (fun x' => ⨆ (i) (hi), f i hi x') s :=
   lowerSemicontinuousOn_iSup fun i => lowerSemicontinuousOn_iSup fun hi => h i hi
@@ -616,7 +616,7 @@ theorem lowerSemicontinuous_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicon
   lowerSemicontinuous_ciSup (by simp) h
 #align lower_semicontinuous_supr lowerSemicontinuous_iSup
 
-theorem lowerSemicontinuous_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuous_biSup {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
     LowerSemicontinuous fun x' => ⨆ (i) (hi), f i hi x' :=
   lowerSemicontinuous_iSup fun i => lowerSemicontinuous_iSup fun hi => h i hi
@@ -1006,7 +1006,7 @@ theorem upperSemicontinuousWithinAt_iInf {f : ι → α → δ}
   @lowerSemicontinuousWithinAt_iSup α _ x s ι δᵒᵈ _ f h
 #align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInf
 
-theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ (i) (hi), f i hi x') s x :=
   upperSemicontinuousWithinAt_iInf fun i => upperSemicontinuousWithinAt_iInf fun hi => h i hi
@@ -1023,7 +1023,7 @@ theorem upperSemicontinuousAt_iInf {f : ι → α → δ} (h : ∀ i, UpperSemic
   @lowerSemicontinuousAt_iSup α _ x ι δᵒᵈ _ f h
 #align upper_semicontinuous_at_infi upperSemicontinuousAt_iInf
 
-theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
     UpperSemicontinuousAt (fun x' => ⨅ (i) (hi), f i hi x') x :=
   upperSemicontinuousAt_iInf fun i => upperSemicontinuousAt_iInf fun hi => h i hi
@@ -1040,7 +1040,7 @@ theorem upperSemicontinuousOn_iInf {f : ι → α → δ} (h : ∀ i, UpperSemic
   upperSemicontinuousWithinAt_iInf fun i => h i x hx
 #align upper_semicontinuous_on_infi upperSemicontinuousOn_iInf
 
-theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
     UpperSemicontinuousOn (fun x' => ⨅ (i) (hi), f i hi x') s :=
   upperSemicontinuousOn_iInf fun i => upperSemicontinuousOn_iInf fun hi => h i hi
@@ -1055,7 +1055,7 @@ theorem upperSemicontinuous_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicon
     UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_iInf fun i => h i x
 #align upper_semicontinuous_infi upperSemicontinuous_iInf
 
-theorem upperSemicontinuous_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuous_biInf {p : ι → Prop} {f : ∀ i, p i → α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
     UpperSemicontinuous fun x' => ⨅ (i) (hi), f i hi x' :=
   upperSemicontinuous_iInf fun i => upperSemicontinuous_iInf fun hi => h i hi
chore: Sink Algebra.Support down the import tree (#8919)

Function.support is a very basic definition. Nevertheless, it is a pretty heavy import because it imports most objects a support lemma can be written about.

This PR reverses the dependencies between those objects and Function.support, so that the latter can become a much more lightweight import.

Only two import could not easily be reversed, namely the ones to Data.Set.Finite and Order.ConditionallyCompleteLattice.Basic, so I created two new files instead.

I credit:

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
-import Mathlib.Algebra.IndicatorFunction
+import Mathlib.Algebra.Function.Indicator
 import Mathlib.Topology.ContinuousOn
 import Mathlib.Topology.Instances.ENNReal
 
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -313,7 +313,7 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
   by_cases h : ∃ l, l < f x
   · obtain ⟨z, zlt, hz⟩ : ∃ z < f x, Ioc z (f x) ⊆ g ⁻¹' Ioi y :=
       exists_Ioc_subset_of_mem_nhds (hg (Ioi_mem_nhds hy)) h
-    filter_upwards [hf z zlt]with a ha
+    filter_upwards [hf z zlt] with a ha
     calc
       y < g (min (f x) (f a)) := hz (by simp [zlt, ha, le_refl])
       _ ≤ g (f a) := gmon (min_le_right _ _)
@@ -388,7 +388,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
         exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂
-      filter_upwards [hf z₁ z₁lt, hg z₂ z₂lt]with z h₁z h₂z
+      filter_upwards [hf z₁ z₁lt, hg z₂ z₂lt] with z h₁z h₂z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
         · simp [H]
@@ -407,7 +407,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
         _ ≤ f z + g z := add_le_add (min_le_left _ _) (min_le_left _ _)
 
     · simp only [not_exists, not_lt] at hx₂
-      filter_upwards [hf z₁ z₁lt]with z h₁z
+      filter_upwards [hf z₁ z₁lt] with z h₁z
       have A1 : min (f z) (f x) ∈ u := by
         by_cases H : f z ≤ f x
         · simp [H]
@@ -423,7 +423,7 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
     by_cases hx₂ : ∃ l, l < g x
     · obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v :=
         exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂
-      filter_upwards [hg z₂ z₂lt]with z h₂z
+      filter_upwards [hg z₂ z₂lt] with z h₂z
       have A2 : min (g z) (g x) ∈ v := by
         by_cases H : g z ≤ g x
         · simp [H]
@@ -555,7 +555,7 @@ theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
   · simpa only [iSup_of_empty'] using lowerSemicontinuousWithinAt_const
   · intro y hy
     rcases exists_lt_of_lt_ciSup hy with ⟨i, hi⟩
-    filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_ciSup hy' i)
+    filter_upwards [h i y hi, bdd] with y hy hy' using hy.trans_le (le_ciSup hy' i)
 #align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSup
 
 theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
@@ -1078,16 +1078,16 @@ theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ}
   · rcases exists_Ioc_subset_of_mem_nhds hv Hl with ⟨l, lfx, hl⟩
     by_cases Hu : ∃ u, f x < u
     · rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
-      filter_upwards [h₁ l lfx, h₂ u fxu]with a lfa fau
+      filter_upwards [h₁ l lfx, h₂ u fxu] with a lfa fau
       cases' le_or_gt (f a) (f x) with h h
       · exact hl ⟨lfa, h⟩
       · exact hu ⟨le_of_lt h, fau⟩
     · simp only [not_exists, not_lt] at Hu
-      filter_upwards [h₁ l lfx]with a lfa using hl ⟨lfa, Hu (f a)⟩
+      filter_upwards [h₁ l lfx] with a lfa using hl ⟨lfa, Hu (f a)⟩
   · simp only [not_exists, not_lt] at Hl
     by_cases Hu : ∃ u, f x < u
     · rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
-      filter_upwards [h₂ u fxu]with a lfa
+      filter_upwards [h₂ u fxu] with a lfa
       apply hu
       exact ⟨Hl (f a), lfa⟩
     · simp only [not_exists, not_lt] at Hu
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -58,7 +58,7 @@ open Topology BigOperators ENNReal
 
 open Set Function Filter
 
-variable {α : Type _} [TopologicalSpace α] {β : Type _} [Preorder β] {f g : α → β} {x : α}
+variable {α : Type*} [TopologicalSpace α] {β : Type*} [Preorder β] {f g : α → β} {x : α}
   {s t : Set α} {y z : β}
 
 /-! ### Main definitions -/
@@ -264,7 +264,7 @@ theorem LowerSemicontinuous.isOpen_preimage (hf : LowerSemicontinuous f) (y : β
 
 section
 
-variable {γ : Type _} [LinearOrder γ]
+variable {γ : Type*} [LinearOrder γ]
 
 theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     LowerSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Iic y) := by
@@ -302,9 +302,9 @@ end
 
 section
 
-variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
+variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
-variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
+variable {δ : Type*} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
 theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : LowerSemicontinuousWithinAt f s x) (gmon : Monotone g) :
@@ -367,7 +367,7 @@ end
 
 section
 
-variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
+variable {ι : Type*} {γ : Type*} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
@@ -545,7 +545,7 @@ end
 
 section
 
-variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
+variable {ι : Sort*} {δ δ' : Type*} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
 theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
@@ -629,7 +629,7 @@ end
 
 section
 
-variable {ι : Type _}
+variable {ι : Type*}
 
 theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
@@ -790,7 +790,7 @@ theorem UpperSemicontinuous.isOpen_preimage (hf : UpperSemicontinuous f) (y : β
 
 section
 
-variable {γ : Type _} [LinearOrder γ]
+variable {γ : Type*} [LinearOrder γ]
 
 theorem upperSemicontinuous_iff_isClosed_preimage {f : α → γ} :
     UpperSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Ici y) := by
@@ -828,9 +828,9 @@ end
 
 section
 
-variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
+variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
-variable {δ : Type _} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
+variable {δ : Type*} [LinearOrder δ] [TopologicalSpace δ] [OrderTopology δ]
 
 theorem ContinuousAt.comp_upperSemicontinuousWithinAt {g : γ → δ} {f : α → γ}
     (hg : ContinuousAt g (f x)) (hf : UpperSemicontinuousWithinAt f s x) (gmon : Monotone g) :
@@ -882,7 +882,7 @@ end
 
 section
 
-variable {ι : Type _} {γ : Type _} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
+variable {ι : Type*} {γ : Type*} [LinearOrderedAddCommMonoid γ] [TopologicalSpace γ]
   [OrderTopology γ]
 
 /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an
@@ -991,7 +991,7 @@ end
 
 section
 
-variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
+variable {ι : Sort*} {δ δ' : Type*} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
 theorem upperSemicontinuousWithinAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
@@ -1065,7 +1065,7 @@ end
 
 section
 
-variable {γ : Type _} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
+variable {γ : Type*} [LinearOrder γ] [TopologicalSpace γ] [OrderTopology γ]
 
 theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ} :
     ContinuousWithinAt f s x ↔
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module topology.semicontinuous
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.IndicatorFunction
 import Mathlib.Topology.ContinuousOn
 import Mathlib.Topology.Instances.ENNReal
 
+#align_import topology.semicontinuous from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Semicontinuous maps
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -68,7 +68,7 @@ variable {α : Type _} [TopologicalSpace α] {β : Type _} [Preorder β] {f g :
 
 
 /-- A real function `f` is lower semicontinuous at `x` within a set `s` if, for any `ε > 0`, for all
-`x'` close enough to `x` in  `s`, then `f x'` is at least `f x - ε`. We formulate this in a general
+`x'` close enough to `x` in `s`, then `f x'` is at least `f x - ε`. We formulate this in a general
 preordered space, using an arbitrary `y < f x` instead of `f x - ε`. -/
 def LowerSemicontinuousWithinAt (f : α → β) (s : Set α) (x : α) :=
   ∀ y < f x, ∀ᶠ x' in 𝓝[s] x, y < f x'
@@ -96,7 +96,7 @@ def LowerSemicontinuous (f : α → β) :=
 #align lower_semicontinuous LowerSemicontinuous
 
 /-- A real function `f` is upper semicontinuous at `x` within a set `s` if, for any `ε > 0`, for all
-`x'` close enough to `x` in  `s`, then `f x'` is at most `f x + ε`. We formulate this in a general
+`x'` close enough to `x` in `s`, then `f x'` is at most `f x + ε`. We formulate this in a general
 preordered space, using an arbitrary `y > f x` instead of `f x + ε`. -/
 def UpperSemicontinuousWithinAt (f : α → β) (s : Set α) (x : α) :=
   ∀ y, f x < y → ∀ᶠ x' in 𝓝[s] x, f x' < y
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -327,7 +327,7 @@ theorem ContinuousAt.comp_lowerSemicontinuousWithinAt {g : γ → δ} {f : α 
 
 theorem ContinuousAt.comp_lowerSemicontinuousAt {g : γ → δ} {f : α → γ} (hg : ContinuousAt g (f x))
     (hf : LowerSemicontinuousAt f x) (gmon : Monotone g) : LowerSemicontinuousAt (g ∘ f) x := by
-  simp only [← lowerSemicontinuousWithinAt_univ_iff] at hf⊢
+  simp only [← lowerSemicontinuousWithinAt_univ_iff] at hf ⊢
   exact hg.comp_lowerSemicontinuousWithinAt hf gmon
 #align continuous_at.comp_lower_semicontinuous_at ContinuousAt.comp_lowerSemicontinuousAt
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -550,80 +550,80 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-theorem lowerSemicontinuousWithinAt_csupᵢ {f : ι → α → δ'}
+theorem lowerSemicontinuousWithinAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x := by
   cases isEmpty_or_nonempty ι
-  · simpa only [supᵢ_of_empty'] using lowerSemicontinuousWithinAt_const
+  · simpa only [iSup_of_empty'] using lowerSemicontinuousWithinAt_const
   · intro y hy
-    rcases exists_lt_of_lt_csupᵢ hy with ⟨i, hi⟩
-    filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_csupᵢ hy' i)
-#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupᵢ
+    rcases exists_lt_of_lt_ciSup hy with ⟨i, hi⟩
+    filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_ciSup hy' i)
+#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_ciSup
 
-theorem lowerSemicontinuousWithinAt_supᵢ {f : ι → α → δ}
+theorem lowerSemicontinuousWithinAt_iSup {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
-  lowerSemicontinuousWithinAt_csupᵢ (by simp) h
-#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢ
+  lowerSemicontinuousWithinAt_ciSup (by simp) h
+#align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_iSup
 
-theorem lowerSemicontinuousWithinAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousWithinAt_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ (i) (hi), f i hi x') s x :=
-  lowerSemicontinuousWithinAt_supᵢ fun i => lowerSemicontinuousWithinAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupᵢ
+  lowerSemicontinuousWithinAt_iSup fun i => lowerSemicontinuousWithinAt_iSup fun hi => h i hi
+#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_biSup
 
-theorem lowerSemicontinuousAt_csupᵢ {f : ι → α → δ'}
+theorem lowerSemicontinuousAt_ciSup {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x := by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
   rw [← nhdsWithin_univ] at bdd
-  exact lowerSemicontinuousWithinAt_csupᵢ bdd h
-#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupᵢ
+  exact lowerSemicontinuousWithinAt_ciSup bdd h
+#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_ciSup
 
-theorem lowerSemicontinuousAt_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
+theorem lowerSemicontinuousAt_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
-  lowerSemicontinuousAt_csupᵢ (by simp) h
-#align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢ
+  lowerSemicontinuousAt_ciSup (by simp) h
+#align lower_semicontinuous_at_supr lowerSemicontinuousAt_iSup
 
-theorem lowerSemicontinuousAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousAt_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
     LowerSemicontinuousAt (fun x' => ⨆ (i) (hi), f i hi x') x :=
-  lowerSemicontinuousAt_supᵢ fun i => lowerSemicontinuousAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupᵢ
+  lowerSemicontinuousAt_iSup fun i => lowerSemicontinuousAt_iSup fun hi => h i hi
+#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_biSup
 
-theorem lowerSemicontinuousOn_csupᵢ {f : ι → α → δ'}
+theorem lowerSemicontinuousOn_ciSup {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
-  lowerSemicontinuousWithinAt_csupᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupᵢ
+  lowerSemicontinuousWithinAt_ciSup (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_ciSup
 
-theorem lowerSemicontinuousOn_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
+theorem lowerSemicontinuousOn_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
-  lowerSemicontinuousOn_csupᵢ (by simp) h
-#align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢ
+  lowerSemicontinuousOn_ciSup (by simp) h
+#align lower_semicontinuous_on_supr lowerSemicontinuousOn_iSup
 
-theorem lowerSemicontinuousOn_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousOn_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
     LowerSemicontinuousOn (fun x' => ⨆ (i) (hi), f i hi x') s :=
-  lowerSemicontinuousOn_supᵢ fun i => lowerSemicontinuousOn_supᵢ fun hi => h i hi
-#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupᵢ
+  lowerSemicontinuousOn_iSup fun i => lowerSemicontinuousOn_iSup fun hi => h i hi
+#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_biSup
 
-theorem lowerSemicontinuous_csupᵢ {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
+theorem lowerSemicontinuous_ciSup {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
-  lowerSemicontinuousAt_csupᵢ (eventually_of_forall bdd) fun i => h i x
-#align lower_semicontinuous_csupr lowerSemicontinuous_csupᵢ
+  lowerSemicontinuousAt_ciSup (eventually_of_forall bdd) fun i => h i x
+#align lower_semicontinuous_csupr lowerSemicontinuous_ciSup
 
-theorem lowerSemicontinuous_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
+theorem lowerSemicontinuous_iSup {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
-  lowerSemicontinuous_csupᵢ (by simp) h
-#align lower_semicontinuous_supr lowerSemicontinuous_supᵢ
+  lowerSemicontinuous_ciSup (by simp) h
+#align lower_semicontinuous_supr lowerSemicontinuous_iSup
 
-theorem lowerSemicontinuous_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuous_biSup {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
     LowerSemicontinuous fun x' => ⨆ (i) (hi), f i hi x' :=
-  lowerSemicontinuous_supᵢ fun i => lowerSemicontinuous_supᵢ fun hi => h i hi
-#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupᵢ
+  lowerSemicontinuous_iSup fun i => lowerSemicontinuous_iSup fun hi => h i hi
+#align lower_semicontinuous_bsupr lowerSemicontinuous_biSup
 
 end
 
@@ -637,8 +637,8 @@ variable {ι : Type _}
 theorem lowerSemicontinuousWithinAt_tsum {f : ι → α → ℝ≥0∞}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ∑' i, f i x') s x := by
-  simp_rw [ENNReal.tsum_eq_supᵢ_sum]
-  refine lowerSemicontinuousWithinAt_supᵢ fun b => ?_
+  simp_rw [ENNReal.tsum_eq_iSup_sum]
+  refine lowerSemicontinuousWithinAt_iSup fun b => ?_
   exact lowerSemicontinuousWithinAt_sum fun i _hi => h i
 #align lower_semicontinuous_within_at_tsum lowerSemicontinuousWithinAt_tsum
 
@@ -996,73 +996,73 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-theorem upperSemicontinuousWithinAt_cinfᵢ {f : ι → α → δ'}
+theorem upperSemicontinuousWithinAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
-  @lowerSemicontinuousWithinAt_csupᵢ α _ x s ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfᵢ
+  @lowerSemicontinuousWithinAt_ciSup α _ x s ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_ciInf
 
-theorem upperSemicontinuousWithinAt_infᵢ {f : ι → α → δ}
+theorem upperSemicontinuousWithinAt_iInf {f : ι → α → δ}
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
-  @lowerSemicontinuousWithinAt_supᵢ α _ x s ι δᵒᵈ _ f h
-#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢ
+  @lowerSemicontinuousWithinAt_iSup α _ x s ι δᵒᵈ _ f h
+#align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_iInf
 
-theorem upperSemicontinuousWithinAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousWithinAt_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ (i) (hi), f i hi x') s x :=
-  upperSemicontinuousWithinAt_infᵢ fun i => upperSemicontinuousWithinAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfᵢ
+  upperSemicontinuousWithinAt_iInf fun i => upperSemicontinuousWithinAt_iInf fun hi => h i hi
+#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_biInf
 
-theorem upperSemicontinuousAt_cinfᵢ {f : ι → α → δ'}
+theorem upperSemicontinuousAt_ciInf {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
-  @lowerSemicontinuousAt_csupᵢ α _ x ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfᵢ
+  @lowerSemicontinuousAt_ciSup α _ x ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_ciInf
 
-theorem upperSemicontinuousAt_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
+theorem upperSemicontinuousAt_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
-  @lowerSemicontinuousAt_supᵢ α _ x ι δᵒᵈ _ f h
-#align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢ
+  @lowerSemicontinuousAt_iSup α _ x ι δᵒᵈ _ f h
+#align upper_semicontinuous_at_infi upperSemicontinuousAt_iInf
 
-theorem upperSemicontinuousAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousAt_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
     UpperSemicontinuousAt (fun x' => ⨅ (i) (hi), f i hi x') x :=
-  upperSemicontinuousAt_infᵢ fun i => upperSemicontinuousAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfᵢ
+  upperSemicontinuousAt_iInf fun i => upperSemicontinuousAt_iInf fun hi => h i hi
+#align upper_semicontinuous_at_binfi upperSemicontinuousAt_biInf
 
-theorem upperSemicontinuousOn_cinfᵢ {f : ι → α → δ'}
+theorem upperSemicontinuousOn_ciInf {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
-  upperSemicontinuousWithinAt_cinfᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfᵢ
+  upperSemicontinuousWithinAt_ciInf (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_ciInf
 
-theorem upperSemicontinuousOn_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
+theorem upperSemicontinuousOn_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
-  upperSemicontinuousWithinAt_infᵢ fun i => h i x hx
-#align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢ
+  upperSemicontinuousWithinAt_iInf fun i => h i x hx
+#align upper_semicontinuous_on_infi upperSemicontinuousOn_iInf
 
-theorem upperSemicontinuousOn_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousOn_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
     UpperSemicontinuousOn (fun x' => ⨅ (i) (hi), f i hi x') s :=
-  upperSemicontinuousOn_infᵢ fun i => upperSemicontinuousOn_infᵢ fun hi => h i hi
-#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfᵢ
+  upperSemicontinuousOn_iInf fun i => upperSemicontinuousOn_iInf fun hi => h i hi
+#align upper_semicontinuous_on_binfi upperSemicontinuousOn_biInf
 
-theorem upperSemicontinuous_cinfᵢ {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
+theorem upperSemicontinuous_ciInf {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
-  upperSemicontinuousAt_cinfᵢ (eventually_of_forall bdd) fun i => h i x
-#align upper_semicontinuous_cinfi upperSemicontinuous_cinfᵢ
+  upperSemicontinuousAt_ciInf (eventually_of_forall bdd) fun i => h i x
+#align upper_semicontinuous_cinfi upperSemicontinuous_ciInf
 
-theorem upperSemicontinuous_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
-    UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_infᵢ fun i => h i x
-#align upper_semicontinuous_infi upperSemicontinuous_infᵢ
+theorem upperSemicontinuous_iInf {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
+    UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_iInf fun i => h i x
+#align upper_semicontinuous_infi upperSemicontinuous_iInf
 
-theorem upperSemicontinuous_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuous_biInf {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
     UpperSemicontinuous fun x' => ⨅ (i) (hi), f i hi x' :=
-  upperSemicontinuous_infᵢ fun i => upperSemicontinuous_infᵢ fun hi => h i hi
-#align upper_semicontinuous_binfi upperSemicontinuous_binfᵢ
+  upperSemicontinuous_iInf fun i => upperSemicontinuous_iInf fun hi => h i hi
+#align upper_semicontinuous_binfi upperSemicontinuous_biInf
 
 end
 
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -437,7 +437,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < f x + min (g z) (g x) := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (min_le_left _ _)
-
     · simp only [not_exists, not_lt] at hx₁ hx₂
       apply Filter.eventually_of_forall
       intro z
@@ -445,7 +444,6 @@ theorem LowerSemicontinuousWithinAt.add' {f g : α → γ} (hf : LowerSemicontin
       calc
         y < f x + g x := h this
         _ ≤ f z + g z := add_le_add (hx₁ (f z)) (hx₂ (g z))
-
 #align lower_semicontinuous_within_at.add' LowerSemicontinuousWithinAt.add'
 
 /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an
chore: tidy various files (#3358)
Diff
@@ -552,7 +552,7 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-theorem lowerSemicontinuousWithinAt_csupr {f : ι → α → δ'}
+theorem lowerSemicontinuousWithinAt_csupᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddAbove (range fun i => f i y))
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x := by
@@ -561,71 +561,71 @@ theorem lowerSemicontinuousWithinAt_csupr {f : ι → α → δ'}
   · intro y hy
     rcases exists_lt_of_lt_csupᵢ hy with ⟨i, hi⟩
     filter_upwards [h i y hi, bdd]with y hy hy' using hy.trans_le (le_csupᵢ hy' i)
-#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupr
+#align lower_semicontinuous_within_at_csupr lowerSemicontinuousWithinAt_csupᵢ
 
 theorem lowerSemicontinuousWithinAt_supᵢ {f : ι → α → δ}
     (h : ∀ i, LowerSemicontinuousWithinAt (f i) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ i, f i x') s x :=
-  lowerSemicontinuousWithinAt_csupr (by simp) h
+  lowerSemicontinuousWithinAt_csupᵢ (by simp) h
 #align lower_semicontinuous_within_at_supr lowerSemicontinuousWithinAt_supᵢ
 
-theorem lowerSemicontinuousWithinAt_bsupr {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousWithinAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousWithinAt (f i hi) s x) :
     LowerSemicontinuousWithinAt (fun x' => ⨆ (i) (hi), f i hi x') s x :=
   lowerSemicontinuousWithinAt_supᵢ fun i => lowerSemicontinuousWithinAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupr
+#align lower_semicontinuous_within_at_bsupr lowerSemicontinuousWithinAt_bsupᵢ
 
-theorem lowerSemicontinuousAt_csupr {f : ι → α → δ'}
+theorem lowerSemicontinuousAt_csupᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddAbove (range fun i => f i y)) (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x := by
   simp_rw [← lowerSemicontinuousWithinAt_univ_iff] at *
   rw [← nhdsWithin_univ] at bdd
-  exact lowerSemicontinuousWithinAt_csupr bdd h
-#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupr
+  exact lowerSemicontinuousWithinAt_csupᵢ bdd h
+#align lower_semicontinuous_at_csupr lowerSemicontinuousAt_csupᵢ
 
 theorem lowerSemicontinuousAt_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousAt (f i) x) :
     LowerSemicontinuousAt (fun x' => ⨆ i, f i x') x :=
-  lowerSemicontinuousAt_csupr (by simp) h
+  lowerSemicontinuousAt_csupᵢ (by simp) h
 #align lower_semicontinuous_at_supr lowerSemicontinuousAt_supᵢ
 
-theorem lowerSemicontinuousAt_bsupr {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousAt_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousAt (f i hi) x) :
     LowerSemicontinuousAt (fun x' => ⨆ (i) (hi), f i hi x') x :=
   lowerSemicontinuousAt_supᵢ fun i => lowerSemicontinuousAt_supᵢ fun hi => h i hi
-#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupr
+#align lower_semicontinuous_at_bsupr lowerSemicontinuousAt_bsupᵢ
 
-theorem lowerSemicontinuousOn_csupr {f : ι → α → δ'}
+theorem lowerSemicontinuousOn_csupᵢ {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddAbove (range fun i => f i x)) (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s := fun x hx =>
-  lowerSemicontinuousWithinAt_csupr (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupr
+  lowerSemicontinuousWithinAt_csupᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align lower_semicontinuous_on_csupr lowerSemicontinuousOn_csupᵢ
 
 theorem lowerSemicontinuousOn_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuousOn (f i) s) :
     LowerSemicontinuousOn (fun x' => ⨆ i, f i x') s :=
-  lowerSemicontinuousOn_csupr (by simp) h
+  lowerSemicontinuousOn_csupᵢ (by simp) h
 #align lower_semicontinuous_on_supr lowerSemicontinuousOn_supᵢ
 
-theorem lowerSemicontinuousOn_bsupr {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuousOn_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuousOn (f i hi) s) :
     LowerSemicontinuousOn (fun x' => ⨆ (i) (hi), f i hi x') s :=
   lowerSemicontinuousOn_supᵢ fun i => lowerSemicontinuousOn_supᵢ fun hi => h i hi
-#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupr
+#align lower_semicontinuous_on_bsupr lowerSemicontinuousOn_bsupᵢ
 
-theorem lowerSemicontinuous_csupr {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
+theorem lowerSemicontinuous_csupᵢ {f : ι → α → δ'} (bdd : ∀ x, BddAbove (range fun i => f i x))
     (h : ∀ i, LowerSemicontinuous (f i)) : LowerSemicontinuous fun x' => ⨆ i, f i x' := fun x =>
-  lowerSemicontinuousAt_csupr (eventually_of_forall bdd) fun i => h i x
-#align lower_semicontinuous_csupr lowerSemicontinuous_csupr
+  lowerSemicontinuousAt_csupᵢ (eventually_of_forall bdd) fun i => h i x
+#align lower_semicontinuous_csupr lowerSemicontinuous_csupᵢ
 
 theorem lowerSemicontinuous_supᵢ {f : ι → α → δ} (h : ∀ i, LowerSemicontinuous (f i)) :
     LowerSemicontinuous fun x' => ⨆ i, f i x' :=
-  lowerSemicontinuous_csupr (by simp) h
+  lowerSemicontinuous_csupᵢ (by simp) h
 #align lower_semicontinuous_supr lowerSemicontinuous_supᵢ
 
-theorem lowerSemicontinuous_bsupr {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem lowerSemicontinuous_bsupᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, LowerSemicontinuous (f i hi)) :
     LowerSemicontinuous fun x' => ⨆ (i) (hi), f i hi x' :=
   lowerSemicontinuous_supᵢ fun i => lowerSemicontinuous_supᵢ fun hi => h i hi
-#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupr
+#align lower_semicontinuous_bsupr lowerSemicontinuous_bsupᵢ
 
 end
 
@@ -998,12 +998,12 @@ section
 
 variable {ι : Sort _} {δ δ' : Type _} [CompleteLinearOrder δ] [ConditionallyCompleteLinearOrder δ']
 
-theorem upperSemicontinuousWithinAt_cinfi {f : ι → α → δ'}
+theorem upperSemicontinuousWithinAt_cinfᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝[s] x, BddBelow (range fun i => f i y))
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ i, f i x') s x :=
-  @lowerSemicontinuousWithinAt_csupr α _ x s ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfi
+  @lowerSemicontinuousWithinAt_csupᵢ α _ x s ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_within_at_cinfi upperSemicontinuousWithinAt_cinfᵢ
 
 theorem upperSemicontinuousWithinAt_infᵢ {f : ι → α → δ}
     (h : ∀ i, UpperSemicontinuousWithinAt (f i) s x) :
@@ -1011,60 +1011,60 @@ theorem upperSemicontinuousWithinAt_infᵢ {f : ι → α → δ}
   @lowerSemicontinuousWithinAt_supᵢ α _ x s ι δᵒᵈ _ f h
 #align upper_semicontinuous_within_at_infi upperSemicontinuousWithinAt_infᵢ
 
-theorem upperSemicontinuousWithinAt_binfi {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousWithinAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousWithinAt (f i hi) s x) :
     UpperSemicontinuousWithinAt (fun x' => ⨅ (i) (hi), f i hi x') s x :=
   upperSemicontinuousWithinAt_infᵢ fun i => upperSemicontinuousWithinAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfi
+#align upper_semicontinuous_within_at_binfi upperSemicontinuousWithinAt_binfᵢ
 
-theorem upperSemicontinuousAt_cinfi {f : ι → α → δ'}
+theorem upperSemicontinuousAt_cinfᵢ {f : ι → α → δ'}
     (bdd : ∀ᶠ y in 𝓝 x, BddBelow (range fun i => f i y)) (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
-  @lowerSemicontinuousAt_csupr α _ x ι δ'ᵒᵈ _ f bdd h
-#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfi
+  @lowerSemicontinuousAt_csupᵢ α _ x ι δ'ᵒᵈ _ f bdd h
+#align upper_semicontinuous_at_cinfi upperSemicontinuousAt_cinfᵢ
 
 theorem upperSemicontinuousAt_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousAt (f i) x) :
     UpperSemicontinuousAt (fun x' => ⨅ i, f i x') x :=
   @lowerSemicontinuousAt_supᵢ α _ x ι δᵒᵈ _ f h
 #align upper_semicontinuous_at_infi upperSemicontinuousAt_infᵢ
 
-theorem upperSemicontinuousAt_binfi {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousAt_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousAt (f i hi) x) :
     UpperSemicontinuousAt (fun x' => ⨅ (i) (hi), f i hi x') x :=
   upperSemicontinuousAt_infᵢ fun i => upperSemicontinuousAt_infᵢ fun hi => h i hi
-#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfi
+#align upper_semicontinuous_at_binfi upperSemicontinuousAt_binfᵢ
 
-theorem upperSemicontinuousOn_cinfi {f : ι → α → δ'}
+theorem upperSemicontinuousOn_cinfᵢ {f : ι → α → δ'}
     (bdd : ∀ x ∈ s, BddBelow (range fun i => f i x)) (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
-  upperSemicontinuousWithinAt_cinfi (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
-#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfi
+  upperSemicontinuousWithinAt_cinfᵢ (eventually_nhdsWithin_of_forall bdd) fun i => h i x hx
+#align upper_semicontinuous_on_cinfi upperSemicontinuousOn_cinfᵢ
 
 theorem upperSemicontinuousOn_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuousOn (f i) s) :
     UpperSemicontinuousOn (fun x' => ⨅ i, f i x') s := fun x hx =>
   upperSemicontinuousWithinAt_infᵢ fun i => h i x hx
 #align upper_semicontinuous_on_infi upperSemicontinuousOn_infᵢ
 
-theorem upperSemicontinuousOn_binfi {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuousOn_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuousOn (f i hi) s) :
     UpperSemicontinuousOn (fun x' => ⨅ (i) (hi), f i hi x') s :=
   upperSemicontinuousOn_infᵢ fun i => upperSemicontinuousOn_infᵢ fun hi => h i hi
-#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfi
+#align upper_semicontinuous_on_binfi upperSemicontinuousOn_binfᵢ
 
-theorem upperSemicontinuous_cinfi {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
+theorem upperSemicontinuous_cinfᵢ {f : ι → α → δ'} (bdd : ∀ x, BddBelow (range fun i => f i x))
     (h : ∀ i, UpperSemicontinuous (f i)) : UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x =>
-  upperSemicontinuousAt_cinfi (eventually_of_forall bdd) fun i => h i x
-#align upper_semicontinuous_cinfi upperSemicontinuous_cinfi
+  upperSemicontinuousAt_cinfᵢ (eventually_of_forall bdd) fun i => h i x
+#align upper_semicontinuous_cinfi upperSemicontinuous_cinfᵢ
 
 theorem upperSemicontinuous_infᵢ {f : ι → α → δ} (h : ∀ i, UpperSemicontinuous (f i)) :
     UpperSemicontinuous fun x' => ⨅ i, f i x' := fun x => upperSemicontinuousAt_infᵢ fun i => h i x
 #align upper_semicontinuous_infi upperSemicontinuous_infᵢ
 
-theorem upperSemicontinuous_binfi {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
+theorem upperSemicontinuous_binfᵢ {p : ι → Prop} {f : ∀ (i) (_h : p i), α → δ}
     (h : ∀ i hi, UpperSemicontinuous (f i hi)) :
     UpperSemicontinuous fun x' => ⨅ (i) (hi), f i hi x' :=
   upperSemicontinuous_infᵢ fun i => upperSemicontinuous_infᵢ fun hi => h i hi
-#align upper_semicontinuous_binfi upperSemicontinuous_binfi
+#align upper_semicontinuous_binfi upperSemicontinuous_binfᵢ
 
 end
 
feat: port Topology.Semicontinuous (#2856)

Dependencies 10 + 530

531 files ported (98.2%)
231527 lines ported (97.8%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file