topology.sheaves.sheafMathlib.Topology.Sheaves.Sheaf

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -159,7 +159,7 @@ namespace Sheaf
 -/
 def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
   sheafToPresheaf _ _
-deriving Full, Faithful
+deriving CategoryTheory.Functor.Full, CategoryTheory.Functor.Faithful
 #align Top.sheaf.forget TopCat.Sheaf.forget
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 -/
-import Mathbin.Topology.Sheaves.Presheaf
-import Mathbin.CategoryTheory.Sites.Sheaf
-import Mathbin.CategoryTheory.Sites.Spaces
+import Topology.Sheaves.Presheaf
+import CategoryTheory.Sites.Sheaf
+import CategoryTheory.Sites.Spaces
 
 #align_import topology.sheaves.sheaf from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
-
-! This file was ported from Lean 3 source module topology.sheaves.sheaf
-! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Sheaves.Presheaf
 import Mathbin.CategoryTheory.Sites.Sheaf
 import Mathbin.CategoryTheory.Sites.Spaces
 
+#align_import topology.sheaves.sheaf from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
+
 /-!
 # Sheaves
 
Diff
@@ -109,15 +109,19 @@ theorem isSheaf_unit (F : Presheaf (CategoryTheory.Discrete Unit) X) : F.IsSheaf
 #align Top.presheaf.is_sheaf_unit TopCat.Presheaf.isSheaf_unit
 -/
 
+#print TopCat.Presheaf.isSheaf_iso_iff /-
 theorem isSheaf_iso_iff {F G : Presheaf C X} (α : F ≅ G) : F.IsSheaf ↔ G.IsSheaf :=
   Presheaf.isSheaf_of_iso_iff α
 #align Top.presheaf.is_sheaf_iso_iff TopCat.Presheaf.isSheaf_iso_iff
+-/
 
+#print TopCat.Presheaf.isSheaf_of_iso /-
 /-- Transfer the sheaf condition across an isomorphism of presheaves.
 -/
 theorem isSheaf_of_iso {F G : Presheaf C X} (α : F ≅ G) (h : F.IsSheaf) : G.IsSheaf :=
   (isSheaf_iso_iff α).1 h
 #align Top.presheaf.is_sheaf_of_iso TopCat.Presheaf.isSheaf_of_iso
+-/
 
 end Presheaf
 
@@ -153,22 +157,28 @@ instance sheafInhabited : Inhabited (Sheaf (CategoryTheory.Discrete PUnit) X) :=
 
 namespace Sheaf
 
+#print TopCat.Sheaf.forget /-
 /-- The forgetful functor from sheaves to presheaves.
 -/
 def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
   sheafToPresheaf _ _
 deriving Full, Faithful
 #align Top.sheaf.forget TopCat.Sheaf.forget
+-/
 
+#print TopCat.Sheaf.id_app /-
 -- Note: These can be proved by simp.
 theorem id_app (F : Sheaf C X) (t) : (𝟙 F : F ⟶ F).1.app t = 𝟙 _ :=
   rfl
 #align Top.sheaf.id_app TopCat.Sheaf.id_app
+-/
 
+#print TopCat.Sheaf.comp_app /-
 theorem comp_app {F G H : Sheaf C X} (f : F ⟶ G) (g : G ⟶ H) (t) :
     (f ≫ g).1.app t = f.1.app t ≫ g.1.app t :=
   rfl
 #align Top.sheaf.comp_app TopCat.Sheaf.comp_app
+-/
 
 end Sheaf
 
Diff
@@ -128,7 +128,8 @@ variable (C X)
 satisfying the sheaf condition.
 -/
 def Sheaf : Type max u v w :=
-  Sheaf (Opens.grothendieckTopology X) C deriving Category
+  Sheaf (Opens.grothendieckTopology X) C
+deriving Category
 #align Top.sheaf TopCat.Sheaf
 -/
 
@@ -155,7 +156,8 @@ namespace Sheaf
 /-- The forgetful functor from sheaves to presheaves.
 -/
 def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
-  sheafToPresheaf _ _ deriving Full, Faithful
+  sheafToPresheaf _ _
+deriving Full, Faithful
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
 -- Note: These can be proved by simp.
Diff
@@ -109,22 +109,10 @@ theorem isSheaf_unit (F : Presheaf (CategoryTheory.Discrete Unit) X) : F.IsSheaf
 #align Top.presheaf.is_sheaf_unit TopCat.Presheaf.isSheaf_unit
 -/
 
-/- warning: Top.presheaf.is_sheaf_iso_iff -> TopCat.Presheaf.isSheaf_iso_iff is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u1 u2, max u3 u2 u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.category.{u2, u1, u3} C _inst_1 X) F G) -> (Iff (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u2 u1, max (max u3 u2) u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.instCategoryPresheaf.{u1, u2, u3} C _inst_1 X) F G) -> (Iff (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G))
-Case conversion may be inaccurate. Consider using '#align Top.presheaf.is_sheaf_iso_iff TopCat.Presheaf.isSheaf_iso_iffₓ'. -/
 theorem isSheaf_iso_iff {F G : Presheaf C X} (α : F ≅ G) : F.IsSheaf ↔ G.IsSheaf :=
   Presheaf.isSheaf_of_iso_iff α
 #align Top.presheaf.is_sheaf_iso_iff TopCat.Presheaf.isSheaf_iso_iff
 
-/- warning: Top.presheaf.is_sheaf_of_iso -> TopCat.Presheaf.isSheaf_of_iso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u1 u2, max u3 u2 u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.category.{u2, u1, u3} C _inst_1 X) F G) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G)
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u2 u1, max (max u3 u2) u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.instCategoryPresheaf.{u1, u2, u3} C _inst_1 X) F G) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G)
-Case conversion may be inaccurate. Consider using '#align Top.presheaf.is_sheaf_of_iso TopCat.Presheaf.isSheaf_of_isoₓ'. -/
 /-- Transfer the sheaf condition across an isomorphism of presheaves.
 -/
 theorem isSheaf_of_iso {F G : Presheaf C X} (α : F ≅ G) (h : F.IsSheaf) : G.IsSheaf :=
@@ -164,29 +152,17 @@ instance sheafInhabited : Inhabited (Sheaf (CategoryTheory.Discrete PUnit) X) :=
 
 namespace Sheaf
 
-/- warning: Top.sheaf.forget -> TopCat.Sheaf.forget is a dubious translation:
-lean 3 declaration is
-  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}), CategoryTheory.Functor.{max u1 u2, max u1 u2, max u3 u2 u1, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X) (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.category.{u2, u1, u3} C _inst_1 X)
-but is expected to have type
-  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}), CategoryTheory.Functor.{max u2 u1, max u2 u1, max (max u3 u2) u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.instCategoryPresheaf.{u1, u2, u3} C _inst_1 X)
-Case conversion may be inaccurate. Consider using '#align Top.sheaf.forget TopCat.Sheaf.forgetₓ'. -/
 /-- The forgetful functor from sheaves to presheaves.
 -/
 def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
   sheafToPresheaf _ _ deriving Full, Faithful
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
-/- warning: Top.sheaf.id_app -> TopCat.Sheaf.id_app is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align Top.sheaf.id_app TopCat.Sheaf.id_appₓ'. -/
 -- Note: These can be proved by simp.
 theorem id_app (F : Sheaf C X) (t) : (𝟙 F : F ⟶ F).1.app t = 𝟙 _ :=
   rfl
 #align Top.sheaf.id_app TopCat.Sheaf.id_app
 
-/- warning: Top.sheaf.comp_app -> TopCat.Sheaf.comp_app is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align Top.sheaf.comp_app TopCat.Sheaf.comp_appₓ'. -/
 theorem comp_app {F G H : Sheaf C X} (f : F ⟶ G) (g : G ⟶ H) (t) :
     (f ≫ g).1.app t = f.1.app t ≫ g.1.app t :=
   rfl
Diff
@@ -177,10 +177,7 @@ def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
 /- warning: Top.sheaf.id_app -> TopCat.Sheaf.id_app is a dubious translation:
-lean 3 declaration is
-  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) (F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F F (CategoryTheory.CategoryStruct.id.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X)) F)) t) (CategoryTheory.CategoryStruct.id.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t))
-but is expected to have type
-  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) (F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F F (CategoryTheory.CategoryStruct.id.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X)) F)) t) (CategoryTheory.CategoryStruct.id.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t))
+<too large>
 Case conversion may be inaccurate. Consider using '#align Top.sheaf.id_app TopCat.Sheaf.id_appₓ'. -/
 -- Note: These can be proved by simp.
 theorem id_app (F : Sheaf C X) (t) : (𝟙 F : F ⟶ F).1.app t = 𝟙 _ :=
@@ -188,10 +185,7 @@ theorem id_app (F : Sheaf C X) (t) : (𝟙 F : F ⟶ F).1.app t = 𝟙 _ :=
 #align Top.sheaf.id_app TopCat.Sheaf.id_app
 
 /- warning: Top.sheaf.comp_app -> TopCat.Sheaf.comp_app is a dubious translation:
-lean 3 declaration is
-  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) {F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {H : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} (f : Quiver.Hom.{succ (max u1 u2), max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X))) F G) (g : Quiver.Hom.{succ (max u1 u2), max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X))) G H) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F H (CategoryTheory.CategoryStruct.comp.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X)) F G H f g)) t) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F G f) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G H g) t))
-but is expected to have type
-  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) {F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {H : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X))) F G) (g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X))) G H) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H)) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F H (CategoryTheory.CategoryStruct.comp.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X)) F G H f g)) t) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H)) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F G f) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G H g) t))
+<too large>
 Case conversion may be inaccurate. Consider using '#align Top.sheaf.comp_app TopCat.Sheaf.comp_appₓ'. -/
 theorem comp_app {F G H : Sheaf C X} (f : F ⟶ G) (g : G ⟶ H) (t) :
     (f ≫ g).1.app t = f.1.app t ≫ g.1.app t :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 
 ! This file was ported from Lean 3 source module topology.sheaves.sheaf
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.CategoryTheory.Sites.Spaces
 /-!
 # Sheaves
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We define sheaves on a topological space, with values in an arbitrary category.
 
 A presheaf on a topological space `X` is a sheaf presicely when it is a sheaf under the
Diff
@@ -53,6 +53,7 @@ variable {X : TopCat.{w}} (F : Presheaf C X) {ι : Type v} (U : ι → Opens X)
 
 namespace Presheaf
 
+#print TopCat.Presheaf.IsSheaf /-
 /-- The sheaf condition has several different equivalent formulations.
 The official definition chosen here is in terms of grothendieck topologies so that the results on
 sites could be applied here easily, and this condition does not require additional constraints on
@@ -95,17 +96,32 @@ preserve limits. This applies to most "algebraic" categories, e.g. groups, abeli
 def IsSheaf (F : Presheaf.{w, v, u} C X) : Prop :=
   Presheaf.IsSheaf (Opens.grothendieckTopology X) F
 #align Top.presheaf.is_sheaf TopCat.Presheaf.IsSheaf
+-/
 
+#print TopCat.Presheaf.isSheaf_unit /-
 /-- The presheaf valued in `unit` over any topological space is a sheaf.
 -/
 theorem isSheaf_unit (F : Presheaf (CategoryTheory.Discrete Unit) X) : F.IsSheaf :=
   fun x U S hS x hx => ⟨eqToHom (Subsingleton.elim _ _), by tidy, by tidy⟩
 #align Top.presheaf.is_sheaf_unit TopCat.Presheaf.isSheaf_unit
+-/
 
+/- warning: Top.presheaf.is_sheaf_iso_iff -> TopCat.Presheaf.isSheaf_iso_iff is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u1 u2, max u3 u2 u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.category.{u2, u1, u3} C _inst_1 X) F G) -> (Iff (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u2 u1, max (max u3 u2) u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.instCategoryPresheaf.{u1, u2, u3} C _inst_1 X) F G) -> (Iff (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G))
+Case conversion may be inaccurate. Consider using '#align Top.presheaf.is_sheaf_iso_iff TopCat.Presheaf.isSheaf_iso_iffₓ'. -/
 theorem isSheaf_iso_iff {F G : Presheaf C X} (α : F ≅ G) : F.IsSheaf ↔ G.IsSheaf :=
   Presheaf.isSheaf_of_iso_iff α
 #align Top.presheaf.is_sheaf_iso_iff TopCat.Presheaf.isSheaf_iso_iff
 
+/- warning: Top.presheaf.is_sheaf_of_iso -> TopCat.Presheaf.isSheaf_of_iso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u1 u2, max u3 u2 u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.category.{u2, u1, u3} C _inst_1 X) F G) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G)
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {X : TopCat.{u1}} {F : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Presheaf.{u1, u2, u3} C _inst_1 X}, (CategoryTheory.Iso.{max u2 u1, max (max u3 u2) u1} (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.instCategoryPresheaf.{u1, u2, u3} C _inst_1 X) F G) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X F) -> (TopCat.Presheaf.IsSheaf.{u1, u2, u3} C _inst_1 X G)
+Case conversion may be inaccurate. Consider using '#align Top.presheaf.is_sheaf_of_iso TopCat.Presheaf.isSheaf_of_isoₓ'. -/
 /-- Transfer the sheaf condition across an isomorphism of presheaves.
 -/
 theorem isSheaf_of_iso {F G : Presheaf C X} (α : F ≅ G) (h : F.IsSheaf) : G.IsSheaf :=
@@ -116,40 +132,64 @@ end Presheaf
 
 variable (C X)
 
+#print TopCat.Sheaf /-
 /-- A `sheaf C X` is a presheaf of objects from `C` over a (bundled) topological space `X`,
 satisfying the sheaf condition.
 -/
 def Sheaf : Type max u v w :=
   Sheaf (Opens.grothendieckTopology X) C deriving Category
 #align Top.sheaf TopCat.Sheaf
+-/
 
 variable {C X}
 
+#print TopCat.Sheaf.presheaf /-
 /-- The underlying presheaf of a sheaf -/
 abbrev Sheaf.presheaf (F : X.Sheaf C) : TopCat.Presheaf C X :=
   F.1
 #align Top.sheaf.presheaf TopCat.Sheaf.presheaf
+-/
 
 variable (C X)
 
+#print TopCat.sheafInhabited /-
 -- Let's construct a trivial example, to keep the inhabited linter happy.
 instance sheafInhabited : Inhabited (Sheaf (CategoryTheory.Discrete PUnit) X) :=
   ⟨⟨Functor.star _, Presheaf.isSheaf_unit _⟩⟩
 #align Top.sheaf_inhabited TopCat.sheafInhabited
+-/
 
 namespace Sheaf
 
+/- warning: Top.sheaf.forget -> TopCat.Sheaf.forget is a dubious translation:
+lean 3 declaration is
+  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}), CategoryTheory.Functor.{max u1 u2, max u1 u2, max u3 u2 u1, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X) (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.category.{u2, u1, u3} C _inst_1 X)
+but is expected to have type
+  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}), CategoryTheory.Functor.{max u2 u1, max u2 u1, max (max u3 u2) u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X) (TopCat.Presheaf.{u1, u2, u3} C _inst_1 X) (TopCat.instCategoryPresheaf.{u1, u2, u3} C _inst_1 X)
+Case conversion may be inaccurate. Consider using '#align Top.sheaf.forget TopCat.Sheaf.forgetₓ'. -/
 /-- The forgetful functor from sheaves to presheaves.
 -/
 def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
   sheafToPresheaf _ _ deriving Full, Faithful
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
+/- warning: Top.sheaf.id_app -> TopCat.Sheaf.id_app is a dubious translation:
+lean 3 declaration is
+  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) (F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F F (CategoryTheory.CategoryStruct.id.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X)) F)) t) (CategoryTheory.CategoryStruct.id.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t))
+but is expected to have type
+  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) (F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F F (CategoryTheory.CategoryStruct.id.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X)) F)) t) (CategoryTheory.CategoryStruct.id.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t))
+Case conversion may be inaccurate. Consider using '#align Top.sheaf.id_app TopCat.Sheaf.id_appₓ'. -/
 -- Note: These can be proved by simp.
 theorem id_app (F : Sheaf C X) (t) : (𝟙 F : F ⟶ F).1.app t = 𝟙 _ :=
   rfl
 #align Top.sheaf.id_app TopCat.Sheaf.id_app
 
+/- warning: Top.sheaf.comp_app -> TopCat.Sheaf.comp_app is a dubious translation:
+lean 3 declaration is
+  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) {F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {H : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} (f : Quiver.Hom.{succ (max u1 u2), max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X))) F G) (g : Quiver.Hom.{succ (max u1 u2), max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X))) G H) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F H (CategoryTheory.CategoryStruct.comp.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u3 u2 u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.Sheaf.category.{u2, u1, u3} C _inst_1 X)) F G H f g)) t) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G) t) (CategoryTheory.Functor.obj.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 F G f) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) (Opens.grothendieckTopology.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) C _inst_1 G H g) t))
+but is expected to have type
+  forall (C : Type.{u3}) [_inst_1 : CategoryTheory.Category.{u2, u3} C] (X : TopCat.{u1}) {F : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {G : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} {H : TopCat.Sheaf.{u1, u2, u3} C _inst_1 X} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X))) F G) (g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X))) G H) (t : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H)) t)) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F H (CategoryTheory.CategoryStruct.comp.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (TopCat.Sheaf.{u1, u2, u3} C _inst_1 X) (TopCat.SheafCat.{u1, u2, u3} C _inst_1 X)) F G H f g)) t) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G)) t) (Prefunctor.obj.{succ u1, succ u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H)) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 F G f) t) (CategoryTheory.NatTrans.app.{u1, u2, u1, u3} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) C _inst_1 (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G) (CategoryTheory.Sheaf.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 H) (CategoryTheory.Sheaf.Hom.val.{u1, u2, u1, u3} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) (Opens.grothendieckTopology.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) C _inst_1 G H g) t))
+Case conversion may be inaccurate. Consider using '#align Top.sheaf.comp_app TopCat.Sheaf.comp_appₓ'. -/
 theorem comp_app {F G H : Sheaf C X} (f : F ⟶ G) (g : G ⟶ H) (t) :
     (f ≫ g).1.app t = f.1.app t ≫ g.1.app t :=
   rfl

Changes in mathlib4

mathlib3
mathlib4
chore(CategoryTheory): make Functor.Full a Prop (#12449)

Before this PR, Functor.Full contained the data of the preimage of maps by a full functor F. This PR makes Functor.Full a proposition. This is to prevent any diamond to appear.

The lemma Functor.image_preimage is also renamed Functor.map_preimage.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -146,8 +146,8 @@ set_option linter.uppercaseLean3 false in
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
 -- Porting note: `deriving Full` failed
-instance forgetFull : (forget C X).Full where
-  preimage := Sheaf.Hom.mk
+instance forget_full : (forget C X).Full where
+  map_surjective f := ⟨Sheaf.Hom.mk f, rfl⟩
 
 -- Porting note: `deriving Faithful` failed
 instance forgetFaithful : (forget C X).Faithful where
chore(CategoryTheory): move Full, Faithful, EssSurj, IsEquivalence and ReflectsIsomorphisms to the Functor namespace (#11985)

These notions on functors are now Functor.Full, Functor.Faithful, Functor.EssSurj, Functor.IsEquivalence, Functor.ReflectsIsomorphisms. Deprecated aliases are introduced for the previous names.

Diff
@@ -146,11 +146,11 @@ set_option linter.uppercaseLean3 false in
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
 -- Porting note: `deriving Full` failed
-instance forgetFull : Full (forget C X) where
+instance forgetFull : (forget C X).Full where
   preimage := Sheaf.Hom.mk
 
 -- Porting note: `deriving Faithful` failed
-instance forgetFaithful : Faithful (forget C X) where
+instance forgetFaithful : (forget C X).Faithful where
   map_injective := Sheaf.Hom.ext _ _
 
 -- Note: These can be proved by simp.
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -37,7 +37,6 @@ open CategoryTheory CategoryTheory.Limits TopologicalSpace Opposite TopologicalS
 namespace TopCat
 
 variable {C : Type u} [Category.{v} C]
-
 variable {X : TopCat.{w}} (F : Presheaf C X) {ι : Type v} (U : ι → Opens X)
 
 namespace Presheaf
style: reduce spacing variation in "porting note" comments (#10886)

In this pull request, I have systematically eliminated the leading whitespace preceding the colon (:) within all unlabelled or unclassified porting notes. This adjustment facilitates a more efficient review process for the remaining notes by ensuring no entries are overlooked due to formatting inconsistencies.

Diff
@@ -117,7 +117,7 @@ nonrec def Sheaf : Type max u v w :=
 set_option linter.uppercaseLean3 false in
 #align Top.sheaf TopCat.Sheaf
 
--- Porting Note : `deriving Cat` failed
+-- Porting note: `deriving Cat` failed
 instance SheafCat : Category (Sheaf C X) :=
   show Category (CategoryTheory.Sheaf (Opens.grothendieckTopology X) C) from inferInstance
 
@@ -146,11 +146,11 @@ def forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X :=
 set_option linter.uppercaseLean3 false in
 #align Top.sheaf.forget TopCat.Sheaf.forget
 
--- Porting note : `deriving Full` failed
+-- Porting note: `deriving Full` failed
 instance forgetFull : Full (forget C X) where
   preimage := Sheaf.Hom.mk
 
--- Porting note : `deriving Faithful` failed
+-- Porting note: `deriving Faithful` failed
 instance forgetFaithful : Faithful (forget C X) where
   map_injective := Sheaf.Hom.ext _ _
 
chore: fix some cases in names (#7469)

And fix some names in comments where this revealed issues

Diff
@@ -23,7 +23,7 @@ See the docstring of `TopCat.Presheaf.IsSheaf` for an explanation on the design
 of equivalent conditions.
 
 We provide the instance `CategoryTheory.Category (TopCat.Sheaf C X)` as the full subcategory of
-presheaves, and the fully faithful functor `sheaf.forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X`.
+presheaves, and the fully faithful functor `Sheaf.forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X`.
 
 -/
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
-
-! This file was ported from Lean 3 source module topology.sheaves.sheaf
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.Sheaves.Presheaf
 import Mathlib.CategoryTheory.Sites.Sheaf
 import Mathlib.CategoryTheory.Sites.Spaces
 
+#align_import topology.sheaves.sheaf from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
+
 /-!
 # Sheaves
 
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -19,7 +19,7 @@ We define sheaves on a topological space, with values in an arbitrary category.
 
 A presheaf on a topological space `X` is a sheaf precisely when it is a sheaf under the
 grothendieck topology on `opens X`, which expands out to say: For each open cover `{ Uᵢ }` of
-`U`, and a family of compatible functions `A ⟶ F(Uᵢ)` for an `A : X`, there exists an unique
+`U`, and a family of compatible functions `A ⟶ F(Uᵢ)` for an `A : X`, there exists a unique
 gluing `A ⟶ F(U)` compatible with the restriction.
 
 See the docstring of `TopCat.Presheaf.IsSheaf` for an explanation on the design decisions and a list
@@ -54,7 +54,7 @@ The equivalent formulations of the sheaf condition on `presheaf C X` are as foll
 1. `TopCat.Presheaf.IsSheaf`: (the official definition)
   It is a sheaf with respect to the grothendieck topology on `opens X`, which is to say:
   For each open cover `{ Uᵢ }` of `U`, and a family of compatible functions `A ⟶ F(Uᵢ)` for an
-  `A : X`, there exists an unique gluing `A ⟶ F(U)` compatible with the restriction.
+  `A : X`, there exists a unique gluing `A ⟶ F(U)` compatible with the restriction.
 
 2. `TopCat.Presheaf.IsSheafEqualizerProducts`: (requires `C` to have all products)
   For each open cover `{ Uᵢ }` of `U`, `F(U) ⟶ ∏ F(Uᵢ)` is the equalizer of the two morphisms
chore: tidy various files (#4466)
Diff
@@ -25,8 +25,8 @@ gluing `A ⟶ F(U)` compatible with the restriction.
 See the docstring of `TopCat.Presheaf.IsSheaf` for an explanation on the design decisions and a list
 of equivalent conditions.
 
-We provide the instance `category (sheaf C X)` as the full subcategory of presheaves,
-and the fully faithful functor `sheaf.forget : sheaf C X ⥤ presheaf C X`.
+We provide the instance `CategoryTheory.Category (TopCat.Sheaf C X)` as the full subcategory of
+presheaves, and the fully faithful functor `sheaf.forget : TopCat.Sheaf C X ⥤ TopCat.Presheaf C X`.
 
 -/
 
@@ -35,15 +35,7 @@ universe w v u
 
 noncomputable section
 
-open CategoryTheory
-
-open CategoryTheory.Limits
-
-open TopologicalSpace
-
-open Opposite
-
-open TopologicalSpace.Opens
+open CategoryTheory CategoryTheory.Limits TopologicalSpace Opposite TopologicalSpace.Opens
 
 namespace TopCat
 
@@ -64,37 +56,36 @@ The equivalent formulations of the sheaf condition on `presheaf C X` are as foll
   For each open cover `{ Uᵢ }` of `U`, and a family of compatible functions `A ⟶ F(Uᵢ)` for an
   `A : X`, there exists an unique gluing `A ⟶ F(U)` compatible with the restriction.
 
-2. `Top.presheaf.is_sheaf_equalizer_products`: (requires `C` to have all products)
+2. `TopCat.Presheaf.IsSheafEqualizerProducts`: (requires `C` to have all products)
   For each open cover `{ Uᵢ }` of `U`, `F(U) ⟶ ∏ F(Uᵢ)` is the equalizer of the two morphisms
   `∏ F(Uᵢ) ⟶ ∏ F(Uᵢ ∩ Uⱼ)`.
-  See `Top.presheaf.is_sheaf_iff_is_sheaf_equalizer_products`.
+  See `TopCat.Presheaf.isSheaf_iff_isSheafEqualizerProducts`.
 
 3. `TopCat.Presheaf.IsSheafOpensLeCover`:
   For each open cover `{ Uᵢ }` of `U`, `F(U)` is the limit of the diagram consisting of arrows
   `F(V₁) ⟶ F(V₂)` for every pair of open sets `V₁ ⊇ V₂` that are contained in some `Uᵢ`.
   See `TopCat.Presheaf.isSheaf_iff_isSheafOpensLeCover`.
 
-4. `Top.presheaf.is_sheaf_pairwise_intersections`:
+4. `TopCat.Presheaf.IsSheafPairwiseIntersections`:
   For each open cover `{ Uᵢ }` of `U`, `F(U)` is the limit of the diagram consisting of arrows
   from `F(Uᵢ)` and `F(Uⱼ)` to `F(Uᵢ ∩ Uⱼ)` for each pair `(i, j)`.
-  See `Top.presheaf.is_sheaf_iff_is_sheaf_pairwise_intersections`.
+  See `TopCat.Presheaf.isSheaf_iff_isSheafPairwiseIntersections`.
 
 The following requires `C` to be concrete and complete, and `forget C` to reflect isomorphisms and
 preserve limits. This applies to most "algebraic" categories, e.g. groups, abelian groups and rings.
 
-5. `Top.presheaf.is_sheaf_unique_gluing`:
+5. `TopCat.Presheaf.IsSheafUniqueGluing`:
   (requires `C` to be concrete and complete; `forget C` to reflect isomorphisms and preserve limits)
   For each open cover `{ Uᵢ }` of `U`, and a compatible family of elements `x : F(Uᵢ)`, there exists
   a unique gluing `x : F(U)` that restricts to the given elements.
-  See `Top.presheaf.is_sheaf_iff_is_sheaf_unique_gluing`.
+  See `TopCat.Presheaf.isSheaf_iff_isSheafUniqueGluing`.
 
 6. The underlying sheaf of types is a sheaf.
-  See `Top.presheaf.is_sheaf_iff_is_sheaf_comp` and
+  See `TopCat.Presheaf.isSheaf_iff_isSheaf_comp` and
   `CategoryTheory.Presheaf.isSheaf_iff_isSheaf_forget`.
 -/
-def IsSheaf (F : Presheaf.{w, v, u} C X) : Prop :=
-  -- Porting Note : needs full name
-  CategoryTheory.Presheaf.IsSheaf (Opens.grothendieckTopology X) F
+nonrec def IsSheaf (F : Presheaf.{w, v, u} C X) : Prop :=
+  Presheaf.IsSheaf (Opens.grothendieckTopology X) F
 set_option linter.uppercaseLean3 false in
 #align Top.presheaf.is_sheaf TopCat.Presheaf.IsSheaf
 
@@ -121,12 +112,11 @@ end Presheaf
 
 variable (C X)
 
-/-- A `sheaf C X` is a presheaf of objects from `C` over a (bundled) topological space `X`,
+/-- A `TopCat.Sheaf C X` is a presheaf of objects from `C` over a (bundled) topological space `X`,
 satisfying the sheaf condition.
 -/
-def Sheaf : Type max u v w :=
-  -- Porting note : need full name
-  CategoryTheory.Sheaf (Opens.grothendieckTopology X) C
+nonrec def Sheaf : Type max u v w :=
+  Sheaf (Opens.grothendieckTopology X) C
 set_option linter.uppercaseLean3 false in
 #align Top.sheaf TopCat.Sheaf
 
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -22,7 +22,7 @@ grothendieck topology on `opens X`, which expands out to say: For each open cove
 `U`, and a family of compatible functions `A ⟶ F(Uᵢ)` for an `A : X`, there exists an unique
 gluing `A ⟶ F(U)` compatible with the restriction.
 
-See the docstring of `Top.presheaf.is_sheaf` for an explanation on the design decisions and a list
+See the docstring of `TopCat.Presheaf.IsSheaf` for an explanation on the design decisions and a list
 of equivalent conditions.
 
 We provide the instance `category (sheaf C X)` as the full subcategory of presheaves,
@@ -59,7 +59,7 @@ sites could be applied here easily, and this condition does not require addition
 the value category.
 The equivalent formulations of the sheaf condition on `presheaf C X` are as follows :
 
-1. `Top.presheaf.is_sheaf`: (the official definition)
+1. `TopCat.Presheaf.IsSheaf`: (the official definition)
   It is a sheaf with respect to the grothendieck topology on `opens X`, which is to say:
   For each open cover `{ Uᵢ }` of `U`, and a family of compatible functions `A ⟶ F(Uᵢ)` for an
   `A : X`, there exists an unique gluing `A ⟶ F(U)` compatible with the restriction.
@@ -69,10 +69,10 @@ The equivalent formulations of the sheaf condition on `presheaf C X` are as foll
   `∏ F(Uᵢ) ⟶ ∏ F(Uᵢ ∩ Uⱼ)`.
   See `Top.presheaf.is_sheaf_iff_is_sheaf_equalizer_products`.
 
-3. `Top.presheaf.is_sheaf_opens_le_cover`:
+3. `TopCat.Presheaf.IsSheafOpensLeCover`:
   For each open cover `{ Uᵢ }` of `U`, `F(U)` is the limit of the diagram consisting of arrows
   `F(V₁) ⟶ F(V₂)` for every pair of open sets `V₁ ⊇ V₂` that are contained in some `Uᵢ`.
-  See `Top.presheaf.is_sheaf_iff_is_sheaf_opens_le_cover`.
+  See `TopCat.Presheaf.isSheaf_iff_isSheafOpensLeCover`.
 
 4. `Top.presheaf.is_sheaf_pairwise_intersections`:
   For each open cover `{ Uᵢ }` of `U`, `F(U)` is the limit of the diagram consisting of arrows
@@ -90,7 +90,7 @@ preserve limits. This applies to most "algebraic" categories, e.g. groups, abeli
 
 6. The underlying sheaf of types is a sheaf.
   See `Top.presheaf.is_sheaf_iff_is_sheaf_comp` and
-  `category_theory.presheaf.is_sheaf_iff_is_sheaf_forget`.
+  `CategoryTheory.Presheaf.isSheaf_iff_isSheaf_forget`.
 -/
 def IsSheaf (F : Presheaf.{w, v, u} C X) : Prop :=
   -- Porting Note : needs full name
@@ -98,7 +98,7 @@ def IsSheaf (F : Presheaf.{w, v, u} C X) : Prop :=
 set_option linter.uppercaseLean3 false in
 #align Top.presheaf.is_sheaf TopCat.Presheaf.IsSheaf
 
-/-- The presheaf valued in `unit` over any topological space is a sheaf.
+/-- The presheaf valued in `Unit` over any topological space is a sheaf.
 -/
 theorem isSheaf_unit (F : Presheaf (CategoryTheory.Discrete Unit) X) : F.IsSheaf :=
   fun x U S _ x _ => ⟨eqToHom (Subsingleton.elim _ _), by aesop_cat, fun _ => by aesop_cat⟩
feat: port Topology.Sheaves.Sheaf (#4088)

Dependencies 8 + 433

434 files ported (98.2%)
175608 lines ported (97.2%)
Show graph

The unported dependencies are