topology.uniform_space.compact_convergenceMathlib.Topology.UniformSpace.CompactConvergence

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -318,7 +318,7 @@ theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
         {fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V} ⊆ X :=
   by
   simp only [has_basis_compact_convergence_uniformity_aux.mem_iff, exists_prop, Prod.exists,
-    and_assoc']
+    and_assoc]
 #align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformity
 
 #print ContinuousMap.compactConvergenceUniformSpace /-
Diff
@@ -210,8 +210,8 @@ convergence.
 
 The topology of compact convergence is thus at least as fine as the compact-open topology. -/
 theorem compactConvNhd_subset_compact_open (hK : IsCompact K) {U : Set β} (hU : IsOpen U)
-    (hf : f ∈ CompactOpen.gen K U) :
-    ∃ V ∈ 𝓤 β, IsOpen V ∧ compactConvNhd K V f ⊆ CompactOpen.gen K U :=
+    (hf : f ∈ compactOpen.gen K U) :
+    ∃ V ∈ 𝓤 β, IsOpen V ∧ compactConvNhd K V f ⊆ compactOpen.gen K U :=
   by
   obtain ⟨V, hV₁, hV₂, hV₃⟩ := lebesgue_number_of_compact_open (hK.image f.continuous) hU hf
   refine' ⟨V, hV₁, hV₂, _⟩
@@ -227,8 +227,8 @@ the compact-open topology is at least as fine as the topology of compact converg
 theorem iInter_compact_open_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
     ∃ (ι : Sort (u₁ + 1)) (_ : Fintype ι) (C : ι → Set α) (hC : ∀ i, IsCompact (C i)) (U :
       ι → Set β) (hU : ∀ i, IsOpen (U i)),
-      (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
-        (⋂ i, CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f :=
+      (f ∈ ⋂ i, compactOpen.gen (C i) (U i)) ∧
+        (⋂ i, compactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f :=
   by
   obtain ⟨W, hW₁, hW₄, hW₂, hW₃⟩ := comp_open_symm_mem_uniformity_sets hV
   obtain ⟨Z, hZ₁, hZ₄, hZ₂, hZ₃⟩ := comp_open_symm_mem_uniformity_sets hW₁
@@ -263,7 +263,7 @@ theorem iInter_compact_open_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V
     ⟨t, t.fintype_coe_sort, C, fun i => hK.inter_right isClosed_closure, fun i =>
       ball (f ((i : K) : α)) W, fun i => is_open_ball _ hW₄, by simp [compact_open.gen, hfC],
       fun g hg x hx => hW₃ (mem_comp_rel.mpr _)⟩
-  simp only [mem_Inter, compact_open.gen, mem_set_of_eq, image_subset_iff] at hg 
+  simp only [mem_Inter, compact_open.gen, mem_set_of_eq, image_subset_iff] at hg
   obtain ⟨y, hy⟩ := mem_Union.mp (hC hx)
   exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩
 #align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compact_open_gen_subset_compactConvNhd
@@ -284,7 +284,7 @@ theorem compactOpen_eq_compact_convergence :
     haveI := hι
     exact
       ⟨⋂ i, compact_open.gen (C i) (U i), h₂.trans hXf,
-        isOpen_iInter_of_finite fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
+        isOpen_iInter_of_finite fun i => ContinuousMap.isOpen_setOf_mapsTo (hC i) (hU i), h₁⟩
   · simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop,
       forall_exists_index, set_of_subset_set_of]
     rintro - K hK U hU rfl f hf
@@ -428,7 +428,7 @@ See also `tendsto_iff_tendsto_locally_uniformly`, especially for T2 spaces. -/
 theorem tendstoLocallyUniformly_of_tendsto (hα : ∀ x : α, ∃ n, IsCompact n ∧ n ∈ 𝓝 x)
     (h : Tendsto F p (𝓝 f)) : TendstoLocallyUniformly (fun i a => F i a) f p :=
   by
-  rw [tendsto_iff_forall_compact_tendsto_uniformly_on] at h 
+  rw [tendsto_iff_forall_compact_tendsto_uniformly_on] at h
   intro V hV x
   obtain ⟨n, hn₁, hn₂⟩ := hα x
   exact ⟨n, hn₂, h n hn₁ V hV⟩
Diff
@@ -92,37 +92,28 @@ variable (K : Set α) (V : Set (β × β)) (f : C(α, β))
 
 namespace ContinuousMap
 
-#print ContinuousMap.compactConvNhd /-
 /-- Given `K ⊆ α`, `V ⊆ β × β`, and `f : C(α, β)`, we define `compact_conv_nhd K V f` to be the set
 of `g : C(α, β)` that are `V`-close to `f` on `K`. -/
 def compactConvNhd : Set C(α, β) :=
   {g | ∀ x ∈ K, (f x, g x) ∈ V}
 #align continuous_map.compact_conv_nhd ContinuousMap.compactConvNhd
--/
 
 variable {K V}
 
-#print ContinuousMap.self_mem_compactConvNhd /-
 theorem self_mem_compactConvNhd (hV : V ∈ 𝓤 β) : f ∈ compactConvNhd K V f := fun x hx =>
   refl_mem_uniformity hV
 #align continuous_map.self_mem_compact_conv_nhd ContinuousMap.self_mem_compactConvNhd
--/
 
-#print ContinuousMap.compactConvNhd_mono /-
 @[mono]
 theorem compactConvNhd_mono {V' : Set (β × β)} (hV' : V' ⊆ V) :
     compactConvNhd K V' f ⊆ compactConvNhd K V f := fun x hx a ha => hV' (hx a ha)
 #align continuous_map.compact_conv_nhd_mono ContinuousMap.compactConvNhd_mono
--/
 
-#print ContinuousMap.compactConvNhd_mem_comp /-
 theorem compactConvNhd_mem_comp {g₁ g₂ : C(α, β)} {V' : Set (β × β)}
     (hg₁ : g₁ ∈ compactConvNhd K V f) (hg₂ : g₂ ∈ compactConvNhd K V' g₁) :
     g₂ ∈ compactConvNhd K (V ○ V') f := fun x hx => ⟨g₁ x, hg₁ x hx, hg₂ x hx⟩
 #align continuous_map.compact_conv_nhd_mem_comp ContinuousMap.compactConvNhd_mem_comp
--/
 
-#print ContinuousMap.compactConvNhd_nhd_basis /-
 /-- A key property of `compact_conv_nhd`. It allows us to apply
 `topological_space.nhds_mk_of_nhds_filter_basis` below. -/
 theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
@@ -134,46 +125,36 @@ theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
     ⟨V', h₁, subset.trans (subset_comp_self_of_mem_uniformity h₁) h₂, fun g hg g' hg' =>
       compact_conv_nhd_mono f h₂ (compact_conv_nhd_mem_comp f hg hg')⟩
 #align continuous_map.compact_conv_nhd_nhd_basis ContinuousMap.compactConvNhd_nhd_basis
--/
 
-#print ContinuousMap.compactConvNhd_subset_inter /-
 theorem compactConvNhd_subset_inter (K₁ K₂ : Set α) (V₁ V₂ : Set (β × β)) :
     compactConvNhd (K₁ ∪ K₂) (V₁ ∩ V₂) f ⊆ compactConvNhd K₁ V₁ f ∩ compactConvNhd K₂ V₂ f :=
   fun g hg =>
   ⟨fun x hx => mem_of_mem_inter_left (hg x (mem_union_left K₂ hx)), fun x hx =>
     mem_of_mem_inter_right (hg x (mem_union_right K₁ hx))⟩
 #align continuous_map.compact_conv_nhd_subset_inter ContinuousMap.compactConvNhd_subset_inter
--/
 
-#print ContinuousMap.compactConvNhd_compact_entourage_nonempty /-
-theorem compactConvNhd_compact_entourage_nonempty :
+theorem compact_conv_nhd_compact_entourage_nonempty :
     {KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β}.Nonempty :=
   ⟨⟨∅, univ⟩, isCompact_empty, Filter.univ_mem⟩
-#align continuous_map.compact_conv_nhd_compact_entourage_nonempty ContinuousMap.compactConvNhd_compact_entourage_nonempty
--/
+#align continuous_map.compact_conv_nhd_compact_entourage_nonempty ContinuousMap.compact_conv_nhd_compact_entourage_nonempty
 
-#print ContinuousMap.compactConvNhd_filter_isBasis /-
 theorem compactConvNhd_filter_isBasis :
     Filter.IsBasis (fun KV : Set α × Set (β × β) => IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β) fun KV =>
       compactConvNhd KV.1 KV.2 f :=
-  { Nonempty := compactConvNhd_compact_entourage_nonempty
+  { Nonempty := compact_conv_nhd_compact_entourage_nonempty
     inter := by
       rintro ⟨K₁, V₁⟩ ⟨K₂, V₂⟩ ⟨hK₁, hV₁⟩ ⟨hK₂, hV₂⟩
       exact
         ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩,
           compact_conv_nhd_subset_inter f K₁ K₂ V₁ V₂⟩ }
 #align continuous_map.compact_conv_nhd_filter_is_basis ContinuousMap.compactConvNhd_filter_isBasis
--/
 
-#print ContinuousMap.compactConvergenceFilterBasis /-
 /-- A filter basis for the neighbourhood filter of a point in the compact-convergence topology. -/
 def compactConvergenceFilterBasis (f : C(α, β)) : FilterBasis C(α, β) :=
   (compactConvNhd_filter_isBasis f).FilterBasis
 #align continuous_map.compact_convergence_filter_basis ContinuousMap.compactConvergenceFilterBasis
--/
 
-#print ContinuousMap.mem_compactConvergence_nhd_filter /-
-theorem mem_compactConvergence_nhd_filter (Y : Set C(α, β)) :
+theorem mem_compact_convergence_nhd_filter (Y : Set C(α, β)) :
     Y ∈ (compactConvergenceFilterBasis f).filterₓ ↔
       ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β), compactConvNhd K V f ⊆ Y :=
   by
@@ -182,20 +163,16 @@ theorem mem_compactConvergence_nhd_filter (Y : Set C(α, β)) :
     exact ⟨K, V, hK, hV, hY⟩
   · rintro ⟨K, V, hK, hV, hY⟩
     exact ⟨compact_conv_nhd K V f, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩
-#align continuous_map.mem_compact_convergence_nhd_filter ContinuousMap.mem_compactConvergence_nhd_filter
--/
+#align continuous_map.mem_compact_convergence_nhd_filter ContinuousMap.mem_compact_convergence_nhd_filter
 
-#print ContinuousMap.compactConvergenceTopology /-
 /-- The compact-convergence topology. In fact, see `compact_open_eq_compact_convergence` this is
 the same as the compact-open topology. This definition is thus an auxiliary convenience definition
 and is unlikely to be of direct use. -/
 def compactConvergenceTopology : TopologicalSpace C(α, β) :=
   TopologicalSpace.mkOfNhds fun f => (compactConvergenceFilterBasis f).filterₓ
 #align continuous_map.compact_convergence_topology ContinuousMap.compactConvergenceTopology
--/
 
-#print ContinuousMap.nhds_compactConvergence /-
-theorem nhds_compactConvergence :
+theorem nhds_compact_convergence :
     @nhds _ compactConvergenceTopology f = (compactConvergenceFilterBasis f).filterₓ :=
   by
   rw [TopologicalSpace.nhds_mkOfNhds_filterBasis] <;> rintro g - ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩
@@ -204,23 +181,19 @@ theorem nhds_compactConvergence :
     exact
       ⟨compact_conv_nhd K V' g, ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, compact_conv_nhd_mono g h₁, fun g' hg' =>
         ⟨compact_conv_nhd K V' g', ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, h₂ g' hg'⟩⟩
-#align continuous_map.nhds_compact_convergence ContinuousMap.nhds_compactConvergence
--/
+#align continuous_map.nhds_compact_convergence ContinuousMap.nhds_compact_convergence
 
-#print ContinuousMap.hasBasis_nhds_compactConvergence /-
-theorem hasBasis_nhds_compactConvergence :
+theorem hasBasis_nhds_compact_convergence :
     HasBasis (@nhds _ compactConvergenceTopology f)
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
       compactConvNhd p.1 p.2 f :=
-  (nhds_compactConvergence f).symm ▸ (compactConvNhd_filter_isBasis f).HasBasis
-#align continuous_map.has_basis_nhds_compact_convergence ContinuousMap.hasBasis_nhds_compactConvergence
--/
+  (nhds_compact_convergence f).symm ▸ (compactConvNhd_filter_isBasis f).HasBasis
+#align continuous_map.has_basis_nhds_compact_convergence ContinuousMap.hasBasis_nhds_compact_convergence
 
-#print ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn' /-
 /-- This is an auxiliary lemma and is unlikely to be of direct use outside of this file. See
 `tendsto_iff_forall_compact_tendsto_uniformly_on` below for the useful version where the topology
 is picked up via typeclass inference. -/
-theorem tendsto_iff_forall_compact_tendstoUniformlyOn' {ι : Type u₃} {p : Filter ι}
+theorem tendsto_iff_forall_compact_tendsto_uniformly_on' {ι : Type u₃} {p : Filter ι}
     {F : ι → C(α, β)} :
     Filter.Tendsto F p (@nhds _ compactConvergenceTopology f) ↔
       ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K :=
@@ -230,15 +203,13 @@ theorem tendsto_iff_forall_compact_tendstoUniformlyOn' {ι : Type u₃} {p : Fil
   refine' forall_congr' fun K => _
   rw [forall_swap]
   exact forall₃_congr fun hK V hV => Iff.rfl
-#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn'
--/
+#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' ContinuousMap.tendsto_iff_forall_compact_tendsto_uniformly_on'
 
-#print ContinuousMap.compactConvNhd_subset_compactOpen /-
 /-- Any point of `compact_open.gen K U` is also an interior point wrt the topology of compact
 convergence.
 
 The topology of compact convergence is thus at least as fine as the compact-open topology. -/
-theorem compactConvNhd_subset_compactOpen (hK : IsCompact K) {U : Set β} (hU : IsOpen U)
+theorem compactConvNhd_subset_compact_open (hK : IsCompact K) {U : Set β} (hU : IsOpen U)
     (hf : f ∈ CompactOpen.gen K U) :
     ∃ V ∈ 𝓤 β, IsOpen V ∧ compactConvNhd K V f ⊆ CompactOpen.gen K U :=
   by
@@ -246,16 +217,14 @@ theorem compactConvNhd_subset_compactOpen (hK : IsCompact K) {U : Set β} (hU :
   refine' ⟨V, hV₁, hV₂, _⟩
   rintro g hg _ ⟨x, hx, rfl⟩
   exact hV₃ (f x) ⟨x, hx, rfl⟩ (hg x hx)
-#align continuous_map.compact_conv_nhd_subset_compact_open ContinuousMap.compactConvNhd_subset_compactOpen
--/
+#align continuous_map.compact_conv_nhd_subset_compact_open ContinuousMap.compactConvNhd_subset_compact_open
 
-#print ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd /-
 /-- The point `f` in `compact_conv_nhd K V f` is also an interior point wrt the compact-open
 topology.
 
 Since `compact_conv_nhd K V f` are a neighbourhood basis at `f` for each `f`, it follows that
 the compact-open topology is at least as fine as the topology of compact convergence. -/
-theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
+theorem iInter_compact_open_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
     ∃ (ι : Sort (u₁ + 1)) (_ : Fintype ι) (C : ι → Set α) (hC : ∀ i, IsCompact (C i)) (U :
       ι → Set β) (hU : ∀ i, IsOpen (U i)),
       (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
@@ -297,12 +266,10 @@ theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V
   simp only [mem_Inter, compact_open.gen, mem_set_of_eq, image_subset_iff] at hg 
   obtain ⟨y, hy⟩ := mem_Union.mp (hC hx)
   exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩
-#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd
--/
+#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compact_open_gen_subset_compactConvNhd
 
-#print ContinuousMap.compactOpen_eq_compactConvergence /-
 /-- The compact-open topology is equal to the compact-convergence topology. -/
-theorem compactOpen_eq_compactConvergence :
+theorem compactOpen_eq_compact_convergence :
     ContinuousMap.compactOpen = (compactConvergenceTopology : TopologicalSpace C(α, β)) :=
   by
   rw [compact_convergence_topology, ContinuousMap.compactOpen]
@@ -323,18 +290,14 @@ theorem compactOpen_eq_compactConvergence :
     rintro - K hK U hU rfl f hf
     obtain ⟨V, hV, hV', hVf⟩ := compact_conv_nhd_subset_compact_open f hK hU hf
     exact Filter.mem_of_superset (FilterBasis.mem_filter_of_mem _ ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩) hVf
-#align continuous_map.compact_open_eq_compact_convergence ContinuousMap.compactOpen_eq_compactConvergence
--/
+#align continuous_map.compact_open_eq_compact_convergence ContinuousMap.compactOpen_eq_compact_convergence
 
-#print ContinuousMap.compactConvergenceUniformity /-
 /-- The filter on `C(α, β) × C(α, β)` which underlies the uniform space structure on `C(α, β)`. -/
 def compactConvergenceUniformity : Filter (C(α, β) × C(α, β)) :=
   ⨅ KV ∈ {KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β},
     𝓟 {fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ KV.1 → (fg.1 x, fg.2 x) ∈ KV.2}
 #align continuous_map.compact_convergence_uniformity ContinuousMap.compactConvergenceUniformity
--/
 
-#print ContinuousMap.hasBasis_compactConvergenceUniformity_aux /-
 theorem hasBasis_compactConvergenceUniformity_aux :
     HasBasis (@compactConvergenceUniformity α β _ _)
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
@@ -347,9 +310,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
     forall_and, mem_inter_iff, mem_union]
   exact fun f g => forall_imp fun x => by tauto
 #align continuous_map.has_basis_compact_convergence_uniformity_aux ContinuousMap.hasBasis_compactConvergenceUniformity_aux
--/
 
-#print ContinuousMap.mem_compactConvergenceUniformity /-
 /-- An intermediate lemma. Usually `mem_compact_convergence_entourage_iff` is more useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
@@ -359,7 +320,6 @@ theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
   simp only [has_basis_compact_convergence_uniformity_aux.mem_iff, exists_prop, Prod.exists,
     and_assoc']
 #align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformity
--/
 
 #print ContinuousMap.compactConvergenceUniformSpace /-
 /-- Note that we ensure the induced topology is definitionally the compact-open topology. -/
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Oliver Nash. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Oliver Nash
 -/
-import Mathbin.Topology.CompactOpen
-import Mathbin.Topology.UniformSpace.UniformConvergence
+import Topology.CompactOpen
+import Topology.UniformSpace.UniformConvergence
 
 #align_import topology.uniform_space.compact_convergence from "leanprover-community/mathlib"@"1ead22342e1a078bd44744ace999f85756555d35"
 
Diff
@@ -317,7 +317,7 @@ theorem compactOpen_eq_compactConvergence :
     haveI := hι
     exact
       ⟨⋂ i, compact_open.gen (C i) (U i), h₂.trans hXf,
-        isOpen_iInter fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
+        isOpen_iInter_of_finite fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
   · simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop,
       forall_exists_index, set_of_subset_set_of]
     rintro - K hK U hU rfl f hf
Diff
@@ -484,7 +484,8 @@ the `←` direction is true unconditionally. See `tendsto_locally_uniformly_of_t
 `tendsto_of_tendsto_locally_uniformly` for versions requiring weaker hypotheses. -/
 theorem tendsto_iff_tendstoLocallyUniformly [LocallyCompactSpace α] :
     Tendsto F p (𝓝 f) ↔ TendstoLocallyUniformly (fun i a => F i a) f p :=
-  ⟨tendstoLocallyUniformly_of_tendsto exists_compact_mem_nhds, tendsto_of_tendstoLocallyUniformly⟩
+  ⟨tendstoLocallyUniformly_of_tendsto WeaklyLocallyCompactSpace.exists_compact_mem_nhds,
+    tendsto_of_tendstoLocallyUniformly⟩
 #align continuous_map.tendsto_iff_tendsto_locally_uniformly ContinuousMap.tendsto_iff_tendstoLocallyUniformly
 -/
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Oliver Nash. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Oliver Nash
-
-! This file was ported from Lean 3 source module topology.uniform_space.compact_convergence
-! leanprover-community/mathlib commit 1ead22342e1a078bd44744ace999f85756555d35
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.CompactOpen
 import Mathbin.Topology.UniformSpace.UniformConvergence
 
+#align_import topology.uniform_space.compact_convergence from "leanprover-community/mathlib"@"1ead22342e1a078bd44744ace999f85756555d35"
+
 /-!
 # Compact convergence (uniform convergence on compact sets)
 
Diff
@@ -125,6 +125,7 @@ theorem compactConvNhd_mem_comp {g₁ g₂ : C(α, β)} {V' : Set (β × β)}
 #align continuous_map.compact_conv_nhd_mem_comp ContinuousMap.compactConvNhd_mem_comp
 -/
 
+#print ContinuousMap.compactConvNhd_nhd_basis /-
 /-- A key property of `compact_conv_nhd`. It allows us to apply
 `topological_space.nhds_mk_of_nhds_filter_basis` below. -/
 theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
@@ -136,13 +137,16 @@ theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
     ⟨V', h₁, subset.trans (subset_comp_self_of_mem_uniformity h₁) h₂, fun g hg g' hg' =>
       compact_conv_nhd_mono f h₂ (compact_conv_nhd_mem_comp f hg hg')⟩
 #align continuous_map.compact_conv_nhd_nhd_basis ContinuousMap.compactConvNhd_nhd_basis
+-/
 
+#print ContinuousMap.compactConvNhd_subset_inter /-
 theorem compactConvNhd_subset_inter (K₁ K₂ : Set α) (V₁ V₂ : Set (β × β)) :
     compactConvNhd (K₁ ∪ K₂) (V₁ ∩ V₂) f ⊆ compactConvNhd K₁ V₁ f ∩ compactConvNhd K₂ V₂ f :=
   fun g hg =>
   ⟨fun x hx => mem_of_mem_inter_left (hg x (mem_union_left K₂ hx)), fun x hx =>
     mem_of_mem_inter_right (hg x (mem_union_right K₁ hx))⟩
 #align continuous_map.compact_conv_nhd_subset_inter ContinuousMap.compactConvNhd_subset_inter
+-/
 
 #print ContinuousMap.compactConvNhd_compact_entourage_nonempty /-
 theorem compactConvNhd_compact_entourage_nonempty :
@@ -215,6 +219,7 @@ theorem hasBasis_nhds_compactConvergence :
 #align continuous_map.has_basis_nhds_compact_convergence ContinuousMap.hasBasis_nhds_compactConvergence
 -/
 
+#print ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn' /-
 /-- This is an auxiliary lemma and is unlikely to be of direct use outside of this file. See
 `tendsto_iff_forall_compact_tendsto_uniformly_on` below for the useful version where the topology
 is picked up via typeclass inference. -/
@@ -229,7 +234,9 @@ theorem tendsto_iff_forall_compact_tendstoUniformlyOn' {ι : Type u₃} {p : Fil
   rw [forall_swap]
   exact forall₃_congr fun hK V hV => Iff.rfl
 #align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn'
+-/
 
+#print ContinuousMap.compactConvNhd_subset_compactOpen /-
 /-- Any point of `compact_open.gen K U` is also an interior point wrt the topology of compact
 convergence.
 
@@ -243,6 +250,7 @@ theorem compactConvNhd_subset_compactOpen (hK : IsCompact K) {U : Set β} (hU :
   rintro g hg _ ⟨x, hx, rfl⟩
   exact hV₃ (f x) ⟨x, hx, rfl⟩ (hg x hx)
 #align continuous_map.compact_conv_nhd_subset_compact_open ContinuousMap.compactConvNhd_subset_compactOpen
+-/
 
 #print ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd /-
 /-- The point `f` in `compact_conv_nhd K V f` is also an interior point wrt the compact-open
@@ -329,6 +337,7 @@ def compactConvergenceUniformity : Filter (C(α, β) × C(α, β)) :=
 #align continuous_map.compact_convergence_uniformity ContinuousMap.compactConvergenceUniformity
 -/
 
+#print ContinuousMap.hasBasis_compactConvergenceUniformity_aux /-
 theorem hasBasis_compactConvergenceUniformity_aux :
     HasBasis (@compactConvergenceUniformity α β _ _)
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
@@ -341,7 +350,9 @@ theorem hasBasis_compactConvergenceUniformity_aux :
     forall_and, mem_inter_iff, mem_union]
   exact fun f g => forall_imp fun x => by tauto
 #align continuous_map.has_basis_compact_convergence_uniformity_aux ContinuousMap.hasBasis_compactConvergenceUniformity_aux
+-/
 
+#print ContinuousMap.mem_compactConvergenceUniformity /-
 /-- An intermediate lemma. Usually `mem_compact_convergence_entourage_iff` is more useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
@@ -351,6 +362,7 @@ theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
   simp only [has_basis_compact_convergence_uniformity_aux.mem_iff, exists_prop, Prod.exists,
     and_assoc']
 #align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformity
+-/
 
 #print ContinuousMap.compactConvergenceUniformSpace /-
 /-- Note that we ensure the induced topology is definitionally the compact-open topology. -/
@@ -398,19 +410,24 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
 #align continuous_map.compact_convergence_uniform_space ContinuousMap.compactConvergenceUniformSpace
 -/
 
+#print ContinuousMap.mem_compactConvergence_entourage_iff /-
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
       ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β),
         {fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V} ⊆ X :=
   mem_compactConvergenceUniformity X
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
+-/
 
+#print ContinuousMap.hasBasis_compactConvergenceUniformity /-
 theorem hasBasis_compactConvergenceUniformity :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
       {fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2} :=
   hasBasis_compactConvergenceUniformity_aux
 #align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
+-/
 
+#print Filter.HasBasis.compactConvergenceUniformity /-
 theorem Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι → Prop}
     {s : ι → Set (β × β)} (h : (𝓤 β).HasBasis pi s) :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × ι => IsCompact p.1 ∧ pi p.2) fun p =>
@@ -423,14 +440,18 @@ theorem Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι →
   · rintro ⟨t, i⟩ ⟨ht, hi⟩
     exact ⟨(t, s i), ⟨ht, h.mem_of_mem hi⟩, subset.rfl⟩
 #align filter.has_basis.compact_convergence_uniformity Filter.HasBasis.compactConvergenceUniformity
+-/
 
 variable {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f}
 
+#print ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn /-
 theorem tendsto_iff_forall_compact_tendstoUniformlyOn :
     Tendsto F p (𝓝 f) ↔ ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K := by
   rw [compact_open_eq_compact_convergence, tendsto_iff_forall_compact_tendsto_uniformly_on']
 #align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn
+-/
 
+#print ContinuousMap.tendsto_of_tendstoLocallyUniformly /-
 /-- Locally uniform convergence implies convergence in the compact-open topology. -/
 theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a => F i a) f p) :
     Tendsto F p (𝓝 f) :=
@@ -440,7 +461,9 @@ theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a
   rw [← tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact hK]
   exact h.tendsto_locally_uniformly_on
 #align continuous_map.tendsto_of_tendsto_locally_uniformly ContinuousMap.tendsto_of_tendstoLocallyUniformly
+-/
 
+#print ContinuousMap.tendstoLocallyUniformly_of_tendsto /-
 /-- If every point has a compact neighbourhood, then convergence in the compact-open topology
 implies locally uniform convergence.
 
@@ -453,7 +476,9 @@ theorem tendstoLocallyUniformly_of_tendsto (hα : ∀ x : α, ∃ n, IsCompact n
   obtain ⟨n, hn₁, hn₂⟩ := hα x
   exact ⟨n, hn₂, h n hn₁ V hV⟩
 #align continuous_map.tendsto_locally_uniformly_of_tendsto ContinuousMap.tendstoLocallyUniformly_of_tendsto
+-/
 
+#print ContinuousMap.tendsto_iff_tendstoLocallyUniformly /-
 /-- Convergence in the compact-open topology is the same as locally uniform convergence on a locally
 compact space.
 
@@ -464,11 +489,13 @@ theorem tendsto_iff_tendstoLocallyUniformly [LocallyCompactSpace α] :
     Tendsto F p (𝓝 f) ↔ TendstoLocallyUniformly (fun i a => F i a) f p :=
   ⟨tendstoLocallyUniformly_of_tendsto exists_compact_mem_nhds, tendsto_of_tendstoLocallyUniformly⟩
 #align continuous_map.tendsto_iff_tendsto_locally_uniformly ContinuousMap.tendsto_iff_tendstoLocallyUniformly
+-/
 
 section CompactDomain
 
 variable [CompactSpace α]
 
+#print ContinuousMap.hasBasis_compactConvergenceUniformity_of_compact /-
 theorem hasBasis_compactConvergenceUniformity_of_compact :
     HasBasis (𝓤 C(α, β)) (fun V : Set (β × β) => V ∈ 𝓤 β) fun V =>
       {fg : C(α, β) × C(α, β) | ∀ x, (fg.1 x, fg.2 x) ∈ V} :=
@@ -476,7 +503,9 @@ theorem hasBasis_compactConvergenceUniformity_of_compact :
     (fun p hp => ⟨p.2, hp.2, fun fg hfg x hx => hfg x⟩) fun V hV =>
     ⟨⟨univ, V⟩, ⟨isCompact_univ, hV⟩, fun fg hfg x => hfg x (mem_univ x)⟩
 #align continuous_map.has_basis_compact_convergence_uniformity_of_compact ContinuousMap.hasBasis_compactConvergenceUniformity_of_compact
+-/
 
+#print ContinuousMap.tendsto_iff_tendstoUniformly /-
 /-- Convergence in the compact-open topology is the same as uniform convergence for sequences of
 continuous functions on a compact space. -/
 theorem tendsto_iff_tendstoUniformly :
@@ -485,6 +514,7 @@ theorem tendsto_iff_tendstoUniformly :
   rw [tendsto_iff_forall_compact_tendsto_uniformly_on, ← tendstoUniformlyOn_univ]
   exact ⟨fun h => h univ isCompact_univ, fun h K hK => h.mono (subset_univ K)⟩
 #align continuous_map.tendsto_iff_tendsto_uniformly ContinuousMap.tendsto_iff_tendstoUniformly
+-/
 
 end CompactDomain
 
Diff
@@ -285,7 +285,6 @@ theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V
       _ ⊆ closure (f '' U x) := f.continuous.continuous_on.image_closure
       _ ⊆ closure (ball (f x) Z) := by apply closure_mono; simp
       _ ⊆ ball (f x) W := hZW
-      
   refine'
     ⟨t, t.fintype_coe_sort, C, fun i => hK.inter_right isClosed_closure, fun i =>
       ball (f ((i : K) : α)) W, fun i => is_open_ball _ hW₄, by simp [compact_open.gen, hfC],
Diff
@@ -99,7 +99,7 @@ namespace ContinuousMap
 /-- Given `K ⊆ α`, `V ⊆ β × β`, and `f : C(α, β)`, we define `compact_conv_nhd K V f` to be the set
 of `g : C(α, β)` that are `V`-close to `f` on `K`. -/
 def compactConvNhd : Set C(α, β) :=
-  { g | ∀ x ∈ K, (f x, g x) ∈ V }
+  {g | ∀ x ∈ K, (f x, g x) ∈ V}
 #align continuous_map.compact_conv_nhd ContinuousMap.compactConvNhd
 -/
 
@@ -146,7 +146,7 @@ theorem compactConvNhd_subset_inter (K₁ K₂ : Set α) (V₁ V₂ : Set (β ×
 
 #print ContinuousMap.compactConvNhd_compact_entourage_nonempty /-
 theorem compactConvNhd_compact_entourage_nonempty :
-    { KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β }.Nonempty :=
+    {KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β}.Nonempty :=
   ⟨⟨∅, univ⟩, isCompact_empty, Filter.univ_mem⟩
 #align continuous_map.compact_conv_nhd_compact_entourage_nonempty ContinuousMap.compactConvNhd_compact_entourage_nonempty
 -/
@@ -325,15 +325,15 @@ theorem compactOpen_eq_compactConvergence :
 #print ContinuousMap.compactConvergenceUniformity /-
 /-- The filter on `C(α, β) × C(α, β)` which underlies the uniform space structure on `C(α, β)`. -/
 def compactConvergenceUniformity : Filter (C(α, β) × C(α, β)) :=
-  ⨅ KV ∈ { KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β },
-    𝓟 { fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ KV.1 → (fg.1 x, fg.2 x) ∈ KV.2 }
+  ⨅ KV ∈ {KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β},
+    𝓟 {fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ KV.1 → (fg.1 x, fg.2 x) ∈ KV.2}
 #align continuous_map.compact_convergence_uniformity ContinuousMap.compactConvergenceUniformity
 -/
 
 theorem hasBasis_compactConvergenceUniformity_aux :
     HasBasis (@compactConvergenceUniformity α β _ _)
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
-      { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } :=
+      {fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2} :=
   by
   refine' Filter.hasBasis_biInf_principal _ compact_conv_nhd_compact_entourage_nonempty
   rintro ⟨K₁, V₁⟩ ⟨hK₁, hV₁⟩ ⟨K₂, V₂⟩ ⟨hK₂, hV₂⟩
@@ -347,7 +347,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
       ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β),
-        { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
+        {fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V} ⊆ X :=
   by
   simp only [has_basis_compact_convergence_uniformity_aux.mem_iff, exists_prop, Prod.exists,
     and_assoc']
@@ -369,7 +369,7 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
       Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_iInf]
     intro K V hK hV
     obtain ⟨V', hV', hsymm, hsub⟩ := symm_of_uniformity hV
-    let X := { fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ K → (fg.1 x, fg.2 x) ∈ V' }
+    let X := {fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ K → (fg.1 x, fg.2 x) ∈ V'}
     have hX : X ∈ compact_convergence_uniformity :=
       (mem_compact_convergence_uniformity X).mpr ⟨K, V', hK, hV', by simp⟩
     exact Filter.eventually_of_mem hX fun fg hfg x hx => hsub (hsymm _ _ (hfg x hx))
@@ -379,7 +379,7 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
     obtain ⟨V', hV', hcomp⟩ := comp_mem_uniformity_sets hV
     let h := fun s : Set (C(α, β) × C(α, β)) => s ○ s
     suffices
-      h { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V' } ∈
+      h {fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V'} ∈
         compact_convergence_uniformity.lift' h
       by
       apply Filter.mem_of_superset this
@@ -402,20 +402,20 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
       ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β),
-        { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
+        {fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V} ⊆ X :=
   mem_compactConvergenceUniformity X
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
 
 theorem hasBasis_compactConvergenceUniformity :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
-      { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } :=
+      {fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2} :=
   hasBasis_compactConvergenceUniformity_aux
 #align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
 
 theorem Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι → Prop}
     {s : ι → Set (β × β)} (h : (𝓤 β).HasBasis pi s) :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × ι => IsCompact p.1 ∧ pi p.2) fun p =>
-      { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2 } :=
+      {fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2} :=
   by
   refine' has_basis_compact_convergence_uniformity.to_has_basis _ _
   · rintro ⟨t₁, t₂⟩ ⟨h₁, h₂⟩
@@ -472,7 +472,7 @@ variable [CompactSpace α]
 
 theorem hasBasis_compactConvergenceUniformity_of_compact :
     HasBasis (𝓤 C(α, β)) (fun V : Set (β × β) => V ∈ 𝓤 β) fun V =>
-      { fg : C(α, β) × C(α, β) | ∀ x, (fg.1 x, fg.2 x) ∈ V } :=
+      {fg : C(α, β) × C(α, β) | ∀ x, (fg.1 x, fg.2 x) ∈ V} :=
   hasBasis_compactConvergenceUniformity.to_hasBasis
     (fun p hp => ⟨p.2, hp.2, fun fg hfg x hx => hfg x⟩) fun V hV =>
     ⟨⟨univ, V⟩, ⟨isCompact_univ, hV⟩, fun fg hfg x => hfg x (mem_univ x)⟩
Diff
@@ -174,7 +174,7 @@ def compactConvergenceFilterBasis (f : C(α, β)) : FilterBasis C(α, β) :=
 #print ContinuousMap.mem_compactConvergence_nhd_filter /-
 theorem mem_compactConvergence_nhd_filter (Y : Set C(α, β)) :
     Y ∈ (compactConvergenceFilterBasis f).filterₓ ↔
-      ∃ (K : Set α)(V : Set (β × β))(hK : IsCompact K)(hV : V ∈ 𝓤 β), compactConvNhd K V f ⊆ Y :=
+      ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β), compactConvNhd K V f ⊆ Y :=
   by
   constructor
   · rintro ⟨X, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩
@@ -251,8 +251,8 @@ topology.
 Since `compact_conv_nhd K V f` are a neighbourhood basis at `f` for each `f`, it follows that
 the compact-open topology is at least as fine as the topology of compact convergence. -/
 theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
-    ∃ (ι : Sort (u₁ + 1))(_ : Fintype ι)(C : ι → Set α)(hC : ∀ i, IsCompact (C i))(U :
-      ι → Set β)(hU : ∀ i, IsOpen (U i)),
+    ∃ (ι : Sort (u₁ + 1)) (_ : Fintype ι) (C : ι → Set α) (hC : ∀ i, IsCompact (C i)) (U :
+      ι → Set β) (hU : ∀ i, IsOpen (U i)),
       (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
         (⋂ i, CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f :=
   by
@@ -290,7 +290,7 @@ theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V
     ⟨t, t.fintype_coe_sort, C, fun i => hK.inter_right isClosed_closure, fun i =>
       ball (f ((i : K) : α)) W, fun i => is_open_ball _ hW₄, by simp [compact_open.gen, hfC],
       fun g hg x hx => hW₃ (mem_comp_rel.mpr _)⟩
-  simp only [mem_Inter, compact_open.gen, mem_set_of_eq, image_subset_iff] at hg
+  simp only [mem_Inter, compact_open.gen, mem_set_of_eq, image_subset_iff] at hg 
   obtain ⟨y, hy⟩ := mem_Union.mp (hC hx)
   exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩
 #align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd
@@ -346,7 +346,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
 /-- An intermediate lemma. Usually `mem_compact_convergence_entourage_iff` is more useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
-      ∃ (K : Set α)(V : Set (β × β))(hK : IsCompact K)(hV : V ∈ 𝓤 β),
+      ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β),
         { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
   by
   simp only [has_basis_compact_convergence_uniformity_aux.mem_iff, exists_prop, Prod.exists,
@@ -401,7 +401,7 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
 
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
-      ∃ (K : Set α)(V : Set (β × β))(hK : IsCompact K)(hV : V ∈ 𝓤 β),
+      ∃ (K : Set α) (V : Set (β × β)) (hK : IsCompact K) (hV : V ∈ 𝓤 β),
         { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
   mem_compactConvergenceUniformity X
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
@@ -449,7 +449,7 @@ See also `tendsto_iff_tendsto_locally_uniformly`, especially for T2 spaces. -/
 theorem tendstoLocallyUniformly_of_tendsto (hα : ∀ x : α, ∃ n, IsCompact n ∧ n ∈ 𝓝 x)
     (h : Tendsto F p (𝓝 f)) : TendstoLocallyUniformly (fun i a => F i a) f p :=
   by
-  rw [tendsto_iff_forall_compact_tendsto_uniformly_on] at h
+  rw [tendsto_iff_forall_compact_tendsto_uniformly_on] at h 
   intro V hV x
   obtain ⟨n, hn₁, hn₂⟩ := hα x
   exact ⟨n, hn₂, h n hn₁ V hV⟩
Diff
@@ -85,7 +85,7 @@ of the uniform space structure on `C(α, β)` definitionally equal to the compac
 
 universe u₁ u₂ u₃
 
-open Filter uniformity Topology
+open scoped Filter uniformity Topology
 
 open UniformSpace Set Filter
 
Diff
@@ -125,12 +125,6 @@ theorem compactConvNhd_mem_comp {g₁ g₂ : C(α, β)} {V' : Set (β × β)}
 #align continuous_map.compact_conv_nhd_mem_comp ContinuousMap.compactConvNhd_mem_comp
 -/
 
-/- warning: continuous_map.compact_conv_nhd_nhd_basis -> ContinuousMap.compactConvNhd_nhd_basis is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {K : Set.{u1} α} {V : Set.{u2} (Prod.{u2, u2} β β)} (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)), (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) -> (Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V' : Set.{u2} (Prod.{u2, u2} β β)) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V' (uniformity.{u2} β _inst_2)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V' (uniformity.{u2} β _inst_2)) => And (HasSubset.Subset.{u2} (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasSubset.{u2} (Prod.{u2, u2} β β)) V' V) (forall (g : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)), (Membership.Mem.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Set.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.hasMem.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) g (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V' f)) -> (HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.hasSubset.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V' g) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V f))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {K : Set.{u1} α} {V : Set.{u2} (Prod.{u2, u2} β β)} (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)), (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) -> (Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V' : Set.{u2} (Prod.{u2, u2} β β)) => And (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V' (uniformity.{u2} β _inst_2)) (And (HasSubset.Subset.{u2} (Set.{u2} (Prod.{u2, u2} β β)) (Set.instHasSubsetSet.{u2} (Prod.{u2, u2} β β)) V' V) (forall (g : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)), (Membership.mem.{max u1 u2, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Set.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.instMembershipSet.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) g (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V' f)) -> (HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.instHasSubsetSet.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V' g) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V f))))))
-Case conversion may be inaccurate. Consider using '#align continuous_map.compact_conv_nhd_nhd_basis ContinuousMap.compactConvNhd_nhd_basisₓ'. -/
 /-- A key property of `compact_conv_nhd`. It allows us to apply
 `topological_space.nhds_mk_of_nhds_filter_basis` below. -/
 theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
@@ -143,12 +137,6 @@ theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
       compact_conv_nhd_mono f h₂ (compact_conv_nhd_mem_comp f hg hg')⟩
 #align continuous_map.compact_conv_nhd_nhd_basis ContinuousMap.compactConvNhd_nhd_basis
 
-/- warning: continuous_map.compact_conv_nhd_subset_inter -> ContinuousMap.compactConvNhd_subset_inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (K₁ : Set.{u1} α) (K₂ : Set.{u1} α) (V₁ : Set.{u2} (Prod.{u2, u2} β β)) (V₂ : Set.{u2} (Prod.{u2, u2} β β)), HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.hasSubset.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) K₁ K₂) (Inter.inter.{u2} (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasInter.{u2} (Prod.{u2, u2} β β)) V₁ V₂) f) (Inter.inter.{max u1 u2} (Set.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.hasInter.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K₁ V₁ f) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K₂ V₂ f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (K₁ : Set.{u1} α) (K₂ : Set.{u1} α) (V₁ : Set.{u2} (Prod.{u2, u2} β β)) (V₂ : Set.{u2} (Prod.{u2, u2} β β)), HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.instHasSubsetSet.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) K₁ K₂) (Inter.inter.{u2} (Set.{u2} (Prod.{u2, u2} β β)) (Set.instInterSet.{u2} (Prod.{u2, u2} β β)) V₁ V₂) f) (Inter.inter.{max u1 u2} (Set.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.instInterSet.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K₁ V₁ f) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K₂ V₂ f))
-Case conversion may be inaccurate. Consider using '#align continuous_map.compact_conv_nhd_subset_inter ContinuousMap.compactConvNhd_subset_interₓ'. -/
 theorem compactConvNhd_subset_inter (K₁ K₂ : Set α) (V₁ V₂ : Set (β × β)) :
     compactConvNhd (K₁ ∪ K₂) (V₁ ∩ V₂) f ⊆ compactConvNhd K₁ V₁ f ∩ compactConvNhd K₂ V₂ f :=
   fun g hg =>
@@ -227,12 +215,6 @@ theorem hasBasis_nhds_compactConvergence :
 #align continuous_map.has_basis_nhds_compact_convergence ContinuousMap.hasBasis_nhds_compactConvergence
 -/
 
-/- warning: continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' -> ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceTopology.{u1, u2} α β _inst_1 _inst_2) f)) (forall (K : Set.{u1} α), (IsCompact.{u1} α _inst_1 K) -> (TendstoUniformlyOn.{u1, u2, u3} α β ι _inst_2 (fun (i : ι) (a : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (F i) a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f) p K))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceTopology.{u1, u2} α β _inst_1 _inst_2) f)) (forall (K : Set.{u1} α), (IsCompact.{u1} α _inst_1 K) -> (TendstoUniformlyOn.{u1, u2, u3} α β ι _inst_2 (fun (i : ι) (a : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (F i) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f) p K))
-Case conversion may be inaccurate. Consider using '#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn'ₓ'. -/
 /-- This is an auxiliary lemma and is unlikely to be of direct use outside of this file. See
 `tendsto_iff_forall_compact_tendsto_uniformly_on` below for the useful version where the topology
 is picked up via typeclass inference. -/
@@ -248,12 +230,6 @@ theorem tendsto_iff_forall_compact_tendstoUniformlyOn' {ι : Type u₃} {p : Fil
   exact forall₃_congr fun hK V hV => Iff.rfl
 #align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn'
 
-/- warning: continuous_map.compact_conv_nhd_subset_compact_open -> ContinuousMap.compactConvNhd_subset_compactOpen is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {K : Set.{u1} α} (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)), (IsCompact.{u1} α _inst_1 K) -> (forall {U : Set.{u2} β}, (IsOpen.{u2} β (UniformSpace.toTopologicalSpace.{u2} β _inst_2) U) -> (Membership.Mem.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Set.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.hasMem.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f (ContinuousMap.CompactOpen.gen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) K U)) -> (Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) => And (IsOpen.{u2} (Prod.{u2, u2} β β) (Prod.topologicalSpace.{u2, u2} β β (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) V) (HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.hasSubset.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V f) (ContinuousMap.CompactOpen.gen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) K U))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {K : Set.{u1} α} (f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)), (IsCompact.{u1} α _inst_1 K) -> (forall {U : Set.{u2} β}, (IsOpen.{u2} β (UniformSpace.toTopologicalSpace.{u2} β _inst_2) U) -> (Membership.mem.{max u1 u2, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Set.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.instMembershipSet.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f (ContinuousMap.CompactOpen.gen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) K U)) -> (Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => And (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (And (IsOpen.{u2} (Prod.{u2, u2} β β) (instTopologicalSpaceProd.{u2, u2} β β (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) V) (HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.instHasSubsetSet.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (ContinuousMap.compactConvNhd.{u1, u2} α β _inst_1 _inst_2 K V f) (ContinuousMap.CompactOpen.gen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) K U))))))
-Case conversion may be inaccurate. Consider using '#align continuous_map.compact_conv_nhd_subset_compact_open ContinuousMap.compactConvNhd_subset_compactOpenₓ'. -/
 /-- Any point of `compact_open.gen K U` is also an interior point wrt the topology of compact
 convergence.
 
@@ -354,12 +330,6 @@ def compactConvergenceUniformity : Filter (C(α, β) × C(α, β)) :=
 #align continuous_map.compact_convergence_uniformity ContinuousMap.compactConvergenceUniformity
 -/
 
-/- warning: continuous_map.has_basis_compact_convergence_uniformity_aux -> ContinuousMap.hasBasis_compactConvergenceUniformity_aux is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β], Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) (ContinuousMap.compactConvergenceUniformity.{u1, u2} α β _inst_1 _inst_2) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => And (IsCompact.{u1} α _inst_1 (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p) (uniformity.{u2} β _inst_2))) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => setOf.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) -> (Membership.Mem.{u2, u2} (Prod.{u2, u2} β β) (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} β β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β], Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) (ContinuousMap.compactConvergenceUniformity.{u1, u2} α β _inst_1 _inst_2) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => And (IsCompact.{u1} α _inst_1 (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p) (uniformity.{u2} β _inst_2))) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => setOf.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) -> (Membership.mem.{u2, u2} (Prod.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x)) (Set.{u2} (Prod.{u2, u2} β β)) (Set.instMembershipSet.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p))))
-Case conversion may be inaccurate. Consider using '#align continuous_map.has_basis_compact_convergence_uniformity_aux ContinuousMap.hasBasis_compactConvergenceUniformity_auxₓ'. -/
 theorem hasBasis_compactConvergenceUniformity_aux :
     HasBasis (@compactConvergenceUniformity α β _ _)
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
@@ -373,9 +343,6 @@ theorem hasBasis_compactConvergenceUniformity_aux :
   exact fun f g => forall_imp fun x => by tauto
 #align continuous_map.has_basis_compact_convergence_uniformity_aux ContinuousMap.hasBasis_compactConvergenceUniformity_aux
 
-/- warning: continuous_map.mem_compact_convergence_uniformity -> ContinuousMap.mem_compactConvergenceUniformity is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformityₓ'. -/
 /-- An intermediate lemma. Usually `mem_compact_convergence_entourage_iff` is more useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
@@ -432,9 +399,6 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
 #align continuous_map.compact_convergence_uniform_space ContinuousMap.compactConvergenceUniformSpace
 -/
 
-/- warning: continuous_map.mem_compact_convergence_entourage_iff -> ContinuousMap.mem_compactConvergence_entourage_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iffₓ'. -/
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
       ∃ (K : Set α)(V : Set (β × β))(hK : IsCompact K)(hV : V ∈ 𝓤 β),
@@ -442,21 +406,12 @@ theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β)))
   mem_compactConvergenceUniformity X
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
 
-/- warning: continuous_map.has_basis_compact_convergence_uniformity -> ContinuousMap.hasBasis_compactConvergenceUniformity is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β], Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) (uniformity.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2)) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => And (IsCompact.{u1} α _inst_1 (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p) (uniformity.{u2} β _inst_2))) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => setOf.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) -> (Membership.Mem.{u2, u2} (Prod.{u2, u2} β β) (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} β β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β], Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) (uniformity.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2)) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => And (IsCompact.{u1} α _inst_1 (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p) (uniformity.{u2} β _inst_2))) (fun (p : Prod.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β))) => setOf.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Prod.fst.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p)) -> (Membership.mem.{u2, u2} (Prod.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x)) (Set.{u2} (Prod.{u2, u2} β β)) (Set.instMembershipSet.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) (Prod.snd.{u1, u2} (Set.{u1} α) (Set.{u2} (Prod.{u2, u2} β β)) p))))
-Case conversion may be inaccurate. Consider using '#align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformityₓ'. -/
 theorem hasBasis_compactConvergenceUniformity :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
       { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } :=
   hasBasis_compactConvergenceUniformity_aux
 #align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
 
-/- warning: filter.has_basis.compact_convergence_uniformity -> Filter.HasBasis.compactConvergenceUniformity is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.has_basis.compact_convergence_uniformity Filter.HasBasis.compactConvergenceUniformityₓ'. -/
 theorem Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι → Prop}
     {s : ι → Set (β × β)} (h : (𝓤 β).HasBasis pi s) :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × ι => IsCompact p.1 ∧ pi p.2) fun p =>
@@ -472,23 +427,11 @@ theorem Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι →
 
 variable {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f}
 
-/- warning: continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on -> ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) (forall (K : Set.{u1} α), (IsCompact.{u1} α _inst_1 K) -> (TendstoUniformlyOn.{u1, u2, u3} α β ι _inst_2 (fun (i : ι) (a : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (F i) a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f) p K))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) (forall (K : Set.{u1} α), (IsCompact.{u1} α _inst_1 K) -> (TendstoUniformlyOn.{u1, u2, u3} α β ι _inst_2 (fun (i : ι) (a : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (F i) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f) p K))
-Case conversion may be inaccurate. Consider using '#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOnₓ'. -/
 theorem tendsto_iff_forall_compact_tendstoUniformlyOn :
     Tendsto F p (𝓝 f) ↔ ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K := by
   rw [compact_open_eq_compact_convergence, tendsto_iff_forall_compact_tendsto_uniformly_on']
 #align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn
 
-/- warning: continuous_map.tendsto_of_tendsto_locally_uniformly -> ContinuousMap.tendsto_of_tendstoLocallyUniformly is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, (TendstoLocallyUniformly.{u1, u2, u3} α β ι _inst_2 _inst_1 (fun (i : ι) (a : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (F i) a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f) p) -> (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, (TendstoLocallyUniformly.{u1, u2, u3} α β ι _inst_2 _inst_1 (fun (i : ι) (a : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (F i) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f) p) -> (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f))
-Case conversion may be inaccurate. Consider using '#align continuous_map.tendsto_of_tendsto_locally_uniformly ContinuousMap.tendsto_of_tendstoLocallyUniformlyₓ'. -/
 /-- Locally uniform convergence implies convergence in the compact-open topology. -/
 theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a => F i a) f p) :
     Tendsto F p (𝓝 f) :=
@@ -499,12 +442,6 @@ theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a
   exact h.tendsto_locally_uniformly_on
 #align continuous_map.tendsto_of_tendsto_locally_uniformly ContinuousMap.tendsto_of_tendstoLocallyUniformly
 
-/- warning: continuous_map.tendsto_locally_uniformly_of_tendsto -> ContinuousMap.tendstoLocallyUniformly_of_tendsto is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, (forall (x : α), Exists.{succ u1} (Set.{u1} α) (fun (n : Set.{u1} α) => And (IsCompact.{u1} α _inst_1 n) (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) n (nhds.{u1} α _inst_1 x)))) -> (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) -> (TendstoLocallyUniformly.{u1, u2, u3} α β ι _inst_2 _inst_1 (fun (i : ι) (a : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (F i) a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f) p)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))}, (forall (x : α), Exists.{succ u1} (Set.{u1} α) (fun (n : Set.{u1} α) => And (IsCompact.{u1} α _inst_1 n) (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) n (nhds.{u1} α _inst_1 x)))) -> (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) -> (TendstoLocallyUniformly.{u1, u2, u3} α β ι _inst_2 _inst_1 (fun (i : ι) (a : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (F i) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f) p)
-Case conversion may be inaccurate. Consider using '#align continuous_map.tendsto_locally_uniformly_of_tendsto ContinuousMap.tendstoLocallyUniformly_of_tendstoₓ'. -/
 /-- If every point has a compact neighbourhood, then convergence in the compact-open topology
 implies locally uniform convergence.
 
@@ -518,12 +455,6 @@ theorem tendstoLocallyUniformly_of_tendsto (hα : ∀ x : α, ∃ n, IsCompact n
   exact ⟨n, hn₂, h n hn₁ V hV⟩
 #align continuous_map.tendsto_locally_uniformly_of_tendsto ContinuousMap.tendstoLocallyUniformly_of_tendsto
 
-/- warning: continuous_map.tendsto_iff_tendsto_locally_uniformly -> ContinuousMap.tendsto_iff_tendstoLocallyUniformly is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))} [_inst_3 : LocallyCompactSpace.{u1} α _inst_1], Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) (TendstoLocallyUniformly.{u1, u2, u3} α β ι _inst_2 _inst_1 (fun (i : ι) (a : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (F i) a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f) p)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))} [_inst_3 : LocallyCompactSpace.{u1} α _inst_1], Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) (TendstoLocallyUniformly.{u1, u2, u3} α β ι _inst_2 _inst_1 (fun (i : ι) (a : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (F i) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f) p)
-Case conversion may be inaccurate. Consider using '#align continuous_map.tendsto_iff_tendsto_locally_uniformly ContinuousMap.tendsto_iff_tendstoLocallyUniformlyₓ'. -/
 /-- Convergence in the compact-open topology is the same as locally uniform convergence on a locally
 compact space.
 
@@ -539,12 +470,6 @@ section CompactDomain
 
 variable [CompactSpace α]
 
-/- warning: continuous_map.has_basis_compact_convergence_uniformity_of_compact -> ContinuousMap.hasBasis_compactConvergenceUniformity_of_compact is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] [_inst_3 : CompactSpace.{u1} α _inst_1], Filter.HasBasis.{max u1 u2, succ u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.{u2} (Prod.{u2, u2} β β)) (uniformity.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => setOf.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), Membership.Mem.{u2, u2} (Prod.{u2, u2} β β) (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} β β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) V))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] [_inst_3 : CompactSpace.{u1} α _inst_1], Filter.HasBasis.{max u1 u2, succ u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Set.{u2} (Prod.{u2, u2} β β)) (uniformity.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => setOf.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), Membership.mem.{u2, u2} (Prod.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x)) (Set.{u2} (Prod.{u2, u2} β β)) (Set.instMembershipSet.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) V))
-Case conversion may be inaccurate. Consider using '#align continuous_map.has_basis_compact_convergence_uniformity_of_compact ContinuousMap.hasBasis_compactConvergenceUniformity_of_compactₓ'. -/
 theorem hasBasis_compactConvergenceUniformity_of_compact :
     HasBasis (𝓤 C(α, β)) (fun V : Set (β × β) => V ∈ 𝓤 β) fun V =>
       { fg : C(α, β) × C(α, β) | ∀ x, (fg.1 x, fg.2 x) ∈ V } :=
@@ -553,12 +478,6 @@ theorem hasBasis_compactConvergenceUniformity_of_compact :
     ⟨⟨univ, V⟩, ⟨isCompact_univ, hV⟩, fun fg hfg x => hfg x (mem_univ x)⟩
 #align continuous_map.has_basis_compact_convergence_uniformity_of_compact ContinuousMap.hasBasis_compactConvergenceUniformity_of_compact
 
-/- warning: continuous_map.tendsto_iff_tendsto_uniformly -> ContinuousMap.tendsto_iff_tendstoUniformly is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))} [_inst_3 : CompactSpace.{u1} α _inst_1], Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) (TendstoUniformly.{u1, u2, u3} α β ι _inst_2 (fun (i : ι) (a : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (F i) a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f) p)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)} {ι : Type.{u3}} {p : Filter.{u3} ι} {F : ι -> (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))} [_inst_3 : CompactSpace.{u1} α _inst_1], Iff (Filter.Tendsto.{u3, max u1 u2} ι (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) F p (nhds.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactOpen.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) f)) (TendstoUniformly.{u1, u2, u3} α β ι _inst_2 (fun (i : ι) (a : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (F i) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) f) p)
-Case conversion may be inaccurate. Consider using '#align continuous_map.tendsto_iff_tendsto_uniformly ContinuousMap.tendsto_iff_tendstoUniformlyₓ'. -/
 /-- Convergence in the compact-open topology is the same as uniform convergence for sequences of
 continuous functions on a compact space. -/
 theorem tendsto_iff_tendstoUniformly :
Diff
@@ -307,9 +307,7 @@ theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V
     calc
       f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _)
       _ ⊆ closure (f '' U x) := f.continuous.continuous_on.image_closure
-      _ ⊆ closure (ball (f x) Z) := by
-        apply closure_mono
-        simp
+      _ ⊆ closure (ball (f x) Z) := by apply closure_mono; simp
       _ ⊆ ball (f x) W := hZW
       
   refine'
Diff
@@ -376,10 +376,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
 #align continuous_map.has_basis_compact_convergence_uniformity_aux ContinuousMap.hasBasis_compactConvergenceUniformity_aux
 
 /- warning: continuous_map.mem_compact_convergence_uniformity -> ContinuousMap.mem_compactConvergenceUniformity is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (X : Set.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))), Iff (Membership.Mem.{max u1 u2, max u1 u2} (Set.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Filter.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Filter.hasMem.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) X (ContinuousMap.compactConvergenceUniformity.{u1, u2} α β _inst_1 _inst_2)) (Exists.{succ u1} (Set.{u1} α) (fun (K : Set.{u1} α) => Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Exists.{0} (IsCompact.{u1} α _inst_1 K) (fun (hK : IsCompact.{u1} α _inst_1 K) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (hV : Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) => HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Set.hasSubset.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (setOf.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x K) -> (Membership.Mem.{u2, u2} (Prod.{u2, u2} β β) (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} β β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) V))) X)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (X : Set.{max u2 u1} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))), Iff (Membership.mem.{max u1 u2, max u1 u2} (Set.{max u2 u1} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Filter.{max u2 u1} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (instMembershipSetFilter.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) X (ContinuousMap.compactConvergenceUniformity.{u1, u2} α β _inst_1 _inst_2)) (Exists.{succ u1} (Set.{u1} α) (fun (K : Set.{u1} α) => Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Exists.{0} (IsCompact.{u1} α _inst_1 K) (fun (hK : IsCompact.{u1} α _inst_1 K) => Exists.{0} (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (hV : Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) => HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Set.instHasSubsetSet.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (setOf.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x K) -> (Membership.mem.{u2, u2} (Prod.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x)) (Set.{u2} (Prod.{u2, u2} β β)) (Set.instMembershipSet.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) V))) X)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformityₓ'. -/
 /-- An intermediate lemma. Usually `mem_compact_convergence_entourage_iff` is more useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
@@ -438,10 +435,7 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
 -/
 
 /- warning: continuous_map.mem_compact_convergence_entourage_iff -> ContinuousMap.mem_compactConvergence_entourage_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (X : Set.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))), Iff (Membership.Mem.{max u1 u2, max u1 u2} (Set.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Filter.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Filter.hasMem.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) X (uniformity.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2))) (Exists.{succ u1} (Set.{u1} α) (fun (K : Set.{u1} α) => Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Exists.{0} (IsCompact.{u1} α _inst_1 K) (fun (hK : IsCompact.{u1} α _inst_1 K) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (hV : Membership.Mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (Filter.hasMem.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) => HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Set.hasSubset.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (setOf.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x K) -> (Membership.Mem.{u2, u2} (Prod.{u2, u2} β β) (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} β β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) V))) X)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] (X : Set.{max u2 u1} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))), Iff (Membership.mem.{max u1 u2, max u1 u2} (Set.{max u2 u1} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Filter.{max u2 u1} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (instMembershipSetFilter.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) X (uniformity.{max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2))) (Exists.{succ u1} (Set.{u1} α) (fun (K : Set.{u1} α) => Exists.{succ u2} (Set.{u2} (Prod.{u2, u2} β β)) (fun (V : Set.{u2} (Prod.{u2, u2} β β)) => Exists.{0} (IsCompact.{u1} α _inst_1 K) (fun (hK : IsCompact.{u1} α _inst_1 K) => Exists.{0} (Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) (fun (hV : Membership.mem.{u2, u2} (Set.{u2} (Prod.{u2, u2} β β)) (Filter.{u2} (Prod.{u2, u2} β β)) (instMembershipSetFilter.{u2} (Prod.{u2, u2} β β)) V (uniformity.{u2} β _inst_2)) => HasSubset.Subset.{max u1 u2} (Set.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (Set.instHasSubsetSet.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)))) (setOf.{max u1 u2} (Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x K) -> (Membership.mem.{u2, u2} (Prod.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x)) (Set.{u2} (Prod.{u2, u2} β β)) (Set.instMembershipSet.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) V))) X)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iffₓ'. -/
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
@@ -463,10 +457,7 @@ theorem hasBasis_compactConvergenceUniformity :
 #align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
 
 /- warning: filter.has_basis.compact_convergence_uniformity -> Filter.HasBasis.compactConvergenceUniformity is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : UniformSpace.{u2} β] {ι : Type.{u3}} {pi : ι -> Prop} {s : ι -> (Set.{u2} (Prod.{u2, u2} β β))}, (Filter.HasBasis.{u2, succ u3} (Prod.{u2, u2} β β) ι (uniformity.{u2} β _inst_2) pi s) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u3)} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (Prod.{u1, u3} (Set.{u1} α) ι) (uniformity.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u1, u2} α β _inst_1 _inst_2)) (fun (p : Prod.{u1, u3} (Set.{u1} α) ι) => And (IsCompact.{u1} α _inst_1 (Prod.fst.{u1, u3} (Set.{u1} α) ι p)) (pi (Prod.snd.{u1, u3} (Set.{u1} α) ι p))) (fun (p : Prod.{u1, u3} (Set.{u1} α) ι) => setOf.{max u1 u2} (Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) (fun (fg : Prod.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2))) => forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Prod.fst.{u1, u3} (Set.{u1} α) ι p)) -> (Membership.Mem.{u2, u2} (Prod.{u2, u2} β β) (Set.{u2} (Prod.{u2, u2} β β)) (Set.hasMem.{u2} (Prod.{u2, u2} β β)) (Prod.mk.{u2, u2} β β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.fst.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (Prod.snd.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) (ContinuousMap.{u1, u2} α β _inst_1 (UniformSpace.toTopologicalSpace.{u2} β _inst_2)) fg) x)) (s (Prod.snd.{u1, u3} (Set.{u1} α) ι p))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : UniformSpace.{u3} β] {ι : Type.{u1}} {pi : ι -> Prop} {s : ι -> (Set.{u3} (Prod.{u3, u3} β β))}, (Filter.HasBasis.{u3, succ u1} (Prod.{u3, u3} β β) ι (uniformity.{u3} β _inst_2) pi s) -> (Filter.HasBasis.{max u2 u3, max (succ u2) (succ u1)} (Prod.{max u3 u2, max u3 u2} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2))) (Prod.{u2, u1} (Set.{u2} α) ι) (uniformity.{max u3 u2} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) (ContinuousMap.compactConvergenceUniformSpace.{u2, u3} α β _inst_1 _inst_2)) (fun (p : Prod.{u2, u1} (Set.{u2} α) ι) => And (IsCompact.{u2} α _inst_1 (Prod.fst.{u2, u1} (Set.{u2} α) ι p)) (pi (Prod.snd.{u2, u1} (Set.{u2} α) ι p))) (fun (p : Prod.{u2, u1} (Set.{u2} α) ι) => setOf.{max u2 u3} (Prod.{max u3 u2, max u3 u2} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2))) (fun (fg : Prod.{max u3 u2, max u3 u2} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2))) => forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Prod.fst.{u2, u1} (Set.{u2} α) ι p)) -> (Membership.mem.{u3, u3} (Prod.{u3, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x)) (Set.{u3} (Prod.{u3, u3} β β)) (Set.instMembershipSet.{u3} (Prod.{u3, u3} β β)) (Prod.mk.{u3, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u3, u2, u3} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2))) (Prod.fst.{max u2 u3, max u2 u3} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) fg) x) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u3, u2, u3} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2) (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2))) (Prod.snd.{max u2 u3, max u2 u3} (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) (ContinuousMap.{u2, u3} α β _inst_1 (UniformSpace.toTopologicalSpace.{u3} β _inst_2)) fg) x)) (s (Prod.snd.{u2, u1} (Set.{u2} α) ι p))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align filter.has_basis.compact_convergence_uniformity Filter.HasBasis.compactConvergenceUniformityₓ'. -/
 theorem Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι → Prop}
     {s : ι → Set (β × β)} (h : (𝓤 β).HasBasis pi s) :
Diff
@@ -268,13 +268,13 @@ theorem compactConvNhd_subset_compactOpen (hK : IsCompact K) {U : Set β} (hU :
   exact hV₃ (f x) ⟨x, hx, rfl⟩ (hg x hx)
 #align continuous_map.compact_conv_nhd_subset_compact_open ContinuousMap.compactConvNhd_subset_compactOpen
 
-#print ContinuousMap.interᵢ_compactOpen_gen_subset_compactConvNhd /-
+#print ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd /-
 /-- The point `f` in `compact_conv_nhd K V f` is also an interior point wrt the compact-open
 topology.
 
 Since `compact_conv_nhd K V f` are a neighbourhood basis at `f` for each `f`, it follows that
 the compact-open topology is at least as fine as the topology of compact convergence. -/
-theorem interᵢ_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
+theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
     ∃ (ι : Sort (u₁ + 1))(_ : Fintype ι)(C : ι → Set α)(hC : ∀ i, IsCompact (C i))(U :
       ι → Set β)(hU : ∀ i, IsOpen (U i)),
       (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
@@ -319,7 +319,7 @@ theorem interᵢ_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV :
   simp only [mem_Inter, compact_open.gen, mem_set_of_eq, image_subset_iff] at hg
   obtain ⟨y, hy⟩ := mem_Union.mp (hC hx)
   exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩
-#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.interᵢ_compactOpen_gen_subset_compactConvNhd
+#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd
 -/
 
 #print ContinuousMap.compactOpen_eq_compactConvergence /-
@@ -339,7 +339,7 @@ theorem compactOpen_eq_compactConvergence :
     haveI := hι
     exact
       ⟨⋂ i, compact_open.gen (C i) (U i), h₂.trans hXf,
-        isOpen_interᵢ fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
+        isOpen_iInter fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
   · simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop,
       forall_exists_index, set_of_subset_set_of]
     rintro - K hK U hU rfl f hf
@@ -367,7 +367,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
       { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } :=
   by
-  refine' Filter.hasBasis_binfᵢ_principal _ compact_conv_nhd_compact_entourage_nonempty
+  refine' Filter.hasBasis_biInf_principal _ compact_conv_nhd_compact_entourage_nonempty
   rintro ⟨K₁, V₁⟩ ⟨hK₁, hV₁⟩ ⟨K₂, V₂⟩ ⟨hK₂, hV₂⟩
   refine' ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩, _⟩
   simp only [le_eq_subset, Prod.forall, set_of_subset_set_of, ge_iff_le, Order.Preimage, ←
@@ -399,12 +399,12 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
   refl :=
     by
     simp only [compact_convergence_uniformity, and_imp, Filter.le_principal_iff, Prod.forall,
-      Filter.mem_principal, mem_set_of_eq, le_infᵢ_iff, idRel_subset]
+      Filter.mem_principal, mem_set_of_eq, le_iInf_iff, idRel_subset]
     exact fun K V hK hV f x hx => refl_mem_uniformity hV
   symm :=
     by
     simp only [compact_convergence_uniformity, and_imp, Prod.forall, mem_set_of_eq, Prod.fst_swap,
-      Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_infᵢ]
+      Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_iInf]
     intro K V hK hV
     obtain ⟨V', hV', hsymm, hsub⟩ := symm_of_uniformity hV
     let X := { fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ K → (fg.1 x, fg.2 x) ∈ V' }

Changes in mathlib4

mathlib3
mathlib4
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -91,7 +91,6 @@ open scoped Uniformity Topology UniformConvergence
 open UniformSpace Set Filter
 
 variable {α : Type u₁} {β : Type u₂} [TopologicalSpace α] [UniformSpace β]
-
 variable (K : Set α) (V : Set (β × β)) (f : C(α, β))
 
 namespace ContinuousMap
feat: review and expand API on behavior of topological bases under some constructions (#10732)

The main addition is IsTopologicalBasis.inf (see https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Inf.20of.20a.20pair.20of.20topologies/near/419989448), and I also reordered things to be in the more typical order (deducing the Pi version from the iInf version rather than the converse).

Also a few extra golfs and variations.

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Christopher Hoskin <christopher.hoskin@gmail.com> Co-authored-by: Christopher Hoskin <christopher.hoskin@overleaf.com>

Diff
@@ -164,7 +164,7 @@ and replace the topology with `compactOpen` to avoid non-defeq diamonds,
 see Note [forgetful inheritance].  -/
 instance compactConvergenceUniformSpace : UniformSpace C(α, β) :=
   .replaceTopology (.comap toUniformOnFunIsCompact inferInstance) <| by
-    refine eq_of_nhds_eq_nhds fun f ↦ eq_of_forall_le_iff fun l ↦ ?_
+    refine TopologicalSpace.ext_nhds fun f ↦ eq_of_forall_le_iff fun l ↦ ?_
     simp_rw [← tendsto_id', tendsto_iff_forall_compact_tendstoUniformlyOn,
       nhds_induced, tendsto_comap_iff, UniformOnFun.tendsto_iff_tendstoUniformlyOn]
     rfl
feat(UniformSpace/CompactConvergence): prove metrizability (#10942)
Diff
@@ -79,8 +79,6 @@ so that the resulting instance uses the compact-open topology.
 
 ## TODO
 
-* When `α` is compact and `β` is a metric space,
-  the compact-convergence topology (and thus also the compact-open topology) is metrisable.
 * Results about uniformly continuous functions `γ → C(α, β)`
   and uniform limits of sequences `ι → γ → C(α, β)`.
 -/
@@ -223,6 +221,34 @@ theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β)))
   simp [hasBasis_compactConvergenceUniformity.mem_iff, and_assoc]
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
 
+/-- If `K` is a compact exhaustion of `α`
+and `V i` bounded by `p i` is a basis of entourages of `β`,
+then `fun (n, i) ↦ {(f, g) | ∀ x ∈ K n, (f x, g x) ∈ V i}` bounded by `p i`
+is a basis of entourages of `C(α, β)`. -/
+theorem _root_.CompactExhaustion.hasBasis_compactConvergenceUniformity {ι : Type*}
+    {p : ι → Prop} {V : ι → Set (β × β)} (K : CompactExhaustion α) (hb : (𝓤 β).HasBasis p V) :
+    HasBasis (𝓤 C(α, β)) (fun i : ℕ × ι ↦ p i.2) fun i ↦
+      {fg | ∀ x ∈ K i.1, (fg.1 x, fg.2 x) ∈ V i.2} :=
+  (UniformOnFun.hasBasis_uniformity_of_covering_of_basis {K | IsCompact K} K.isCompact
+    (Monotone.directed_le K.subset) (fun _ ↦ K.exists_superset_of_isCompact) hb).comap _
+
+theorem _root_.CompactExhaustion.hasAntitoneBasis_compactConvergenceUniformity
+    {V : ℕ → Set (β × β)} (K : CompactExhaustion α) (hb : (𝓤 β).HasAntitoneBasis V) :
+    HasAntitoneBasis (𝓤 C(α, β)) fun n ↦ {fg | ∀ x ∈ K n, (fg.1 x, fg.2 x) ∈ V n} :=
+  (UniformOnFun.hasAntitoneBasis_uniformity {K | IsCompact K} K.isCompact
+    K.subset (fun _ ↦ K.exists_superset_of_isCompact) hb).comap _
+
+/-- If `α` is a weakly locally compact σ-compact space
+(e.g., a proper pseudometric space or a compact spaces)
+and the uniformity on `β` is pseudometrizable,
+then the uniformity on `C(α, β)` is pseudometrizable too.
+-/
+instance [WeaklyLocallyCompactSpace α] [SigmaCompactSpace α] [IsCountablyGenerated (𝓤 β)] :
+    IsCountablyGenerated (𝓤 (C(α, β))) :=
+  let ⟨_V, hV⟩ := exists_antitone_basis (𝓤 β)
+  ((CompactExhaustion.choice α).hasAntitoneBasis_compactConvergenceUniformity
+    hV).isCountablyGenerated
+
 variable {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f}
 
 /-- Locally uniform convergence implies convergence in the compact-open topology. -/
refactor(UniformConvergenceTopology): redefine using UniformOnFun (#10873)
Diff
@@ -1,10 +1,10 @@
 /-
 Copyright (c) 2021 Oliver Nash. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
-Authors: Oliver Nash
+Authors: Oliver Nash, Yury Kudryashov
 -/
 import Mathlib.Topology.CompactOpen
-import Mathlib.Topology.UniformSpace.UniformConvergence
+import Mathlib.Topology.UniformSpace.UniformConvergenceTopology
 
 #align_import topology.uniform_space.compact_convergence from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988"
 
@@ -12,76 +12,83 @@ import Mathlib.Topology.UniformSpace.UniformConvergence
 # Compact convergence (uniform convergence on compact sets)
 
 Given a topological space `α` and a uniform space `β` (e.g., a metric space or a topological group),
-the space of continuous maps `C(α, β)` carries a natural uniform space structure. We define this
-uniform space structure in this file and also prove the following properties of the topology it
-induces on `C(α, β)`:
-
- 1. Given a sequence of continuous functions `Fₙ : α → β` together with some continuous `f : α → β`,
-    then `Fₙ` converges to `f` as a sequence in `C(α, β)` iff `Fₙ` converges to `f` uniformly on
-    each compact subset `K` of `α`.
- 2. Given `Fₙ` and `f` as above and suppose `α` is locally compact, then `Fₙ` converges to `f` iff
-    `Fₙ` converges to `f` locally uniformly.
- 3. The topology coincides with the compact-open topology.
-
-Property 1 is essentially true by definition, 2 follows from basic results about uniform
-convergence, but 3 requires a little work and uses the Lebesgue number lemma.
-
-## The uniform space structure
-
-Given subsets `K ⊆ α` and `V ⊆ β × β`, let `E(K, V) ⊆ C(α, β) × C(α, β)` be the set of pairs of
-continuous functions `α → β` which are `V`-close on `K`:
-$$
-  E(K, V) = \{ (f, g) | ∀ (x ∈ K), (f x, g x) ∈ V \}.
-$$
-Fixing some `f ∈ C(α, β)`, let `N(K, V, f) ⊆ C(α, β)` be the set of continuous functions `α → β`
-which are `V`-close to `f` on `K`:
-$$
-  N(K, V, f) = \{ g | ∀ (x ∈ K), (f x, g x) ∈ V \}.
-$$
-Using this notation we can describe the uniform space structure and the topology it induces.
-Specifically:
-  * A subset `X ⊆ C(α, β) × C(α, β)` is an entourage for the uniform space structure on `C(α, β)`
-    iff there exists a compact `K` and entourage `V` such that `E(K, V) ⊆ X`.
-  * A subset `Y ⊆ C(α, β)` is a neighbourhood of `f` iff there exists a compact `K` and entourage
-    `V` such that `N(K, V, f) ⊆ Y`.
-
-The topology on `C(α, β)` thus has a natural subbasis (the compact-open subbasis) and a natural
-neighbourhood basis (the compact-convergence neighbourhood basis).
-
-## Main definitions / results
-
- * `ContinuousMap.compactOpen_eq_compactConvergence`: the compact-open topology is equal to the
-   compact-convergence topology.
- * `ContinuousMap.compactConvergenceUniformSpace`: the uniform space structure on `C(α, β)`.
- * `ContinuousMap.mem_compactConvergence_entourage_iff`: a characterisation of the entourages
-    of `C(α, β)`.
- * `ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn`: a sequence of functions `Fₙ` in
-    `C(α, β)` converges to some `f` iff `Fₙ` converges to `f` uniformly on each compact subset
-    `K` of `α`.
- * `ContinuousMap.tendsto_iff_tendstoLocallyUniformly`: on a locally compact space, a sequence of
-    functions `Fₙ` in `C(α, β)` converges to some `f` iff `Fₙ` converges to `f` locally uniformly.
- * `ContinuousMap.tendsto_iff_tendstoUniformly`: on a compact space, a sequence of functions `Fₙ` in
-    `C(α, β)` converges to some `f` iff `Fₙ` converges to `f` uniformly.
+the space of continuous maps `C(α, β)` carries a natural uniform space structure.
+We define this uniform space structure in this file
+and also prove its basic properties.
+
+## Main definitions
+
+- `ContinuousMap.toUniformOnFunIsCompact`:
+  natural embedding of `C(α, β)`
+  into the space `α →ᵤ[{K | IsCompact K}] β` of all maps `α → β`
+  with the uniform space structure of uniform convergence on compacts.
+
+- `ContinuousMap.compactConvergenceUniformSpace`:
+  the `UniformSpace` structure on `C(α, β)` induced by the map above.
+
+## Main results
+
+* `ContinuousMap.mem_compactConvergence_entourage_iff`:
+  a characterisation of the entourages of `C(α, β)`.
+
+  The entourages are generated by the following sets.
+  Given `K : Set α` and `V : Set (β × β)`,
+  let `E(K, V) : Set (C(α, β) × C(α, β))` be the set of pairs of continuous functions `α → β`
+  which are `V`-close on `K`:
+  $$
+    E(K, V) = \{ (f, g) | ∀ (x ∈ K), (f x, g x) ∈ V \}.
+  $$
+  Then the sets `E(K, V)` for all compact sets `K` and all entourages `V`
+  form a basis of entourages of `C(α, β)`.
+
+  As usual, this basis of entourages provides a basis of neighbourhoods
+  by fixing `f`, see `nhds_basis_uniformity'`.
+
+* `Filter.HasBasis.compactConvergenceUniformity`:
+  a similar statement that uses a basis of entourages of `β` instead of all entourages.
+  It is useful, e.g., if `β` is a metric space.
+
+* `ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn`:
+  a sequence of functions `Fₙ` in `C(α, β)` converges in the compact-open topology to some `f`
+  iff `Fₙ` converges to `f` uniformly on each compact subset `K` of `α`.
+
+* Topology induced by the uniformity described above agrees with the compact-open topology.
+  This is essentially the same as `ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn`.
+
+  This fact is not available as a separate theorem.
+  Instead, we override the projection of `ContinuousMap.compactConvergenceUniformity`
+  to `TopologicalSpace` to be `ContinuousMap.compactOpen` and prove that they agree,
+  see Note [forgetful inheritance] and implementation notes below.
+
+* `ContinuousMap.tendsto_iff_tendstoLocallyUniformly`:
+  on a weakly locally compact space,
+  a sequence of functions `Fₙ` in `C(α, β)` converges to some `f`
+  iff `Fₙ` converges to `f` locally uniformly.
+
+* `ContinuousMap.tendsto_iff_tendstoUniformly`:
+  on a compact space, a sequence of functions `Fₙ` in `C(α, β)` converges to some `f`
+  iff `Fₙ` converges to `f` uniformly.
 
 ## Implementation details
 
-We use the forgetful inheritance pattern (see Note [forgetful inheritance]) to make the topology
-of the uniform space structure on `C(α, β)` definitionally equal to the compact-open topology.
+For technical reasons (see Note [forgetful inheritance]),
+instead of defining a `UniformSpace C(α, β)` structure
+and proving in a theorem that it agrees with the compact-open topology,
+we override the projection right in the definition,
+so that the resulting instance uses the compact-open topology.
 
 ## TODO
 
- * When `β` is a metric space, there is natural basis for the compact-convergence topology
-   parameterised by triples `(K, ε, f)` for a real number `ε > 0`.
- * When `α` is compact and `β` is a metric space, the compact-convergence topology (and thus also
-   the compact-open topology) is metrisable.
- * Results about uniformly continuous functions `γ → C(α, β)` and uniform limits of sequences
-   `ι → γ → C(α, β)`.
+* When `α` is compact and `β` is a metric space,
+  the compact-convergence topology (and thus also the compact-open topology) is metrisable.
+* Results about uniformly continuous functions `γ → C(α, β)`
+  and uniform limits of sequences `ι → γ → C(α, β)`.
 -/
 
 
 universe u₁ u₂ u₃
 
-open Filter Uniformity Topology
+open scoped Uniformity Topology UniformConvergence
 
 open UniformSpace Set Filter
 
@@ -91,297 +98,132 @@ variable (K : Set α) (V : Set (β × β)) (f : C(α, β))
 
 namespace ContinuousMap
 
-/-- Given `K ⊆ α`, `V ⊆ β × β`, and `f : C(α, β)`, we define `ContinuousMap.compactConvNhd K V f`
-to be the set of `g : C(α, β)` that are `V`-close to `f` on `K`. -/
-def compactConvNhd : Set C(α, β) :=
-  { g | ∀ x ∈ K, (f x, g x) ∈ V }
-#align continuous_map.compact_conv_nhd ContinuousMap.compactConvNhd
-
-variable {K V}
-
-theorem self_mem_compactConvNhd (hV : V ∈ 𝓤 β) : f ∈ compactConvNhd K V f := fun _x _hx =>
-  refl_mem_uniformity hV
-#align continuous_map.self_mem_compact_conv_nhd ContinuousMap.self_mem_compactConvNhd
-
-@[mono]
-theorem compactConvNhd_mono {V' : Set (β × β)} (hV' : V' ⊆ V) :
-    compactConvNhd K V' f ⊆ compactConvNhd K V f := fun _x hx a ha => hV' (hx a ha)
-#align continuous_map.compact_conv_nhd_mono ContinuousMap.compactConvNhd_mono
-
-theorem compactConvNhd_mem_comp {g₁ g₂ : C(α, β)} {V' : Set (β × β)}
-    (hg₁ : g₁ ∈ compactConvNhd K V f) (hg₂ : g₂ ∈ compactConvNhd K V' g₁) :
-    g₂ ∈ compactConvNhd K (V ○ V') f := fun x hx => ⟨g₁ x, hg₁ x hx, hg₂ x hx⟩
-#align continuous_map.compact_conv_nhd_mem_comp ContinuousMap.compactConvNhd_mem_comp
-
-/-- A key property of `ContinuousMap.compactConvNhd`. It allows us to apply
-`TopologicalSpace.nhds_mkOfNhds_filterBasis` below. -/
-theorem compactConvNhd_nhd_basis (hV : V ∈ 𝓤 β) :
-    ∃ V' ∈ 𝓤 β,
-      V' ⊆ V ∧ ∀ g ∈ compactConvNhd K V' f, compactConvNhd K V' g ⊆ compactConvNhd K V f := by
-  obtain ⟨V', h₁, h₂⟩ := comp_mem_uniformity_sets hV
-  exact
-    ⟨V', h₁, Subset.trans (subset_comp_self_of_mem_uniformity h₁) h₂, fun g hg g' hg' =>
-      compactConvNhd_mono f h₂ (compactConvNhd_mem_comp f hg hg')⟩
-#align continuous_map.compact_conv_nhd_nhd_basis ContinuousMap.compactConvNhd_nhd_basis
-
-theorem compactConvNhd_subset_inter (K₁ K₂ : Set α) (V₁ V₂ : Set (β × β)) :
-    compactConvNhd (K₁ ∪ K₂) (V₁ ∩ V₂) f ⊆ compactConvNhd K₁ V₁ f ∩ compactConvNhd K₂ V₂ f :=
-  fun _g hg =>
-  ⟨fun x hx => mem_of_mem_inter_left (hg x (mem_union_left K₂ hx)), fun x hx =>
-    mem_of_mem_inter_right (hg x (mem_union_right K₁ hx))⟩
-#align continuous_map.compact_conv_nhd_subset_inter ContinuousMap.compactConvNhd_subset_inter
-
-theorem compactConvNhd_compact_entourage_nonempty :
-    { KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β }.Nonempty :=
-  ⟨⟨∅, univ⟩, isCompact_empty, Filter.univ_mem⟩
-#align continuous_map.compact_conv_nhd_compact_entourage_nonempty ContinuousMap.compactConvNhd_compact_entourage_nonempty
-
-theorem compactConvNhd_filter_isBasis :
-    Filter.IsBasis (fun KV : Set α × Set (β × β) => IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β) fun KV =>
-      compactConvNhd KV.1 KV.2 f :=
-  { nonempty := compactConvNhd_compact_entourage_nonempty
-    inter := by
-      rintro ⟨K₁, V₁⟩ ⟨K₂, V₂⟩ ⟨hK₁, hV₁⟩ ⟨hK₂, hV₂⟩
-      exact
-        ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩,
-          compactConvNhd_subset_inter f K₁ K₂ V₁ V₂⟩ }
-#align continuous_map.compact_conv_nhd_filter_is_basis ContinuousMap.compactConvNhd_filter_isBasis
-
-/-- A filter basis for the neighbourhood filter of a point in the compact-convergence topology. -/
-def compactConvergenceFilterBasis (f : C(α, β)) : FilterBasis C(α, β) :=
-  (compactConvNhd_filter_isBasis f).filterBasis
-#align continuous_map.compact_convergence_filter_basis ContinuousMap.compactConvergenceFilterBasis
-
-theorem mem_compactConvergence_nhd_filter (Y : Set C(α, β)) :
-    Y ∈ (compactConvergenceFilterBasis f).filter ↔
-    ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧ compactConvNhd K V f ⊆ Y := by
+/-- Compact-open topology on `C(α, β)` agrees with the topology of uniform convergence on compacts:
+a family of continuous functions `F i` tends to `f` in the compact-open topology
+if and only if the `F i` tends to `f` uniformly on all compact sets. -/
+theorem tendsto_iff_forall_compact_tendstoUniformlyOn
+    {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f} :
+    Tendsto F p (𝓝 f) ↔ ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K := by
+  rw [tendsto_nhds_compactOpen]
   constructor
-  · rintro ⟨X, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩
-    exact ⟨K, V, hK, hV, hY⟩
-  · rintro ⟨K, V, hK, hV, hY⟩
-    exact ⟨compactConvNhd K V f, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩
-#align continuous_map.mem_compact_convergence_nhd_filter ContinuousMap.mem_compactConvergence_nhd_filter
-
-/-- The compact-convergence topology. In fact, see `ContinuousMap.compactOpen_eq_compactConvergence`
-this is the same as the compact-open topology. This definition is thus an auxiliary convenience
-definition and is unlikely to be of direct use. -/
-def compactConvergenceTopology : TopologicalSpace C(α, β) :=
-  TopologicalSpace.mkOfNhds fun f => (compactConvergenceFilterBasis f).filter
-#align continuous_map.compact_convergence_topology ContinuousMap.compactConvergenceTopology
-
-theorem nhds_compactConvergence :
-    @nhds _ compactConvergenceTopology f = (compactConvergenceFilterBasis f).filter := by
-  rw [TopologicalSpace.nhds_mkOfNhds_filterBasis] <;> rintro g - ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩
-  · exact self_mem_compactConvNhd g hV
-  · obtain ⟨V', hV', _, h₂⟩ := compactConvNhd_nhd_basis g hV
-    exact ⟨compactConvNhd K V' g, ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, fun g' hg' =>
-      ⟨compactConvNhd K V' g', ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, h₂ g' hg'⟩⟩
-#align continuous_map.nhds_compact_convergence ContinuousMap.nhds_compactConvergence
-
-theorem hasBasis_nhds_compactConvergence :
-    HasBasis (@nhds _ compactConvergenceTopology f)
-      (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
-      compactConvNhd p.1 p.2 f :=
-  (nhds_compactConvergence f).symm ▸ (compactConvNhd_filter_isBasis f).hasBasis
-#align continuous_map.has_basis_nhds_compact_convergence ContinuousMap.hasBasis_nhds_compactConvergence
-
-/-- This is an auxiliary lemma and is unlikely to be of direct use outside of this file. See
-`ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn` below for the useful version where the
-topology is picked up via typeclass inference. -/
-theorem tendsto_iff_forall_compact_tendstoUniformlyOn' {ι : Type u₃} {p : Filter ι}
-    {F : ι → C(α, β)} :
-    Filter.Tendsto F p (@nhds _ compactConvergenceTopology f) ↔
-      ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K := by
-  simp only [(hasBasis_nhds_compactConvergence f).tendsto_right_iff, TendstoUniformlyOn, and_imp,
-    Prod.forall]
-  refine' forall_congr' fun K => _
-  rw [forall_swap]
-  exact forall₃_congr fun _hK V _hV => Iff.rfl
-#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on' ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn'
-
-/-- Any point of `ContinuousMap.CompactOpen.gen K U` is also an interior point wrt the topology of
-compact convergence.
-
-The topology of compact convergence is thus at least as fine as the compact-open topology. -/
-theorem compactConvNhd_subset_compactOpen (hK : IsCompact K) {U : Set β} (hU : IsOpen U)
-    (hf : f ∈ CompactOpen.gen K U) :
-    ∃ V ∈ 𝓤 β, IsOpen V ∧ compactConvNhd K V f ⊆ CompactOpen.gen K U := by
-  obtain ⟨V, hV₁, hV₂, hV₃⟩ := lebesgue_number_of_compact_open (hK.image f.continuous) hU hf
-  refine' ⟨V, hV₁, hV₂, _⟩
-  rintro g hg _ ⟨x, hx, rfl⟩
-  exact hV₃ (f x) ⟨x, hx, rfl⟩ (hg x hx)
-#align continuous_map.compact_conv_nhd_subset_compact_open ContinuousMap.compactConvNhd_subset_compactOpen
-
-/-- The point `f` in `ContinuousMap.compactConvNhd K V f` is also an interior point wrt the
-compact-open topology.
-
-Since `ContinuousMap.compactConvNhd K V f` are a neighbourhood basis at `f` for each `f`, it follows
-that the compact-open topology is at least as fine as the topology of compact convergence. -/
-theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
-    ∃ (ι : Sort (u₁ + 1)) (_ : Fintype ι) (C : ι → Set α) (_hC : ∀ i, IsCompact (C i))
-      (U : ι → Set β) (_hU : ∀ i, IsOpen (U i)),
-      (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
-        ⋂ i, CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f := by
-  obtain ⟨W, hW₁, hW₄, hW₂, hW₃⟩ := comp_open_symm_mem_uniformity_sets hV
-  obtain ⟨Z, hZ₁, hZ₄, hZ₂, hZ₃⟩ := comp_open_symm_mem_uniformity_sets hW₁
-  let U : α → Set α := fun x => f ⁻¹' ball (f x) Z
-  have hU : ∀ x, IsOpen (U x) := fun x => f.continuous.isOpen_preimage _ (isOpen_ball _ hZ₄)
-  have hUK : K ⊆ ⋃ x : K, U (x : K) := by
-    intro x hx
-    simp only [exists_prop, mem_iUnion, iUnion_coe_set, mem_preimage]
-    exact ⟨(⟨x, hx⟩ : K), by simp [hx, mem_ball_self (f x) hZ₁]⟩
-  obtain ⟨t, ht⟩ := hK.elim_finite_subcover _ (fun x : K => hU x.val) hUK
-  let C : t → Set α := fun i => K ∩ closure (U ((i : K) : α))
-  have hC : K ⊆ ⋃ i, C i := by
-    rw [← K.inter_iUnion, subset_inter_iff]
-    refine' ⟨Subset.rfl, ht.trans _⟩
-    simp only [SetCoe.forall, Subtype.coe_mk, iUnion_subset_iff]
-    exact fun x hx₁ hx₂ => subset_iUnion_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure])
-  have hfC : ∀ i : t, C i ⊆ f ⁻¹' ball (f ((i : K) : α)) W := by
-    simp only [← image_subset_iff, ← mem_preimage]
-    rintro ⟨⟨x, hx₁⟩, hx₂⟩
-    have hZW : closure (ball (f x) Z) ⊆ ball (f x) W := by
-      intro y hy
-      obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁
-      exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁))
-    calc
-      f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _)
-      _ ⊆ closure (f '' U x) := f.continuous.continuousOn.image_closure
-      _ ⊆ closure (ball (f x) Z) := by
-        apply closure_mono
-        simp only [image_subset_iff]
-        rfl
-      _ ⊆ ball (f x) W := hZW
-
-  refine'
-    ⟨t, t.fintypeCoeSort, C, fun i => hK.inter_right isClosed_closure, fun i =>
-      ball (f ((i : K) : α)) W, fun i => isOpen_ball _ hW₄, by simp [CompactOpen.gen, hfC],
-      fun g hg x hx => hW₃ (mem_compRel.mpr _)⟩
-  simp only [mem_iInter, CompactOpen.gen, mem_setOf_eq, image_subset_iff] at hg
-  obtain ⟨y, hy⟩ := mem_iUnion.mp (hC hx)
-  exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩
-#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd
-
-/-- The compact-open topology is equal to the compact-convergence topology. -/
-theorem compactOpen_eq_compactConvergence :
-    ContinuousMap.compactOpen = (compactConvergenceTopology : TopologicalSpace C(α, β)) := by
-  rw [compactConvergenceTopology, ContinuousMap.compactOpen]
-  refine' le_antisymm _ _
-  · refine' fun X hX => isOpen_iff_forall_mem_open.mpr fun f hf => _
-    have hXf : X ∈ (compactConvergenceFilterBasis f).filter := by
-      rw [← nhds_compactConvergence]
-      exact @IsOpen.mem_nhds C(α, β) _ _ compactConvergenceTopology hX hf
-    obtain ⟨-, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hXf⟩ := hXf
-    obtain ⟨ι, hι, C, hC, U, hU, h₁, h₂⟩ := iInter_compactOpen_gen_subset_compactConvNhd f hK hV
-    haveI := hι
-    exact
-      ⟨⋂ i, CompactOpen.gen (C i) (U i), h₂.trans hXf,
-        isOpen_iInter_of_finite fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
-  · simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop,
-      forall_exists_index, setOf_subset_setOf]
-    rintro - K hK U hU rfl f hf
-    obtain ⟨V, hV, _hV', hVf⟩ := compactConvNhd_subset_compactOpen f hK hU hf
-    exact Filter.mem_of_superset (FilterBasis.mem_filter_of_mem _ ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩) hVf
-#align continuous_map.compact_open_eq_compact_convergence ContinuousMap.compactOpen_eq_compactConvergence
-
-/-- The filter on `C(α, β) × C(α, β)` which underlies the uniform space structure on `C(α, β)`. -/
-def compactConvergenceUniformity : Filter (C(α, β) × C(α, β)) :=
-  ⨅ KV ∈ { KV : Set α × Set (β × β) | IsCompact KV.1 ∧ KV.2 ∈ 𝓤 β },
-    𝓟 { fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ KV.1 → (fg.1 x, fg.2 x) ∈ KV.2 }
-#align continuous_map.compact_convergence_uniformity ContinuousMap.compactConvergenceUniformity
-
-theorem hasBasis_compactConvergenceUniformity_aux :
-    HasBasis (@compactConvergenceUniformity α β _ _)
-      (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
-      { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } := by
-  refine' Filter.hasBasis_biInf_principal _ compactConvNhd_compact_entourage_nonempty
-  rintro ⟨K₁, V₁⟩ ⟨hK₁, hV₁⟩ ⟨K₂, V₂⟩ ⟨hK₂, hV₂⟩
-  refine' ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩, _⟩
-  simp only [le_eq_subset, Prod.forall, setOf_subset_setOf, ge_iff_le, Order.Preimage, ←
-    forall_and, mem_inter_iff, mem_union]
-  exact fun f g => forall_imp fun x => by tauto
-#align continuous_map.has_basis_compact_convergence_uniformity_aux ContinuousMap.hasBasis_compactConvergenceUniformity_aux
-
-/-- An intermediate lemma. Usually `ContinuousMap.mem_compactConvergence_entourage_iff` is more
-useful. -/
-theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
-    X ∈ @compactConvergenceUniformity α β _ _ ↔
-      ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧
-        { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X := by
-  simp only [hasBasis_compactConvergenceUniformity_aux.mem_iff, exists_prop, Prod.exists,
-    and_assoc]
-#align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformity
-
-/-- Note that we ensure the induced topology is definitionally the compact-open topology. -/
-instance compactConvergenceUniformSpace : UniformSpace C(α, β) where
-  uniformity := compactConvergenceUniformity
-  refl := by
-    simp only [compactConvergenceUniformity, and_imp, Filter.le_principal_iff, Prod.forall,
-      Filter.mem_principal, mem_setOf_eq, le_iInf_iff, idRel_subset]
-    exact fun K V _hK hV f x _hx => refl_mem_uniformity hV
-  symm := by
-    simp only [compactConvergenceUniformity, and_imp, Prod.forall, mem_setOf_eq, Prod.fst_swap,
-      Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_iInf]
-    intro K V hK hV
-    obtain ⟨V', hV', hsymm, hsub⟩ := symm_of_uniformity hV
-    let X := { fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ K → (fg.1 x, fg.2 x) ∈ V' }
-    have hX : X ∈ compactConvergenceUniformity :=
-      (mem_compactConvergenceUniformity X).mpr ⟨K, V', hK, hV', by simp⟩
-    exact Filter.eventually_of_mem hX fun fg hfg x hx => hsub (hsymm _ _ (hfg x hx))
-  comp X hX := by
-    obtain ⟨K, V, hK, hV, hX⟩ := (mem_compactConvergenceUniformity X).mp hX
-    obtain ⟨V', hV', hcomp⟩ := comp_mem_uniformity_sets hV
-    let h := fun s : Set (C(α, β) × C(α, β)) => s ○ s
-    suffices h { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V' } ∈
-        compactConvergenceUniformity.lift' h by
-      apply Filter.mem_of_superset this
-      rintro ⟨f, g⟩ ⟨z, hz₁, hz₂⟩
-      refine' hX fun x hx => hcomp _
-      exact ⟨z x, hz₁ x hx, hz₂ x hx⟩
-    apply Filter.mem_lift'
-    exact (mem_compactConvergenceUniformity _).mpr ⟨K, V', hK, hV', Subset.refl _⟩
-  isOpen_uniformity := by
-    rw [compactOpen_eq_compactConvergence]
-    refine' fun Y => forall₂_congr fun f hf => _
-    simp only [mem_compactConvergence_nhd_filter, mem_compactConvergenceUniformity, Prod.forall,
-      setOf_subset_setOf, compactConvNhd]
-    refine' exists₂_congr fun K V => and_congr_right' <| and_congr_right'
-      ⟨_, fun hY g hg => hY f g hg rfl⟩
-    rintro hY g₁ g₂ hg₁ rfl
-    exact hY hg₁
-#align continuous_map.compact_convergence_uniform_space ContinuousMap.compactConvergenceUniformSpace
+  · -- Let us prove that convergence in the compact-open topology
+    -- implies uniform convergence on compacts.
+    -- Consider a compact set `K`
+    intro h K hK
+    -- Since `K` is compact, it suffices to prove locally uniform convergence
+    rw [← tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact hK]
+    -- Now choose an entourage `U` in the codomain and a point `x ∈ K`.
+    intro U hU x _
+    -- Choose an open symmetric entourage `V` such that `V ○ V ⊆ U`.
+    rcases comp_open_symm_mem_uniformity_sets hU with ⟨V, hV, hVo, hVsymm, hVU⟩
+    -- Then choose a closed entourage `W ⊆ V`
+    rcases mem_uniformity_isClosed hV with ⟨W, hW, hWc, hWU⟩
+    -- Consider `s = {y ∈ K | (f x, f y) ∈ W}`
+    set s := K ∩ f ⁻¹' ball (f x) W
+    -- This is a neighbourhood of `x` within `K`, because `W` is an entourage.
+    have hnhds : s ∈ 𝓝[K] x := inter_mem_nhdsWithin _ <| f.continuousAt _ (ball_mem_nhds _ hW)
+    -- This set is compact because it is an intersection of `K`
+    -- with a closed set `{y | (f x, f y) ∈ W} = f ⁻¹' UniformSpace.ball (f x) W`
+    have hcomp : IsCompact s := hK.inter_right <| (isClosed_ball _ hWc).preimage f.continuous
+    -- `f` maps `s` to the open set `ball (f x) V = {z | (f x, z) ∈ V}`
+    have hmaps : MapsTo f s (ball (f x) V) := fun x hx ↦ hWU hx.2
+    use s, hnhds
+    -- Continuous maps `F i` in a neighbourhood of `f` map `s` to `ball (f x) V` as well.
+    refine (h s hcomp _ (isOpen_ball _ hVo) hmaps).mono fun g hg y hy ↦ ?_
+    -- Then for `y ∈ s` we have `(f y, f x) ∈ V` and `(f x, F i y) ∈ V`, thus `(f y, F i y) ∈ U`
+    exact hVU ⟨f x, hVsymm.mk_mem_comm.2 <| hmaps hy, hg hy⟩
+  · -- Now we prove that uniform convergence on compacts
+    -- implies convergence in the compact-open topology
+    -- Consider a compact set `K`, an open set `U`, and a continuous map `f` that maps `K` to `U`
+    intro h K hK U hU hf
+    -- Due to Lebesgue number lemma, there exists an entourage `V`
+    -- such that `U` includes the `V`-thickening of `f '' K`.
+    rcases lebesgue_number_of_compact_open (hK.image (map_continuous f)) hU hf.image_subset
+        with ⟨V, hV, -, hVf⟩
+    -- Then any continuous map that is uniformly `V`-close to `f` on `K`
+    -- maps `K` to `U` as well
+    filter_upwards [h K hK V hV] with g hg x hx using hVf _ (mem_image_of_mem f hx) (hg x hx)
+#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn
 
-theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
-    X ∈ 𝓤 C(α, β) ↔
-      ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧
-        { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
-  mem_compactConvergenceUniformity X
-#align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
+/-- Interpret a bundled continuous map as an element of `α →ᵤ[{K | IsCompact K}] β`.
+
+We use this map to induce the `UniformSpace` structure on `C(α, β)`. -/
+def toUniformOnFunIsCompact (f : C(α, β)) : α →ᵤ[{K | IsCompact K}] β :=
+  UniformOnFun.ofFun {K | IsCompact K} f
+
+@[simp]
+theorem toUniformOnFun_toFun (f : C(α, β)) :
+    UniformOnFun.toFun _ f.toUniformOnFunIsCompact = f := rfl
+
+open UniformSpace in
+/-- Uniform space structure on `C(α, β)`.
+
+The uniformity comes from `α →ᵤ[{K | IsCompact K}] β` (i.e., `UniformOnFun α β {K | IsCompact K}`)
+which defines topology of uniform convergence on compact sets.
+We use `ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn`
+to show that the induced topology agrees with the compact-open topology
+and replace the topology with `compactOpen` to avoid non-defeq diamonds,
+see Note [forgetful inheritance].  -/
+instance compactConvergenceUniformSpace : UniformSpace C(α, β) :=
+  .replaceTopology (.comap toUniformOnFunIsCompact inferInstance) <| by
+    refine eq_of_nhds_eq_nhds fun f ↦ eq_of_forall_le_iff fun l ↦ ?_
+    simp_rw [← tendsto_id', tendsto_iff_forall_compact_tendstoUniformlyOn,
+      nhds_induced, tendsto_comap_iff, UniformOnFun.tendsto_iff_tendstoUniformlyOn]
+    rfl
+#align continuous_map.compact_convergence_uniform_space ContinuousMap.compactConvergenceUniformSpace
 
-theorem hasBasis_compactConvergenceUniformity :
-    HasBasis (𝓤 C(α, β)) (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
-      { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } :=
-  hasBasis_compactConvergenceUniformity_aux
-#align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
+theorem uniformEmbedding_toUniformOnFunIsCompact :
+    UniformEmbedding (toUniformOnFunIsCompact : C(α, β) → α →ᵤ[{K | IsCompact K}] β) where
+  comap_uniformity := rfl
+  inj := DFunLike.coe_injective
+
+-- The following definitions and theorems
+-- used to be a part of the construction of the `UniformSpace C(α, β)` structure
+-- before it was migrated to `UniformOnFun`
+#noalign continuous_map.compact_conv_nhd
+#noalign continuous_map.self_mem_compact_conv_nhd
+#noalign continuous_map.compact_conv_nhd_mono
+#noalign continuous_map.compact_conv_nhd_mem_comp
+#noalign continuous_map.compact_conv_nhd_nhd_basis
+#noalign continuous_map.compact_conv_nhd_subset_inter
+#noalign continuous_map.compact_conv_nhd_compact_entourage_nonempty
+#noalign continuous_map.compact_conv_nhd_filter_is_basis
+#noalign continuous_map.compact_convergence_filter_basis
+#noalign continuous_map.mem_compact_convergence_nhd_filter
+#noalign continuous_map.compact_convergence_topology
+#noalign continuous_map.nhds_compact_convergence
+#noalign continuous_map.has_basis_nhds_compact_convergence
+#noalign continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on'
+#noalign continuous_map.compact_conv_nhd_subset_compact_open
+#noalign continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd
+#noalign continuous_map.compact_open_eq_compact_convergence
+#noalign continuous_map.compact_convergence_uniformity
+#noalign continuous_map.has_basis_compact_convergence_uniformity_aux
+#noalign continuous_map.mem_compact_convergence_uniformity
 
 theorem _root_.Filter.HasBasis.compactConvergenceUniformity {ι : Type*} {pi : ι → Prop}
     {s : ι → Set (β × β)} (h : (𝓤 β).HasBasis pi s) :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × ι => IsCompact p.1 ∧ pi p.2) fun p =>
       { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2 } := by
-  refine' hasBasis_compactConvergenceUniformity.to_hasBasis _ _
-  · rintro ⟨t₁, t₂⟩ ⟨h₁, h₂⟩
-    rcases h.mem_iff.1 h₂ with ⟨i, hpi, hi⟩
-    exact ⟨(t₁, i), ⟨h₁, hpi⟩, fun fg hfg x hx => hi (hfg _ hx)⟩
-  · rintro ⟨t, i⟩ ⟨ht, hi⟩
-    exact ⟨(t, s i), ⟨ht, h.mem_of_mem hi⟩, Subset.rfl⟩
+  rw [← uniformEmbedding_toUniformOnFunIsCompact.comap_uniformity]
+  exact .comap _ <| UniformOnFun.hasBasis_uniformity_of_basis _ _ {K | IsCompact K}
+    ⟨∅, isCompact_empty⟩ (directedOn_of_sup_mem fun _ _ ↦ IsCompact.union) h
 #align filter.has_basis.compact_convergence_uniformity Filter.HasBasis.compactConvergenceUniformity
 
-variable {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f}
+theorem hasBasis_compactConvergenceUniformity :
+    HasBasis (𝓤 C(α, β)) (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
+      { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } :=
+  (basis_sets _).compactConvergenceUniformity
+#align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
 
-theorem tendsto_iff_forall_compact_tendstoUniformlyOn :
-    Tendsto F p (𝓝 f) ↔ ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K := by
-  rw [compactOpen_eq_compactConvergence, tendsto_iff_forall_compact_tendstoUniformlyOn']
-#align continuous_map.tendsto_iff_forall_compact_tendsto_uniformly_on ContinuousMap.tendsto_iff_forall_compact_tendstoUniformlyOn
+theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
+    X ∈ 𝓤 C(α, β) ↔
+      ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧
+        { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X := by
+  simp [hasBasis_compactConvergenceUniformity.mem_iff, and_assoc]
+#align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
+
+variable {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f}
 
 /-- Locally uniform convergence implies convergence in the compact-open topology. -/
 theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a => F i a) f p) :
feat(Topology/Order): add nhds_mkOfNhds_of_hasBasis (#10408)
  • add TopologicalSpace.nhds_mkOfNhds_of_hasBasis
  • add Trans instance for Filter.mem_of_superset
  • change assumptions of TopologicalSpace.nhds_mkOfNhds, golf
    • the new assumption is equivalent to the old one with t ⊆ s removed
    • but is formulated in terms of Filter.Eventually
Diff
@@ -173,10 +173,9 @@ theorem nhds_compactConvergence :
     @nhds _ compactConvergenceTopology f = (compactConvergenceFilterBasis f).filter := by
   rw [TopologicalSpace.nhds_mkOfNhds_filterBasis] <;> rintro g - ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩
   · exact self_mem_compactConvNhd g hV
-  · obtain ⟨V', hV', h₁, h₂⟩ := compactConvNhd_nhd_basis g hV
-    exact
-      ⟨compactConvNhd K V' g, ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, compactConvNhd_mono g h₁, fun g' hg' =>
-        ⟨compactConvNhd K V' g', ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, h₂ g' hg'⟩⟩
+  · obtain ⟨V', hV', _, h₂⟩ := compactConvNhd_nhd_basis g hV
+    exact ⟨compactConvNhd K V' g, ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, fun g' hg' =>
+      ⟨compactConvNhd K V' g', ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, h₂ g' hg'⟩⟩
 #align continuous_map.nhds_compact_convergence ContinuousMap.nhds_compactConvergence
 
 theorem hasBasis_nhds_compactConvergence :
chore(Topology/Basic): re-use variables; rename a : X to x : X (#9993)

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -271,7 +271,7 @@ theorem compactOpen_eq_compactConvergence :
   · refine' fun X hX => isOpen_iff_forall_mem_open.mpr fun f hf => _
     have hXf : X ∈ (compactConvergenceFilterBasis f).filter := by
       rw [← nhds_compactConvergence]
-      exact @IsOpen.mem_nhds C(α, β) compactConvergenceTopology _ _ hX hf
+      exact @IsOpen.mem_nhds C(α, β) _ _ compactConvergenceTopology hX hf
     obtain ⟨-, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hXf⟩ := hXf
     obtain ⟨ι, hι, C, hC, U, hU, h₁, h₂⟩ := iInter_compactOpen_gen_subset_compactConvNhd f hK hV
     haveI := hι
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9215)

Follow-up #9184

Diff
@@ -154,8 +154,7 @@ def compactConvergenceFilterBasis (f : C(α, β)) : FilterBasis C(α, β) :=
 
 theorem mem_compactConvergence_nhd_filter (Y : Set C(α, β)) :
     Y ∈ (compactConvergenceFilterBasis f).filter ↔
-    ∃ (K : Set α) (V : Set (β × β)) (_hK : IsCompact K) (_hV : V ∈ 𝓤 β),
-      compactConvNhd K V f ⊆ Y := by
+    ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧ compactConvNhd K V f ⊆ Y := by
   constructor
   · rintro ⟨X, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩
     exact ⟨K, V, hK, hV, hY⟩
@@ -308,15 +307,14 @@ theorem hasBasis_compactConvergenceUniformity_aux :
 useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
-      ∃ (K : Set α) (V : Set (β × β)) (_hK : IsCompact K) (_hV : V ∈ 𝓤 β),
+      ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧
         { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X := by
   simp only [hasBasis_compactConvergenceUniformity_aux.mem_iff, exists_prop, Prod.exists,
     and_assoc]
 #align continuous_map.mem_compact_convergence_uniformity ContinuousMap.mem_compactConvergenceUniformity
 
 /-- Note that we ensure the induced topology is definitionally the compact-open topology. -/
-instance compactConvergenceUniformSpace : UniformSpace C(α, β)
-    where
+instance compactConvergenceUniformSpace : UniformSpace C(α, β) where
   uniformity := compactConvergenceUniformity
   refl := by
     simp only [compactConvergenceUniformity, and_imp, Filter.le_principal_iff, Prod.forall,
@@ -348,14 +346,15 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
     refine' fun Y => forall₂_congr fun f hf => _
     simp only [mem_compactConvergence_nhd_filter, mem_compactConvergenceUniformity, Prod.forall,
       setOf_subset_setOf, compactConvNhd]
-    refine' exists₄_congr fun K V _hK _hV => ⟨_, fun hY g hg => hY f g hg rfl⟩
+    refine' exists₂_congr fun K V => and_congr_right' <| and_congr_right'
+      ⟨_, fun hY g hg => hY f g hg rfl⟩
     rintro hY g₁ g₂ hg₁ rfl
     exact hY hg₁
 #align continuous_map.compact_convergence_uniform_space ContinuousMap.compactConvergenceUniformSpace
 
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
-      ∃ (K : Set α) (V : Set (β × β)) (_hK : IsCompact K) (_hV : V ∈ 𝓤 β),
+      ∃ (K : Set α) (V : Set (β × β)), IsCompact K ∧ V ∈ 𝓤 β ∧
         { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
   mem_compactConvergenceUniformity X
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
feat: Alexandrov-discrete spaces (#6962)

We define Alexandrov-discrete spaces as topological spaces where the intersection of a family of open sets is open.

This PR only gives a minimal API because the goal is to ensure that lemma names like isOpen_sInter are free to use for AlexandrovDiscrete. The existing lemmas are getting prefixed by Set.Finite or suffixed by _of_finite.

Diff
@@ -278,7 +278,7 @@ theorem compactOpen_eq_compactConvergence :
     haveI := hι
     exact
       ⟨⋂ i, CompactOpen.gen (C i) (U i), h₂.trans hXf,
-        isOpen_iInter fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
+        isOpen_iInter_of_finite fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
   · simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop,
       forall_exists_index, setOf_subset_setOf]
     rintro - K hK U hU rfl f hf
feat: define weakly locally compact spaces (#6770)
Diff
@@ -394,29 +394,25 @@ theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a
   exact h.tendstoLocallyUniformlyOn
 #align continuous_map.tendsto_of_tendsto_locally_uniformly ContinuousMap.tendsto_of_tendstoLocallyUniformly
 
-/-- If every point has a compact neighbourhood, then convergence in the compact-open topology
-implies locally uniform convergence.
-
-See also `ContinuousMap.tendsto_iff_tendstoLocallyUniformly`, especially for T2 spaces. -/
-theorem tendstoLocallyUniformly_of_tendsto (hα : ∀ x : α, ∃ n, IsCompact n ∧ n ∈ 𝓝 x)
-    (h : Tendsto F p (𝓝 f)) : TendstoLocallyUniformly (fun i a => F i a) f p := by
+/-- In a weakly locally compact space,
+convergence in the compact-open topology is the same as locally uniform convergence.
+
+The right-to-left implication holds in any topological space,
+see `ContinuousMap.tendsto_of_tendstoLocallyUniformly`. -/
+theorem tendsto_iff_tendstoLocallyUniformly [WeaklyLocallyCompactSpace α] :
+    Tendsto F p (𝓝 f) ↔ TendstoLocallyUniformly (fun i a => F i a) f p := by
+  refine ⟨fun h V hV x ↦ ?_, tendsto_of_tendstoLocallyUniformly⟩
   rw [tendsto_iff_forall_compact_tendstoUniformlyOn] at h
-  intro V hV x
-  obtain ⟨n, hn₁, hn₂⟩ := hα x
+  obtain ⟨n, hn₁, hn₂⟩ := exists_compact_mem_nhds x
   exact ⟨n, hn₂, h n hn₁ V hV⟩
-#align continuous_map.tendsto_locally_uniformly_of_tendsto ContinuousMap.tendstoLocallyUniformly_of_tendsto
-
-/-- Convergence in the compact-open topology is the same as locally uniform convergence on a locally
-compact space.
-
-For non-T2 spaces, the assumption `LocallyCompactSpace α` is stronger than we need and in fact
-the `←` direction is true unconditionally. See `ContinuousMap.tendstoLocallyUniformly_of_tendsto`
-and `ContinuousMap.tendsto_of_tendstoLocallyUniformly` for versions requiring weaker hypotheses. -/
-theorem tendsto_iff_tendstoLocallyUniformly [LocallyCompactSpace α] :
-    Tendsto F p (𝓝 f) ↔ TendstoLocallyUniformly (fun i a => F i a) f p :=
-  ⟨tendstoLocallyUniformly_of_tendsto exists_compact_mem_nhds, tendsto_of_tendstoLocallyUniformly⟩
 #align continuous_map.tendsto_iff_tendsto_locally_uniformly ContinuousMap.tendsto_iff_tendstoLocallyUniformly
 
+@[deprecated tendsto_iff_tendstoLocallyUniformly]
+theorem tendstoLocallyUniformly_of_tendsto [WeaklyLocallyCompactSpace α] (h : Tendsto F p (𝓝 f)) :
+    TendstoLocallyUniformly (fun i a => F i a) f p :=
+  tendsto_iff_tendstoLocallyUniformly.1 h
+#align continuous_map.tendsto_locally_uniformly_of_tendsto ContinuousMap.tendstoLocallyUniformly_of_tendsto
+
 section CompactDomain
 
 variable [CompactSpace α]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -366,7 +366,7 @@ theorem hasBasis_compactConvergenceUniformity :
   hasBasis_compactConvergenceUniformity_aux
 #align continuous_map.has_basis_compact_convergence_uniformity ContinuousMap.hasBasis_compactConvergenceUniformity
 
-theorem _root_.Filter.HasBasis.compactConvergenceUniformity {ι : Type _} {pi : ι → Prop}
+theorem _root_.Filter.HasBasis.compactConvergenceUniformity {ι : Type*} {pi : ι → Prop}
     {s : ι → Set (β × β)} (h : (𝓤 β).HasBasis pi s) :
     HasBasis (𝓤 C(α, β)) (fun p : Set α × ι => IsCompact p.1 ∧ pi p.2) fun p =>
       { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2 } := by
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Oliver Nash. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Oliver Nash
-
-! This file was ported from Lean 3 source module topology.uniform_space.compact_convergence
-! leanprover-community/mathlib commit dc6c365e751e34d100e80fe6e314c3c3e0fd2988
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.CompactOpen
 import Mathlib.Topology.UniformSpace.UniformConvergence
 
+#align_import topology.uniform_space.compact_convergence from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988"
+
 /-!
 # Compact convergence (uniform convergence on compact sets)
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -43,9 +43,9 @@ $$
 $$
 Using this notation we can describe the uniform space structure and the topology it induces.
 Specifically:
- *  A subset `X ⊆ C(α, β) × C(α, β)` is an entourage for the uniform space structure on `C(α, β)`
+  * A subset `X ⊆ C(α, β) × C(α, β)` is an entourage for the uniform space structure on `C(α, β)`
     iff there exists a compact `K` and entourage `V` such that `E(K, V) ⊆ X`.
- *  A subset `Y ⊆ C(α, β)` is a neighbourhood of `f` iff there exists a compact `K` and entourage
+  * A subset `Y ⊆ C(α, β)` is a neighbourhood of `f` iff there exists a compact `K` and entourage
     `V` such that `N(K, V, f) ⊆ Y`.
 
 The topology on `C(α, β)` thus has a natural subbasis (the compact-open subbasis) and a natural
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -226,7 +226,7 @@ theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V
     ∃ (ι : Sort (u₁ + 1)) (_ : Fintype ι) (C : ι → Set α) (_hC : ∀ i, IsCompact (C i))
       (U : ι → Set β) (_hU : ∀ i, IsOpen (U i)),
       (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
-        (⋂ i, CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f := by
+        ⋂ i, CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f := by
   obtain ⟨W, hW₁, hW₄, hW₂, hW₃⟩ := comp_open_symm_mem_uniformity_sets hV
   obtain ⟨Z, hZ₁, hZ₄, hZ₂, hZ₃⟩ := comp_open_symm_mem_uniformity_sets hW₁
   let U : α → Set α := fun x => f ⁻¹' ball (f x) Z
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -223,8 +223,8 @@ compact-open topology.
 Since `ContinuousMap.compactConvNhd K V f` are a neighbourhood basis at `f` for each `f`, it follows
 that the compact-open topology is at least as fine as the topology of compact convergence. -/
 theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
-    ∃ (ι : Sort (u₁ + 1))(_ : Fintype ι)(C : ι → Set α)(_hC : ∀ i, IsCompact (C i))(U :
-      ι → Set β)(_hU : ∀ i, IsOpen (U i)),
+    ∃ (ι : Sort (u₁ + 1)) (_ : Fintype ι) (C : ι → Set α) (_hC : ∀ i, IsCompact (C i))
+      (U : ι → Set β) (_hU : ∀ i, IsOpen (U i)),
       (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
         (⋂ i, CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f := by
   obtain ⟨W, hW₁, hW₄, hW₂, hW₃⟩ := comp_open_symm_mem_uniformity_sets hV
@@ -311,7 +311,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
 useful. -/
 theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
     X ∈ @compactConvergenceUniformity α β _ _ ↔
-      ∃ (K : Set α)(V : Set (β × β))(_hK : IsCompact K)(_hV : V ∈ 𝓤 β),
+      ∃ (K : Set α) (V : Set (β × β)) (_hK : IsCompact K) (_hV : V ∈ 𝓤 β),
         { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X := by
   simp only [hasBasis_compactConvergenceUniformity_aux.mem_iff, exists_prop, Prod.exists,
     and_assoc]
@@ -358,7 +358,7 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
 
 theorem mem_compactConvergence_entourage_iff (X : Set (C(α, β) × C(α, β))) :
     X ∈ 𝓤 C(α, β) ↔
-      ∃ (K : Set α)(V : Set (β × β))(_hK : IsCompact K)(_hV : V ∈ 𝓤 β),
+      ∃ (K : Set α) (V : Set (β × β)) (_hK : IsCompact K) (_hV : V ∈ 𝓤 β),
         { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V } ⊆ X :=
   mem_compactConvergenceUniformity X
 #align continuous_map.mem_compact_convergence_entourage_iff ContinuousMap.mem_compactConvergence_entourage_iff
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -222,7 +222,7 @@ compact-open topology.
 
 Since `ContinuousMap.compactConvNhd K V f` are a neighbourhood basis at `f` for each `f`, it follows
 that the compact-open topology is at least as fine as the topology of compact convergence. -/
-theorem interᵢ_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
+theorem iInter_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV : V ∈ 𝓤 β) :
     ∃ (ι : Sort (u₁ + 1))(_ : Fintype ι)(C : ι → Set α)(_hC : ∀ i, IsCompact (C i))(U :
       ι → Set β)(_hU : ∀ i, IsOpen (U i)),
       (f ∈ ⋂ i, CompactOpen.gen (C i) (U i)) ∧
@@ -233,15 +233,15 @@ theorem interᵢ_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV :
   have hU : ∀ x, IsOpen (U x) := fun x => f.continuous.isOpen_preimage _ (isOpen_ball _ hZ₄)
   have hUK : K ⊆ ⋃ x : K, U (x : K) := by
     intro x hx
-    simp only [exists_prop, mem_unionᵢ, unionᵢ_coe_set, mem_preimage]
+    simp only [exists_prop, mem_iUnion, iUnion_coe_set, mem_preimage]
     exact ⟨(⟨x, hx⟩ : K), by simp [hx, mem_ball_self (f x) hZ₁]⟩
   obtain ⟨t, ht⟩ := hK.elim_finite_subcover _ (fun x : K => hU x.val) hUK
   let C : t → Set α := fun i => K ∩ closure (U ((i : K) : α))
   have hC : K ⊆ ⋃ i, C i := by
-    rw [← K.inter_unionᵢ, subset_inter_iff]
+    rw [← K.inter_iUnion, subset_inter_iff]
     refine' ⟨Subset.rfl, ht.trans _⟩
-    simp only [SetCoe.forall, Subtype.coe_mk, unionᵢ_subset_iff]
-    exact fun x hx₁ hx₂ => subset_unionᵢ_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure])
+    simp only [SetCoe.forall, Subtype.coe_mk, iUnion_subset_iff]
+    exact fun x hx₁ hx₂ => subset_iUnion_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure])
   have hfC : ∀ i : t, C i ⊆ f ⁻¹' ball (f ((i : K) : α)) W := by
     simp only [← image_subset_iff, ← mem_preimage]
     rintro ⟨⟨x, hx₁⟩, hx₂⟩
@@ -262,10 +262,10 @@ theorem interᵢ_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV :
     ⟨t, t.fintypeCoeSort, C, fun i => hK.inter_right isClosed_closure, fun i =>
       ball (f ((i : K) : α)) W, fun i => isOpen_ball _ hW₄, by simp [CompactOpen.gen, hfC],
       fun g hg x hx => hW₃ (mem_compRel.mpr _)⟩
-  simp only [mem_interᵢ, CompactOpen.gen, mem_setOf_eq, image_subset_iff] at hg
-  obtain ⟨y, hy⟩ := mem_unionᵢ.mp (hC hx)
+  simp only [mem_iInter, CompactOpen.gen, mem_setOf_eq, image_subset_iff] at hg
+  obtain ⟨y, hy⟩ := mem_iUnion.mp (hC hx)
   exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩
-#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.interᵢ_compactOpen_gen_subset_compactConvNhd
+#align continuous_map.Inter_compact_open_gen_subset_compact_conv_nhd ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd
 
 /-- The compact-open topology is equal to the compact-convergence topology. -/
 theorem compactOpen_eq_compactConvergence :
@@ -277,11 +277,11 @@ theorem compactOpen_eq_compactConvergence :
       rw [← nhds_compactConvergence]
       exact @IsOpen.mem_nhds C(α, β) compactConvergenceTopology _ _ hX hf
     obtain ⟨-, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hXf⟩ := hXf
-    obtain ⟨ι, hι, C, hC, U, hU, h₁, h₂⟩ := interᵢ_compactOpen_gen_subset_compactConvNhd f hK hV
+    obtain ⟨ι, hι, C, hC, U, hU, h₁, h₂⟩ := iInter_compactOpen_gen_subset_compactConvNhd f hK hV
     haveI := hι
     exact
       ⟨⋂ i, CompactOpen.gen (C i) (U i), h₂.trans hXf,
-        isOpen_interᵢ fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
+        isOpen_iInter fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩
   · simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop,
       forall_exists_index, setOf_subset_setOf]
     rintro - K hK U hU rfl f hf
@@ -299,7 +299,7 @@ theorem hasBasis_compactConvergenceUniformity_aux :
     HasBasis (@compactConvergenceUniformity α β _ _)
       (fun p : Set α × Set (β × β) => IsCompact p.1 ∧ p.2 ∈ 𝓤 β) fun p =>
       { fg : C(α, β) × C(α, β) | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ p.2 } := by
-  refine' Filter.hasBasis_binfᵢ_principal _ compactConvNhd_compact_entourage_nonempty
+  refine' Filter.hasBasis_biInf_principal _ compactConvNhd_compact_entourage_nonempty
   rintro ⟨K₁, V₁⟩ ⟨hK₁, hV₁⟩ ⟨K₂, V₂⟩ ⟨hK₂, hV₂⟩
   refine' ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩, _⟩
   simp only [le_eq_subset, Prod.forall, setOf_subset_setOf, ge_iff_le, Order.Preimage, ←
@@ -323,11 +323,11 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
   uniformity := compactConvergenceUniformity
   refl := by
     simp only [compactConvergenceUniformity, and_imp, Filter.le_principal_iff, Prod.forall,
-      Filter.mem_principal, mem_setOf_eq, le_infᵢ_iff, idRel_subset]
+      Filter.mem_principal, mem_setOf_eq, le_iInf_iff, idRel_subset]
     exact fun K V _hK hV f x _hx => refl_mem_uniformity hV
   symm := by
     simp only [compactConvergenceUniformity, and_imp, Prod.forall, mem_setOf_eq, Prod.fst_swap,
-      Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_infᵢ]
+      Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_iInf]
     intro K V hK hV
     obtain ⟨V', hV', hsymm, hsub⟩ := symm_of_uniformity hV
     let X := { fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ K → (fg.1 x, fg.2 x) ∈ V' }
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -157,8 +157,8 @@ def compactConvergenceFilterBasis (f : C(α, β)) : FilterBasis C(α, β) :=
 
 theorem mem_compactConvergence_nhd_filter (Y : Set C(α, β)) :
     Y ∈ (compactConvergenceFilterBasis f).filter ↔
-      ∃ (K : Set α)(V : Set (β × β))(_hK : IsCompact K)(_hV : V ∈ 𝓤 β), compactConvNhd K V f ⊆ Y :=
-  by
+    ∃ (K : Set α) (V : Set (β × β)) (_hK : IsCompact K) (_hV : V ∈ 𝓤 β),
+      compactConvNhd K V f ⊆ Y := by
   constructor
   · rintro ⟨X, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩
     exact ⟨K, V, hK, hV, hY⟩
@@ -242,23 +242,20 @@ theorem interᵢ_compactOpen_gen_subset_compactConvNhd (hK : IsCompact K) (hV :
     refine' ⟨Subset.rfl, ht.trans _⟩
     simp only [SetCoe.forall, Subtype.coe_mk, unionᵢ_subset_iff]
     exact fun x hx₁ hx₂ => subset_unionᵢ_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure])
-  have hfC : ∀ i : t, C i ⊆ f ⁻¹' ball (f ((i : K) : α)) W :=
-    by
+  have hfC : ∀ i : t, C i ⊆ f ⁻¹' ball (f ((i : K) : α)) W := by
     simp only [← image_subset_iff, ← mem_preimage]
     rintro ⟨⟨x, hx₁⟩, hx₂⟩
-    have hZW : closure (ball (f x) Z) ⊆ ball (f x) W :=
-      by
+    have hZW : closure (ball (f x) Z) ⊆ ball (f x) W := by
       intro y hy
       obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁
       exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁))
     calc
       f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _)
       _ ⊆ closure (f '' U x) := f.continuous.continuousOn.image_closure
-      _ ⊆ closure (ball (f x) Z) :=
-        by
-          apply closure_mono
-          simp only [image_subset_iff]
-          rfl
+      _ ⊆ closure (ball (f x) Z) := by
+        apply closure_mono
+        simp only [image_subset_iff]
+        rfl
       _ ⊆ ball (f x) W := hZW
 
   refine'
@@ -276,8 +273,7 @@ theorem compactOpen_eq_compactConvergence :
   rw [compactConvergenceTopology, ContinuousMap.compactOpen]
   refine' le_antisymm _ _
   · refine' fun X hX => isOpen_iff_forall_mem_open.mpr fun f hf => _
-    have hXf : X ∈ (compactConvergenceFilterBasis f).filter :=
-      by
+    have hXf : X ∈ (compactConvergenceFilterBasis f).filter := by
       rw [← nhds_compactConvergence]
       exact @IsOpen.mem_nhds C(α, β) compactConvergenceTopology _ _ hX hf
     obtain ⟨-, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hXf⟩ := hXf
@@ -325,13 +321,11 @@ theorem mem_compactConvergenceUniformity (X : Set (C(α, β) × C(α, β))) :
 instance compactConvergenceUniformSpace : UniformSpace C(α, β)
     where
   uniformity := compactConvergenceUniformity
-  refl :=
-    by
+  refl := by
     simp only [compactConvergenceUniformity, and_imp, Filter.le_principal_iff, Prod.forall,
       Filter.mem_principal, mem_setOf_eq, le_infᵢ_iff, idRel_subset]
     exact fun K V _hK hV f x _hx => refl_mem_uniformity hV
-  symm :=
-    by
+  symm := by
     simp only [compactConvergenceUniformity, and_imp, Prod.forall, mem_setOf_eq, Prod.fst_swap,
       Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_infᵢ]
     intro K V hK hV
@@ -340,15 +334,12 @@ instance compactConvergenceUniformSpace : UniformSpace C(α, β)
     have hX : X ∈ compactConvergenceUniformity :=
       (mem_compactConvergenceUniformity X).mpr ⟨K, V', hK, hV', by simp⟩
     exact Filter.eventually_of_mem hX fun fg hfg x hx => hsub (hsymm _ _ (hfg x hx))
-  comp X hX :=
-    by
+  comp X hX := by
     obtain ⟨K, V, hK, hV, hX⟩ := (mem_compactConvergenceUniformity X).mp hX
     obtain ⟨V', hV', hcomp⟩ := comp_mem_uniformity_sets hV
     let h := fun s : Set (C(α, β) × C(α, β)) => s ○ s
-    suffices
-      h { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V' } ∈
-        compactConvergenceUniformity.lift' h
-      by
+    suffices h { fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V' } ∈
+        compactConvergenceUniformity.lift' h by
       apply Filter.mem_of_superset this
       rintro ⟨f, g⟩ ⟨z, hz₁, hz₂⟩
       refine' hX fun x hx => hcomp _
chore: Restore most of the mono attribute (#2491)

Restore most of the mono attribute now that #1740 is merged.

I think I got all of the monos.

Diff
@@ -106,7 +106,7 @@ theorem self_mem_compactConvNhd (hV : V ∈ 𝓤 β) : f ∈ compactConvNhd K V
   refl_mem_uniformity hV
 #align continuous_map.self_mem_compact_conv_nhd ContinuousMap.self_mem_compactConvNhd
 
--- porting note: need to add @[mono] attribute
+@[mono]
 theorem compactConvNhd_mono {V' : Set (β × β)} (hV' : V' ⊆ V) :
     compactConvNhd K V' f ⊆ compactConvNhd K V f := fun _x hx a ha => hV' (hx a ha)
 #align continuous_map.compact_conv_nhd_mono ContinuousMap.compactConvNhd_mono
feat: port Topology.UniformSpace.CompactConvergence (#2281)

Dependencies 8 + 313

314 files ported (97.5%)
139330 lines ported (96.5%)
Show graph

The unported dependencies are