Documentation

Mathlib.Algebra.Category.GroupCat.Biproducts

The category of abelian groups has finite biproducts #

@[simp]
theorem AddCommGroupCat.biprodIsoProd_hom_apply (G : AddCommGroupCat) (H : AddCommGroupCat) (i : (CategoryTheory.Limits.BinaryBicone.toCone (CategoryTheory.Limits.BinaryBiproduct.bicone G H)).pt) :
(AddCommGroupCat.biprodIsoProd G H).hom i = (CategoryTheory.Limits.biprod.fst i, CategoryTheory.Limits.biprod.snd i)

We verify that the biproduct in AddCommGroupCat is isomorphic to the cartesian product of the underlying types:

Instances For
    @[simp]
    theorem AddCommGroupCat.HasLimit.lift_apply {J : Type w} (f : JAddCommGroupCat) (s : CategoryTheory.Limits.Fan f) (x : s.pt) (j : J) :
    ↑(AddCommGroupCat.HasLimit.lift f s) x j = ↑(s.app { as := j }) x
    def AddCommGroupCat.HasLimit.lift {J : Type w} (f : JAddCommGroupCat) (s : CategoryTheory.Limits.Fan f) :
    s.pt AddCommGroupCat.of ((j : J) → ↑(f j))

    The map from an arbitrary cone over an indexed family of abelian groups to the cartesian product of those groups.

    Instances For

      Construct limit data for a product in AddCommGroupCat, using AddCommGroupCat.of (∀ j, F.obj j).

      Instances For
        noncomputable def AddCommGroupCat.biproductIsoPi {J : Type} [Fintype J] (f : JAddCommGroupCat) :
        f AddCommGroupCat.of ((j : J) → ↑(f j))

        We verify that the biproduct we've just defined is isomorphic to the AddCommGroupCat structure on the dependent function type.

        Instances For