Documentation

Mathlib.Algebra.Category.GroupCat.Biproducts

The category of abelian groups has finite biproducts #

Construct limit data for a binary product in AddCommGroupCat, using AddCommGroupCat.of (G × H).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem AddCommGroupCat.biprodIsoProd_hom_apply (G : AddCommGroupCat) (H : AddCommGroupCat) (i : (CategoryTheory.Limits.BinaryBicone.toCone (CategoryTheory.Limits.BinaryBiproduct.bicone G H)).pt) :
    (AddCommGroupCat.biprodIsoProd G H).hom i = (CategoryTheory.Limits.biprod.fst i, CategoryTheory.Limits.biprod.snd i)

    We verify that the biproduct in AddCommGroupCat is isomorphic to the cartesian product of the underlying types:

    Equations
    Instances For
      @[simp]
      theorem AddCommGroupCat.HasLimit.lift_apply {J : Type w} (f : JAddCommGroupCat) (s : CategoryTheory.Limits.Fan f) (x : s.pt) (j : J) :
      (AddCommGroupCat.HasLimit.lift f s) x j = (s.app { as := j }) x
      def AddCommGroupCat.HasLimit.lift {J : Type w} (f : JAddCommGroupCat) (s : CategoryTheory.Limits.Fan f) :
      s.pt AddCommGroupCat.of ((j : J) → (f j))

      The map from an arbitrary cone over an indexed family of abelian groups to the cartesian product of those groups.

      Equations
      • AddCommGroupCat.HasLimit.lift f s = { toZeroHom := { toFun := fun (x : s.pt) (j : J) => (s.app { as := j }) x, map_zero' := }, map_add' := }
      Instances For

        Construct limit data for a product in AddCommGroupCat, using AddCommGroupCat.of (∀ j, F.obj j).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def AddCommGroupCat.biproductIsoPi {J : Type} [Finite J] (f : JAddCommGroupCat) :
          f AddCommGroupCat.of ((j : J) → (f j))

          We verify that the biproduct we've just defined is isomorphic to the AddCommGroupCat structure on the dependent function type.

          Equations
          Instances For