Documentation

Mathlib.Algebra.Free

Free constructions #

Main definitions #

inductive FreeAddMagma (α : Type u) :

Free nonabelian additive magma over a given alphabet.

Instances For
    inductive FreeMagma (α : Type u) :

    Free magma over a given alphabet.

    Instances For
      instance FreeMagma.instMul {α : Type u} :
      Equations
      @[simp]
      theorem FreeMagma.mul_eq {α : Type u} (x y : FreeMagma α) :
      x.mul y = x * y
      @[simp]
      theorem FreeAddMagma.add_eq {α : Type u} (x y : FreeAddMagma α) :
      x.add y = x + y
      def FreeMagma.recOnMul {α : Type u} {C : FreeMagma αSort l} (x : FreeMagma α) (ih1 : (x : α) → C (of x)) (ih2 : (x y : FreeMagma α) → C xC yC (x * y)) :
      C x

      Recursor for FreeMagma using x * y instead of FreeMagma.mul x y.

      Equations
      Instances For
        def FreeAddMagma.recOnAdd {α : Type u} {C : FreeAddMagma αSort l} (x : FreeAddMagma α) (ih1 : (x : α) → C (of x)) (ih2 : (x y : FreeAddMagma α) → C xC yC (x + y)) :
        C x

        Recursor for FreeAddMagma using x + y instead of FreeAddMagma.add x y.

        Equations
        Instances For
          theorem FreeMagma.hom_ext {α : Type u} {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} (h : f of = g of) :
          f = g
          theorem FreeAddMagma.hom_ext {α : Type u} {β : Type v} [Add β] {f g : FreeAddMagma α →ₙ+ β} (h : f of = g of) :
          f = g
          theorem FreeMagma.hom_ext_iff {α : Type u} {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} :
          f = g f of = g of
          theorem FreeAddMagma.hom_ext_iff {α : Type u} {β : Type v} [Add β] {f g : FreeAddMagma α →ₙ+ β} :
          f = g f of = g of
          def FreeMagma.liftAux {α : Type u} {β : Type v} [Mul β] (f : αβ) :
          FreeMagma αβ

          Lifts a function α → β to a magma homomorphism FreeMagma α → β given a magma β.

          Equations
          Instances For
            def FreeAddMagma.liftAux {α : Type u} {β : Type v} [Add β] (f : αβ) :
            FreeAddMagma αβ

            Lifts a function α → β to an additive magma homomorphism FreeAddMagma α → β given an additive magma β.

            Equations
            Instances For
              def FreeMagma.lift {α : Type u} {β : Type v} [Mul β] :
              (αβ) (FreeMagma α →ₙ* β)

              The universal property of the free magma expressing its adjointness.

              Equations
              Instances For
                def FreeAddMagma.lift {α : Type u} {β : Type v} [Add β] :
                (αβ) (FreeAddMagma α →ₙ+ β)

                The universal property of the free additive magma expressing its adjointness.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem FreeMagma.lift_symm_apply {α : Type u} {β : Type v} [Mul β] (F : FreeMagma α →ₙ* β) (a✝ : α) :
                  lift.symm F a✝ = (F of) a✝
                  @[simp]
                  theorem FreeAddMagma.lift_symm_apply {α : Type u} {β : Type v} [Add β] (F : FreeAddMagma α →ₙ+ β) (a✝ : α) :
                  lift.symm F a✝ = (F of) a✝
                  @[simp]
                  theorem FreeMagma.lift_of {α : Type u} {β : Type v} [Mul β] (f : αβ) (x : α) :
                  (lift f) (of x) = f x
                  @[simp]
                  theorem FreeAddMagma.lift_of {α : Type u} {β : Type v} [Add β] (f : αβ) (x : α) :
                  (lift f) (of x) = f x
                  @[simp]
                  theorem FreeMagma.lift_comp_of {α : Type u} {β : Type v} [Mul β] (f : αβ) :
                  (lift f) of = f
                  @[simp]
                  theorem FreeAddMagma.lift_comp_of {α : Type u} {β : Type v} [Add β] (f : αβ) :
                  (lift f) of = f
                  @[simp]
                  theorem FreeMagma.lift_comp_of' {α : Type u} {β : Type v} [Mul β] (f : FreeMagma α →ₙ* β) :
                  lift (f of) = f
                  @[simp]
                  theorem FreeAddMagma.lift_comp_of' {α : Type u} {β : Type v} [Add β] (f : FreeAddMagma α →ₙ+ β) :
                  lift (f of) = f
                  def FreeMagma.map {α : Type u} {β : Type v} (f : αβ) :

                  The unique magma homomorphism FreeMagma α →ₙ* FreeMagma β that sends each of x to of (f x).

                  Equations
                  Instances For
                    def FreeAddMagma.map {α : Type u} {β : Type v} (f : αβ) :

                    The unique additive magma homomorphism FreeAddMagma α → FreeAddMagma β that sends each of x to of (f x).

                    Equations
                    Instances For
                      @[simp]
                      theorem FreeMagma.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                      (map f) (of x) = of (f x)
                      @[simp]
                      theorem FreeAddMagma.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                      (map f) (of x) = of (f x)
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Equations
                      • One or more equations did not get rendered due to their size.
                      def FreeMagma.recOnPure {α : Type u} {C : FreeMagma αSort l} (x : FreeMagma α) (ih1 : (x : α) → C (pure x)) (ih2 : (x y : FreeMagma α) → C xC yC (x * y)) :
                      C x

                      Recursor on FreeMagma using pure instead of of.

                      Equations
                      Instances For
                        def FreeAddMagma.recOnPure {α : Type u} {C : FreeAddMagma αSort l} (x : FreeAddMagma α) (ih1 : (x : α) → C (pure x)) (ih2 : (x y : FreeAddMagma α) → C xC yC (x + y)) :
                        C x

                        Recursor on FreeAddMagma using pure instead of of.

                        Equations
                        Instances For
                          @[simp]
                          theorem FreeMagma.map_pure {α β : Type u} (f : αβ) (x : α) :
                          f <$> pure x = pure (f x)
                          @[simp]
                          theorem FreeAddMagma.map_pure {α β : Type u} (f : αβ) (x : α) :
                          f <$> pure x = pure (f x)
                          @[simp]
                          theorem FreeMagma.map_mul' {α β : Type u} (f : αβ) (x y : FreeMagma α) :
                          f <$> (x * y) = f <$> x * f <$> y
                          @[simp]
                          theorem FreeAddMagma.map_add' {α β : Type u} (f : αβ) (x y : FreeAddMagma α) :
                          f <$> (x + y) = f <$> x + f <$> y
                          @[simp]
                          theorem FreeMagma.pure_bind {α β : Type u} (f : αFreeMagma β) (x : α) :
                          pure x >>= f = f x
                          @[simp]
                          theorem FreeAddMagma.pure_bind {α β : Type u} (f : αFreeAddMagma β) (x : α) :
                          pure x >>= f = f x
                          @[simp]
                          theorem FreeMagma.mul_bind {α β : Type u} (f : αFreeMagma β) (x y : FreeMagma α) :
                          x * y >>= f = (x >>= f) * (y >>= f)
                          @[simp]
                          theorem FreeAddMagma.add_bind {α β : Type u} (f : αFreeAddMagma β) (x y : FreeAddMagma α) :
                          x + y >>= f = (x >>= f) + (y >>= f)
                          @[simp]
                          theorem FreeMagma.pure_seq {α β : Type u} {f : αβ} {x : FreeMagma α} :
                          pure f <*> x = f <$> x
                          @[simp]
                          theorem FreeAddMagma.pure_seq {α β : Type u} {f : αβ} {x : FreeAddMagma α} :
                          pure f <*> x = f <$> x
                          @[simp]
                          theorem FreeMagma.mul_seq {α β : Type u} {f g : FreeMagma (αβ)} {x : FreeMagma α} :
                          f * g <*> x = (f <*> x) * (g <*> x)
                          @[simp]
                          theorem FreeAddMagma.add_seq {α β : Type u} {f g : FreeAddMagma (αβ)} {x : FreeAddMagma α} :
                          f + g <*> x = (f <*> x) + (g <*> x)
                          def FreeMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) :
                          FreeMagma αm (FreeMagma β)

                          FreeMagma is traversable.

                          Equations
                          Instances For
                            def FreeAddMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) :

                            FreeAddMagma is traversable.

                            Equations
                            Instances For
                              @[simp]
                              theorem FreeMagma.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                              traverse F (pure x) = pure <$> F x
                              @[simp]
                              theorem FreeAddMagma.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                              traverse F (pure x) = pure <$> F x
                              @[simp]
                              theorem FreeMagma.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              traverse F pure = fun (x : α) => pure <$> F x
                              @[simp]
                              theorem FreeAddMagma.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              traverse F pure = fun (x : α) => pure <$> F x
                              @[simp]
                              theorem FreeMagma.traverse_mul {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x y : FreeMagma α) :
                              traverse F (x * y) = (fun (x1 x2 : FreeMagma β) => x1 * x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeAddMagma.traverse_add {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x y : FreeAddMagma α) :
                              traverse F (x + y) = (fun (x1 x2 : FreeAddMagma β) => x1 + x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeMagma.traverse_mul' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              Function.comp (traverse F) HMul.hMul = fun (x y : FreeMagma α) => (fun (x1 x2 : FreeMagma β) => x1 * x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeAddMagma.traverse_add' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              Function.comp (traverse F) HAdd.hAdd = fun (x y : FreeAddMagma α) => (fun (x1 x2 : FreeAddMagma β) => x1 + x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeMagma.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeMagma α) :
                              @[simp]
                              theorem FreeAddMagma.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeAddMagma α) :
                              theorem FreeMagma.mul_map_seq {α : Type u} (x y : FreeMagma α) :
                              (fun (x1 x2 : FreeMagma α) => x1 * x2) <$> x <*> y = x * y
                              theorem FreeAddMagma.add_map_seq {α : Type u} (x y : FreeAddMagma α) :
                              (fun (x1 x2 : FreeAddMagma α) => x1 + x2) <$> x <*> y = x + y
                              def FreeMagma.repr {α : Type u} [Repr α] :

                              Representation of an element of a free magma.

                              Equations
                              Instances For

                                Representation of an element of a free additive magma.

                                Equations
                                Instances For
                                  instance instReprFreeMagma {α : Type u} [Repr α] :
                                  Equations
                                  instance instReprFreeAddMagma {α : Type u} [Repr α] :
                                  Equations
                                  def FreeMagma.length {α : Type u} :
                                  FreeMagma α

                                  Length of an element of a free magma.

                                  Equations
                                  Instances For

                                    Length of an element of a free additive magma.

                                    Equations
                                    Instances For
                                      theorem FreeMagma.length_pos {α : Type u} (x : FreeMagma α) :
                                      0 < x.length

                                      The length of an element of a free magma is positive.

                                      theorem FreeAddMagma.length_pos {α : Type u} (x : FreeAddMagma α) :
                                      0 < x.length

                                      The length of an element of a free additive magma is positive.

                                      inductive AddMagma.AssocRel (α : Type u) [Add α] :
                                      ααProp

                                      Associativity relations for an additive magma.

                                      Instances For
                                        inductive Magma.AssocRel (α : Type u) [Mul α] :
                                        ααProp

                                        Associativity relations for a magma.

                                        Instances For
                                          def Magma.AssocQuotient (α : Type u) [Mul α] :

                                          Semigroup quotient of a magma.

                                          Equations
                                          Instances For
                                            def AddMagma.FreeAddSemigroup (α : Type u) [Add α] :

                                            Additive semigroup quotient of an additive magma.

                                            Equations
                                            Instances For
                                              theorem Magma.AssocQuotient.quot_mk_assoc {α : Type u} [Mul α] (x y z : α) :
                                              Quot.mk (AssocRel α) (x * y * z) = Quot.mk (AssocRel α) (x * (y * z))
                                              theorem AddMagma.FreeAddSemigroup.quot_mk_assoc {α : Type u} [Add α] (x y z : α) :
                                              Quot.mk (AssocRel α) (x + y + z) = Quot.mk (AssocRel α) (x + (y + z))
                                              theorem Magma.AssocQuotient.quot_mk_assoc_left {α : Type u} [Mul α] (x y z w : α) :
                                              Quot.mk (AssocRel α) (x * (y * z * w)) = Quot.mk (AssocRel α) (x * (y * (z * w)))
                                              theorem AddMagma.FreeAddSemigroup.quot_mk_assoc_left {α : Type u} [Add α] (x y z w : α) :
                                              Quot.mk (AssocRel α) (x + (y + z + w)) = Quot.mk (AssocRel α) (x + (y + (z + w)))
                                              Equations
                                              Equations
                                              • One or more equations did not get rendered due to their size.

                                              Embedding from magma to its free semigroup.

                                              Equations
                                              Instances For

                                                Embedding from additive magma to its free additive semigroup.

                                                Equations
                                                Instances For
                                                  theorem Magma.AssocQuotient.induction_on {α : Type u} [Mul α] {C : AssocQuotient αProp} (x : AssocQuotient α) (ih : ∀ (x : α), C (of x)) :
                                                  C x
                                                  theorem AddMagma.FreeAddSemigroup.induction_on {α : Type u} [Add α] {C : FreeAddSemigroup αProp} (x : FreeAddSemigroup α) (ih : ∀ (x : α), C (of x)) :
                                                  C x
                                                  theorem Magma.AssocQuotient.hom_ext {α : Type u} [Mul α] {β : Type v} [Semigroup β] {f g : AssocQuotient α →ₙ* β} (h : f.comp of = g.comp of) :
                                                  f = g
                                                  theorem AddMagma.FreeAddSemigroup.hom_ext {α : Type u} [Add α] {β : Type v} [AddSemigroup β] {f g : FreeAddSemigroup α →ₙ+ β} (h : f.comp of = g.comp of) :
                                                  f = g
                                                  theorem Magma.AssocQuotient.hom_ext_iff {α : Type u} [Mul α] {β : Type v} [Semigroup β] {f g : AssocQuotient α →ₙ* β} :
                                                  f = g f.comp of = g.comp of
                                                  theorem AddMagma.FreeAddSemigroup.hom_ext_iff {α : Type u} [Add α] {β : Type v} [AddSemigroup β] {f g : FreeAddSemigroup α →ₙ+ β} :
                                                  f = g f.comp of = g.comp of
                                                  def Magma.AssocQuotient.lift {α : Type u} [Mul α] {β : Type v} [Semigroup β] :

                                                  Lifts a magma homomorphism α → β to a semigroup homomorphism Magma.AssocQuotient α → β given a semigroup β.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Lifts an additive magma homomorphism α → β to an additive semigroup homomorphism AddMagma.AssocQuotient α → β given an additive semigroup β.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_symm_apply {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : AssocQuotient α →ₙ* β) :
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_of {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : α →ₙ* β) (x : α) :
                                                      (lift f) (of x) = f x
                                                      @[simp]
                                                      theorem AddMagma.FreeAddSemigroup.lift_of {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : α →ₙ+ β) (x : α) :
                                                      (lift f) (of x) = f x
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_comp_of {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : α →ₙ* β) :
                                                      (lift f).comp of = f
                                                      @[simp]
                                                      theorem AddMagma.FreeAddSemigroup.lift_comp_of {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : α →ₙ+ β) :
                                                      (lift f).comp of = f
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_comp_of' {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : AssocQuotient α →ₙ* β) :
                                                      lift (f.comp of) = f
                                                      @[simp]
                                                      theorem AddMagma.FreeAddSemigroup.lift_comp_of' {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) :
                                                      lift (f.comp of) = f
                                                      def Magma.AssocQuotient.map {α : Type u} [Mul α] {β : Type v} [Mul β] (f : α →ₙ* β) :

                                                      From a magma homomorphism α →ₙ* β to a semigroup homomorphism Magma.AssocQuotient α →ₙ* Magma.AssocQuotient β.

                                                      Equations
                                                      Instances For

                                                        From an additive magma homomorphism α → β to an additive semigroup homomorphism AddMagma.AssocQuotient α → AddMagma.AssocQuotient β.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem Magma.AssocQuotient.map_of {α : Type u} [Mul α] {β : Type v} [Mul β] (f : α →ₙ* β) (x : α) :
                                                          (map f) (of x) = of (f x)
                                                          @[simp]
                                                          theorem AddMagma.FreeAddSemigroup.map_of {α : Type u} [Add α] {β : Type v} [Add β] (f : α →ₙ+ β) (x : α) :
                                                          (map f) (of x) = of (f x)
                                                          structure FreeAddSemigroup (α : Type u) :

                                                          Free additive semigroup over a given alphabet.

                                                          • head : α

                                                            The head of the element

                                                          • tail : List α

                                                            The tail of the element

                                                          Instances For
                                                            structure FreeSemigroup (α : Type u) :

                                                            Free semigroup over a given alphabet.

                                                            • head : α

                                                              The head of the element

                                                            • tail : List α

                                                              The tail of the element

                                                            Instances For
                                                              theorem FreeAddSemigroup.ext {α : Type u} {x y : FreeAddSemigroup α} (head : x.head = y.head) (tail : x.tail = y.tail) :
                                                              x = y
                                                              theorem FreeSemigroup.ext_iff {α : Type u} {x y : FreeSemigroup α} :
                                                              x = y x.head = y.head x.tail = y.tail
                                                              theorem FreeAddSemigroup.ext_iff {α : Type u} {x y : FreeAddSemigroup α} :
                                                              x = y x.head = y.head x.tail = y.tail
                                                              theorem FreeSemigroup.ext {α : Type u} {x y : FreeSemigroup α} (head : x.head = y.head) (tail : x.tail = y.tail) :
                                                              x = y
                                                              Equations
                                                              Equations
                                                              @[simp]
                                                              theorem FreeSemigroup.head_mul {α : Type u} (x y : FreeSemigroup α) :
                                                              (x * y).head = x.head
                                                              @[simp]
                                                              theorem FreeAddSemigroup.head_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                              (x + y).head = x.head
                                                              @[simp]
                                                              theorem FreeSemigroup.tail_mul {α : Type u} (x y : FreeSemigroup α) :
                                                              (x * y).tail = x.tail ++ y.head :: y.tail
                                                              @[simp]
                                                              theorem FreeAddSemigroup.tail_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                              (x + y).tail = x.tail ++ y.head :: y.tail
                                                              @[simp]
                                                              theorem FreeSemigroup.mk_mul_mk {α : Type u} (x y : α) (L1 L2 : List α) :
                                                              { head := x, tail := L1 } * { head := y, tail := L2 } = { head := x, tail := L1 ++ y :: L2 }
                                                              @[simp]
                                                              theorem FreeAddSemigroup.mk_add_mk {α : Type u} (x y : α) (L1 L2 : List α) :
                                                              { head := x, tail := L1 } + { head := y, tail := L2 } = { head := x, tail := L1 ++ y :: L2 }
                                                              def FreeSemigroup.of {α : Type u} (x : α) :

                                                              The embedding α → FreeSemigroup α.

                                                              Equations
                                                              Instances For
                                                                def FreeAddSemigroup.of {α : Type u} (x : α) :

                                                                The embedding α → FreeAddSemigroup α.

                                                                Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem FreeSemigroup.of_tail {α : Type u} (x : α) :
                                                                  (of x).tail = []
                                                                  @[simp]
                                                                  theorem FreeAddSemigroup.of_tail {α : Type u} (x : α) :
                                                                  (of x).tail = []
                                                                  @[simp]
                                                                  theorem FreeAddSemigroup.of_head {α : Type u} (x : α) :
                                                                  (of x).head = x
                                                                  @[simp]
                                                                  theorem FreeSemigroup.of_head {α : Type u} (x : α) :
                                                                  (of x).head = x

                                                                  Length of an element of free semigroup.

                                                                  Equations
                                                                  Instances For

                                                                    Length of an element of free additive semigroup

                                                                    Equations
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem FreeSemigroup.length_mul {α : Type u} (x y : FreeSemigroup α) :
                                                                      (x * y).length = x.length + y.length
                                                                      @[simp]
                                                                      theorem FreeAddSemigroup.length_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                                      (x + y).length = x.length + y.length
                                                                      @[simp]
                                                                      theorem FreeSemigroup.length_of {α : Type u} (x : α) :
                                                                      (of x).length = 1
                                                                      @[simp]
                                                                      theorem FreeAddSemigroup.length_of {α : Type u} (x : α) :
                                                                      (of x).length = 1
                                                                      def FreeSemigroup.recOnMul {α : Type u} {C : FreeSemigroup αSort l} (x : FreeSemigroup α) (ih1 : (x : α) → C (of x)) (ih2 : (x : α) → (y : FreeSemigroup α) → C (of x)C yC (of x * y)) :
                                                                      C x

                                                                      Recursor for free semigroup using of and *.

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        def FreeAddSemigroup.recOnAdd {α : Type u} {C : FreeAddSemigroup αSort l} (x : FreeAddSemigroup α) (ih1 : (x : α) → C (of x)) (ih2 : (x : α) → (y : FreeAddSemigroup α) → C (of x)C yC (of x + y)) :
                                                                        C x

                                                                        Recursor for free additive semigroup using of and +.

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          theorem FreeSemigroup.hom_ext {α : Type u} {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} (h : f of = g of) :
                                                                          f = g
                                                                          theorem FreeAddSemigroup.hom_ext {α : Type u} {β : Type v} [Add β] {f g : FreeAddSemigroup α →ₙ+ β} (h : f of = g of) :
                                                                          f = g
                                                                          theorem FreeSemigroup.hom_ext_iff {α : Type u} {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} :
                                                                          f = g f of = g of
                                                                          theorem FreeAddSemigroup.hom_ext_iff {α : Type u} {β : Type v} [Add β] {f g : FreeAddSemigroup α →ₙ+ β} :
                                                                          f = g f of = g of
                                                                          def FreeSemigroup.lift {α : Type u} {β : Type v} [Semigroup β] :
                                                                          (αβ) (FreeSemigroup α →ₙ* β)

                                                                          Lifts a function α → β to a semigroup homomorphism FreeSemigroup α → β given a semigroup β.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            def FreeAddSemigroup.lift {α : Type u} {β : Type v} [AddSemigroup β] :
                                                                            (αβ) (FreeAddSemigroup α →ₙ+ β)

                                                                            Lifts a function α → β to an additive semigroup homomorphism FreeAddSemigroup α → β given an additive semigroup β.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_symm_apply {α : Type u} {β : Type v} [Semigroup β] (f : FreeSemigroup α →ₙ* β) (a✝ : α) :
                                                                              lift.symm f a✝ = (f of) a✝
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_symm_apply {α : Type u} {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) (a✝ : α) :
                                                                              lift.symm f a✝ = (f of) a✝
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_of {α : Type u} {β : Type v} [Semigroup β] (f : αβ) (x : α) :
                                                                              (lift f) (of x) = f x
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_of {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) (x : α) :
                                                                              (lift f) (of x) = f x
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_comp_of {α : Type u} {β : Type v} [Semigroup β] (f : αβ) :
                                                                              (lift f) of = f
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_comp_of {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) :
                                                                              (lift f) of = f
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_comp_of' {α : Type u} {β : Type v} [Semigroup β] (f : FreeSemigroup α →ₙ* β) :
                                                                              lift (f of) = f
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_comp_of' {α : Type u} {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) :
                                                                              lift (f of) = f
                                                                              theorem FreeSemigroup.lift_of_mul {α : Type u} {β : Type v} [Semigroup β] (f : αβ) (x : α) (y : FreeSemigroup α) :
                                                                              (lift f) (of x * y) = f x * (lift f) y
                                                                              theorem FreeAddSemigroup.lift_of_add {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) (x : α) (y : FreeAddSemigroup α) :
                                                                              (lift f) (of x + y) = f x + (lift f) y
                                                                              def FreeSemigroup.map {α : Type u} {β : Type v} (f : αβ) :

                                                                              The unique semigroup homomorphism that sends of x to of (f x).

                                                                              Equations
                                                                              Instances For
                                                                                def FreeAddSemigroup.map {α : Type u} {β : Type v} (f : αβ) :

                                                                                The unique additive semigroup homomorphism that sends of x to of (f x).

                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem FreeSemigroup.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                                                  (map f) (of x) = of (f x)
                                                                                  @[simp]
                                                                                  theorem FreeAddSemigroup.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                                                  (map f) (of x) = of (f x)
                                                                                  @[simp]
                                                                                  theorem FreeSemigroup.length_map {α : Type u} {β : Type v} (f : αβ) (x : FreeSemigroup α) :
                                                                                  ((map f) x).length = x.length
                                                                                  @[simp]
                                                                                  theorem FreeAddSemigroup.length_map {α : Type u} {β : Type v} (f : αβ) (x : FreeAddSemigroup α) :
                                                                                  ((map f) x).length = x.length
                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  def FreeSemigroup.recOnPure {α : Type u} {C : FreeSemigroup αSort l} (x : FreeSemigroup α) (ih1 : (x : α) → C (pure x)) (ih2 : (x : α) → (y : FreeSemigroup α) → C (pure x)C yC (pure x * y)) :
                                                                                  C x

                                                                                  Recursor that uses pure instead of of.

                                                                                  Equations
                                                                                  Instances For
                                                                                    def FreeAddSemigroup.recOnPure {α : Type u} {C : FreeAddSemigroup αSort l} (x : FreeAddSemigroup α) (ih1 : (x : α) → C (pure x)) (ih2 : (x : α) → (y : FreeAddSemigroup α) → C (pure x)C yC (pure x + y)) :
                                                                                    C x

                                                                                    Recursor that uses pure instead of of.

                                                                                    Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                                                      f <$> pure x = pure (f x)
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                                                      f <$> pure x = pure (f x)
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.map_mul' {α β : Type u} (f : αβ) (x y : FreeSemigroup α) :
                                                                                      f <$> (x * y) = f <$> x * f <$> y
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.map_add' {α β : Type u} (f : αβ) (x y : FreeAddSemigroup α) :
                                                                                      f <$> (x + y) = f <$> x + f <$> y
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.pure_bind {α β : Type u} (f : αFreeSemigroup β) (x : α) :
                                                                                      pure x >>= f = f x
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.pure_bind {α β : Type u} (f : αFreeAddSemigroup β) (x : α) :
                                                                                      pure x >>= f = f x
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.mul_bind {α β : Type u} (f : αFreeSemigroup β) (x y : FreeSemigroup α) :
                                                                                      x * y >>= f = (x >>= f) * (y >>= f)
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.add_bind {α β : Type u} (f : αFreeAddSemigroup β) (x y : FreeAddSemigroup α) :
                                                                                      x + y >>= f = (x >>= f) + (y >>= f)
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.pure_seq {α β : Type u} {f : αβ} {x : FreeSemigroup α} :
                                                                                      pure f <*> x = f <$> x
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.pure_seq {α β : Type u} {f : αβ} {x : FreeAddSemigroup α} :
                                                                                      pure f <*> x = f <$> x
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.mul_seq {α β : Type u} {f g : FreeSemigroup (αβ)} {x : FreeSemigroup α} :
                                                                                      f * g <*> x = (f <*> x) * (g <*> x)
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.add_seq {α β : Type u} {f g : FreeAddSemigroup (αβ)} {x : FreeAddSemigroup α} :
                                                                                      f + g <*> x = (f <*> x) + (g <*> x)
                                                                                      def FreeSemigroup.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) (x : FreeSemigroup α) :

                                                                                      FreeSemigroup is traversable.

                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        def FreeAddSemigroup.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) (x : FreeAddSemigroup α) :

                                                                                        FreeAddSemigroup is traversable.

                                                                                        Equations
                                                                                        • One or more equations did not get rendered due to their size.
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                                          traverse F (pure x) = pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                                          traverse F (pure x) = pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                                          traverse F pure = fun (x : α) => pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                                          traverse F pure = fun (x : α) => pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_mul {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] (x y : FreeSemigroup α) :
                                                                                          traverse F (x * y) = (fun (x1 x2 : FreeSemigroup β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_add {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] (x y : FreeAddSemigroup α) :
                                                                                          traverse F (x + y) = (fun (x1 x2 : FreeAddSemigroup β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_mul' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] :
                                                                                          Function.comp (traverse F) HMul.hMul = fun (x y : FreeSemigroup α) => (fun (x1 x2 : FreeSemigroup β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_add' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] :
                                                                                          Function.comp (traverse F) HAdd.hAdd = fun (x y : FreeAddSemigroup α) => (fun (x1 x2 : FreeAddSemigroup β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeSemigroup α) :
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeAddSemigroup α) :
                                                                                          theorem FreeSemigroup.mul_map_seq {α : Type u} (x y : FreeSemigroup α) :
                                                                                          (fun (x1 x2 : FreeSemigroup α) => x1 * x2) <$> x <*> y = x * y
                                                                                          theorem FreeAddSemigroup.add_map_seq {α : Type u} (x y : FreeAddSemigroup α) :
                                                                                          (fun (x1 x2 : FreeAddSemigroup α) => x1 + x2) <$> x <*> y = x + y
                                                                                          Equations
                                                                                          Equations

                                                                                          The canonical multiplicative morphism from FreeMagma α to FreeSemigroup α.

                                                                                          Equations
                                                                                          Instances For
                                                                                            theorem FreeMagma.toFreeSemigroup_map {α : Type u} {β : Type v} (f : αβ) (x : FreeMagma α) :