# Documentation

Mathlib.Algebra.GroupPower.Identities

# Identities #

This file contains some "named" commutative ring identities.

theorem sq_add_sq_mul_sq_add_sq {R : Type u_1} [inst : ] {x₁ : R} {x₂ : R} {y₁ : R} {y₂ : R} :
(x₁ ^ 2 + x₂ ^ 2) * (y₁ ^ 2 + y₂ ^ 2) = (x₁ * y₁ - x₂ * y₂) ^ 2 + (x₁ * y₂ + x₂ * y₁) ^ 2

Brahmagupta-Fibonacci identity or Diophantus identity, see https://en.wikipedia.org/wiki/Brahmagupta%E2%80%93Fibonacci_identity.

This sign choice here corresponds to the signs obtained by multiplying two complex numbers.

theorem sq_add_mul_sq_mul_sq_add_mul_sq {R : Type u_1} [inst : ] {x₁ : R} {x₂ : R} {y₁ : R} {y₂ : R} {n : R} :
(x₁ ^ 2 + n * x₂ ^ 2) * (y₁ ^ 2 + n * y₂ ^ 2) = (x₁ * y₁ - n * x₂ * y₂) ^ 2 + n * (x₁ * y₂ + x₂ * y₁) ^ 2

Brahmagupta's identity, see https://en.wikipedia.org/wiki/Brahmagupta%27s_identity

theorem pow_four_add_four_mul_pow_four {R : Type u_1} [inst : ] {a : R} {b : R} :
a ^ 4 + 4 * b ^ 4 = ((a - b) ^ 2 + b ^ 2) * ((a + b) ^ 2 + b ^ 2)

Sophie Germain's identity, see https://www.cut-the-knot.org/blue/SophieGermainIdentity.shtml.

theorem pow_four_add_four_mul_pow_four' {R : Type u_1} [inst : ] {a : R} {b : R} :
a ^ 4 + 4 * b ^ 4 = (a ^ 2 - 2 * a * b + 2 * b ^ 2) * (a ^ 2 + 2 * a * b + 2 * b ^ 2)

Sophie Germain's identity, see https://www.cut-the-knot.org/blue/SophieGermainIdentity.shtml.

theorem sum_four_sq_mul_sum_four_sq {R : Type u_1} [inst : ] {x₁ : R} {x₂ : R} {x₃ : R} {x₄ : R} {y₁ : R} {y₂ : R} {y₃ : R} {y₄ : R} :
(x₁ ^ 2 + x₂ ^ 2 + x₃ ^ 2 + x₄ ^ 2) * (y₁ ^ 2 + y₂ ^ 2 + y₃ ^ 2 + y₄ ^ 2) = (x₁ * y₁ - x₂ * y₂ - x₃ * y₃ - x₄ * y₄) ^ 2 + (x₁ * y₂ + x₂ * y₁ + x₃ * y₄ - x₄ * y₃) ^ 2 + (x₁ * y₃ - x₂ * y₄ + x₃ * y₁ + x₄ * y₂) ^ 2 + (x₁ * y₄ + x₂ * y₃ - x₃ * y₂ + x₄ * y₁) ^ 2

Euler's four-square identity, see https://en.wikipedia.org/wiki/Euler%27s_four-square_identity.

This sign choice here corresponds to the signs obtained by multiplying two quaternions.

theorem sum_eight_sq_mul_sum_eight_sq {R : Type u_1} [inst : ] {x₁ : R} {x₂ : R} {x₃ : R} {x₄ : R} {x₅ : R} {x₆ : R} {x₇ : R} {x₈ : R} {y₁ : R} {y₂ : R} {y₃ : R} {y₄ : R} {y₅ : R} {y₆ : R} {y₇ : R} {y₈ : R} :
(x₁ ^ 2 + x₂ ^ 2 + x₃ ^ 2 + x₄ ^ 2 + x₅ ^ 2 + x₆ ^ 2 + x₇ ^ 2 + x₈ ^ 2) * (y₁ ^ 2 + y₂ ^ 2 + y₃ ^ 2 + y₄ ^ 2 + y₅ ^ 2 + y₆ ^ 2 + y₇ ^ 2 + y₈ ^ 2) = (x₁ * y₁ - x₂ * y₂ - x₃ * y₃ - x₄ * y₄ - x₅ * y₅ - x₆ * y₆ - x₇ * y₇ - x₈ * y₈) ^ 2 + (x₁ * y₂ + x₂ * y₁ + x₃ * y₄ - x₄ * y₃ + x₅ * y₆ - x₆ * y₅ - x₇ * y₈ + x₈ * y₇) ^ 2 + (x₁ * y₃ - x₂ * y₄ + x₃ * y₁ + x₄ * y₂ + x₅ * y₇ + x₆ * y₈ - x₇ * y₅ - x₈ * y₆) ^ 2 + (x₁ * y₄ + x₂ * y₃ - x₃ * y₂ + x₄ * y₁ + x₅ * y₈ - x₆ * y₇ + x₇ * y₆ - x₈ * y₅) ^ 2 + (x₁ * y₅ - x₂ * y₆ - x₃ * y₇ - x₄ * y₈ + x₅ * y₁ + x₆ * y₂ + x₇ * y₃ + x₈ * y₄) ^ 2 + (x₁ * y₆ + x₂ * y₅ - x₃ * y₈ + x₄ * y₇ - x₅ * y₂ + x₆ * y₁ - x₇ * y₄ + x₈ * y₃) ^ 2 + (x₁ * y₇ + x₂ * y₈ + x₃ * y₅ - x₄ * y₆ - x₅ * y₃ + x₆ * y₄ + x₇ * y₁ - x₈ * y₂) ^ 2 + (x₁ * y₈ - x₂ * y₇ + x₃ * y₆ + x₄ * y₅ - x₅ * y₄ - x₆ * y₃ + x₇ * y₂ + x₈ * y₁) ^ 2

Degen's eight squares identity, see https://en.wikipedia.org/wiki/Degen%27s_eight-square_identity.

This sign choice here corresponds to the signs obtained by multiplying two octonions.