Divisibility in groups with zero. #
Lemmas about divisibility in groups and monoids with zero.
Given an element a
of a commutative semigroup with zero, there exists another element whose
product with zero equals a
iff a
equals zero.
Given two elements b
, c
of a CancelMonoidWithZero
and a nonzero element a
,
a*b
divides a*c
iff b
divides c
.
theorem
mul_dvd_mul_iff_right
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b c : α}
(hc : Ne c 0)
:
Given two elements a
, b
of a commutative CancelMonoidWithZero
and a nonzero
element c
, a*c
divides b*c
iff a
divides b
.
DvdNotUnit a b
expresses that a
divides b
"strictly", i.e. that b
divided by a
is not a unit.
Equations
Instances For
theorem
dvdNotUnit_of_dvd_of_not_dvd
{α : Type u_1}
[CommMonoidWithZero α]
{a b : α}
(hd : Dvd.dvd a b)
(hnd : Not (Dvd.dvd b a))
:
DvdNotUnit a b
theorem
isRelPrime_zero_left
{α : Type u_1}
[CommMonoidWithZero α]
{x : α}
:
Iff (IsRelPrime 0 x) (IsUnit x)
theorem
isRelPrime_zero_right
{α : Type u_1}
[CommMonoidWithZero α]
{x : α}
:
Iff (IsRelPrime x 0) (IsUnit x)
theorem
not_isRelPrime_zero_zero
{α : Type u_1}
[CommMonoidWithZero α]
[Nontrivial α]
:
Not (IsRelPrime 0 0)
theorem
IsRelPrime.ne_zero_or_ne_zero
{α : Type u_1}
[CommMonoidWithZero α]
{x y : α}
[Nontrivial α]
(h : IsRelPrime x y)
:
theorem
isRelPrime_of_no_nonunits_factors
{α : Type u_1}
[MonoidWithZero α]
{x y : α}
(nonzero : Not (And (Eq x 0) (Eq y 0)))
(H : ∀ (z : α), Not (IsUnit z) → Ne z 0 → Dvd.dvd z x → Not (Dvd.dvd z y))
:
IsRelPrime x y
theorem
ne_zero_of_dvd_ne_zero
{α : Type u_1}
[MonoidWithZero α]
{p q : α}
(h₁ : Ne q 0)
(h₂ : Dvd.dvd p q)
:
Ne p 0
theorem
IsPrimal.mul
{α : Type u_2}
[CancelCommMonoidWithZero α]
{m n : α}
(hm : IsPrimal m)
(hn : IsPrimal n)
:
theorem
dvd_antisymm
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b : α}
[Subsingleton (Units α)]
:
theorem
dvd_antisymm'
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b : α}
[Subsingleton (Units α)]
:
theorem
Dvd.dvd.antisymm
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b : α}
[Subsingleton (Units α)]
:
Alias of dvd_antisymm
.
theorem
Dvd.dvd.antisymm'
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b : α}
[Subsingleton (Units α)]
:
Alias of dvd_antisymm'
.
theorem
eq_of_forall_dvd
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b : α}
[Subsingleton (Units α)]
(h : ∀ (c : α), Iff (Dvd.dvd a c) (Dvd.dvd b c))
:
Eq a b
theorem
eq_of_forall_dvd'
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a b : α}
[Subsingleton (Units α)]
(h : ∀ (c : α), Iff (Dvd.dvd c a) (Dvd.dvd c b))
:
Eq a b
∣
is not a useful definition if an inverse is available.