Documentation

Mathlib.Algebra.GroupWithZero.Units.Basic

Lemmas about units in a MonoidWithZero or a GroupWithZero. #

We also define Ring.inverse, a globally defined function on any ring (in fact any MonoidWithZero), which inverts units and sends non-units to zero.

theorem Units.ne_zero {M₀ : Type u_2} [MonoidWithZero M₀] [Nontrivial M₀] (u : Units M₀) :
Ne u.val 0

An element of the unit group of a nonzero monoid with zero represented as an element of the monoid is nonzero.

theorem Units.mul_left_eq_zero {M₀ : Type u_2} [MonoidWithZero M₀] (u : Units M₀) {a : M₀} :
Iff (Eq (HMul.hMul a u.val) 0) (Eq a 0)
theorem Units.mul_right_eq_zero {M₀ : Type u_2} [MonoidWithZero M₀] (u : Units M₀) {a : M₀} :
Iff (Eq (HMul.hMul u.val a) 0) (Eq a 0)
theorem IsUnit.ne_zero {M₀ : Type u_2} [MonoidWithZero M₀] [Nontrivial M₀] {a : M₀} (ha : IsUnit a) :
Ne a 0
theorem IsUnit.mul_right_eq_zero {M₀ : Type u_2} [MonoidWithZero M₀] {a b : M₀} (ha : IsUnit a) :
Iff (Eq (HMul.hMul a b) 0) (Eq b 0)
theorem IsUnit.mul_left_eq_zero {M₀ : Type u_2} [MonoidWithZero M₀] {a b : M₀} (hb : IsUnit b) :
Iff (Eq (HMul.hMul a b) 0) (Eq a 0)
theorem isUnit_zero_iff {M₀ : Type u_2} [MonoidWithZero M₀] :
Iff (IsUnit 0) (Eq 0 1)
theorem not_isUnit_zero {M₀ : Type u_2} [MonoidWithZero M₀] [Nontrivial M₀] :
noncomputable def Ring.inverse {M₀ : Type u_2} [MonoidWithZero M₀] :
M₀M₀

Introduce a function inverse on a monoid with zero M₀, which sends x to x⁻¹ if x is invertible and to 0 otherwise. This definition is somewhat ad hoc, but one needs a fully (rather than partially) defined inverse function for some purposes, including for calculus.

Note that while this is in the Ring namespace for brevity, it requires the weaker assumption MonoidWithZero M₀ instead of Ring M₀.

Equations
Instances For
    theorem Ring.inverse_unit {M₀ : Type u_2} [MonoidWithZero M₀] (u : Units M₀) :

    By definition, if x is invertible then inverse x = x⁻¹.

    theorem Ring.IsUnit.ringInverse {M₀ : Type u_2} [MonoidWithZero M₀] {x : M₀} (h : IsUnit x) :
    theorem Ring.inverse_of_isUnit {M₀ : Type u_2} [MonoidWithZero M₀] {x : M₀} (h : IsUnit x) :
    theorem Ring.inverse_non_unit {M₀ : Type u_2} [MonoidWithZero M₀] (x : M₀) (h : Not (IsUnit x)) :
    Eq (inverse x) 0

    By definition, if x is not invertible then inverse x = 0.

    theorem Ring.mul_inverse_cancel {M₀ : Type u_2} [MonoidWithZero M₀] (x : M₀) (h : IsUnit x) :
    Eq (HMul.hMul x (inverse x)) 1
    theorem Ring.inverse_mul_cancel {M₀ : Type u_2} [MonoidWithZero M₀] (x : M₀) (h : IsUnit x) :
    Eq (HMul.hMul (inverse x) x) 1
    theorem Ring.mul_inverse_cancel_right {M₀ : Type u_2} [MonoidWithZero M₀] (x y : M₀) (h : IsUnit x) :
    theorem Ring.inverse_mul_cancel_right {M₀ : Type u_2} [MonoidWithZero M₀] (x y : M₀) (h : IsUnit x) :
    theorem Ring.mul_inverse_cancel_left {M₀ : Type u_2} [MonoidWithZero M₀] (x y : M₀) (h : IsUnit x) :
    theorem Ring.inverse_mul_cancel_left {M₀ : Type u_2} [MonoidWithZero M₀] (x y : M₀) (h : IsUnit x) :
    theorem Ring.inverse_mul_eq_iff_eq_mul {M₀ : Type u_2} [MonoidWithZero M₀] (x y z : M₀) (h : IsUnit x) :
    Iff (Eq (HMul.hMul (inverse x) y) z) (Eq y (HMul.hMul x z))
    theorem Ring.eq_mul_inverse_iff_mul_eq {M₀ : Type u_2} [MonoidWithZero M₀] (x y z : M₀) (h : IsUnit z) :
    Iff (Eq x (HMul.hMul y (inverse z))) (Eq (HMul.hMul x z) y)
    theorem Ring.inverse_one (M₀ : Type u_2) [MonoidWithZero M₀] :
    Eq (inverse 1) 1
    theorem Ring.inverse_zero (M₀ : Type u_2) [MonoidWithZero M₀] :
    Eq (inverse 0) 0
    theorem IsUnit.ring_inverse {M₀ : Type u_2} [MonoidWithZero M₀] {a : M₀} :
    theorem isUnit_ring_inverse {M₀ : Type u_2} [MonoidWithZero M₀] {a : M₀} :
    def Units.mk0 {G₀ : Type u_3} [GroupWithZero G₀] (a : G₀) (ha : Ne a 0) :
    Units G₀

    Embed a non-zero element of a GroupWithZero into the unit group. By combining this function with the operations on units, or the /ₚ operation, it is possible to write a division as a partial function with three arguments.

    Equations
    Instances For
      theorem Units.mk0_one {G₀ : Type u_3} [GroupWithZero G₀] (h : Ne 1 0 := ) :
      Eq (mk0 1 h) 1
      theorem Units.val_mk0 {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (h : Ne a 0) :
      Eq (mk0 a h).val a
      theorem Units.mk0_val {G₀ : Type u_3} [GroupWithZero G₀] (u : Units G₀) (h : Ne u.val 0) :
      Eq (mk0 u.val h) u
      theorem Units.mul_inv' {G₀ : Type u_3} [GroupWithZero G₀] (u : Units G₀) :
      theorem Units.inv_mul' {G₀ : Type u_3} [GroupWithZero G₀] (u : Units G₀) :
      theorem Units.mk0_inj {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (ha : Ne a 0) (hb : Ne b 0) :
      Iff (Eq (mk0 a ha) (mk0 b hb)) (Eq a b)
      theorem Units.exists0 {G₀ : Type u_3} [GroupWithZero G₀] {p : Units G₀Prop} :
      Iff (Exists fun (g : Units G₀) => p g) (Exists fun (g : G₀) => Exists fun (hg : Ne g 0) => p (mk0 g hg))

      In a group with zero, an existential over a unit can be rewritten in terms of Units.mk0.

      theorem Units.exists0' {G₀ : Type u_3} [GroupWithZero G₀] {p : (g : G₀) → Ne g 0Prop} :
      Iff (Exists fun (g : G₀) => Exists fun (hg : Ne g 0) => p g hg) (Exists fun (g : Units G₀) => p g.val )

      An alternative version of Units.exists0. This one is useful if Lean cannot figure out p when using Units.exists0 from right to left.

      theorem Units.exists_iff_ne_zero {G₀ : Type u_3} [GroupWithZero G₀] {p : G₀Prop} :
      Iff (Exists fun (u : Units G₀) => p u.val) (Exists fun (x : G₀) => And (Ne x 0) (p x))
      theorem GroupWithZero.eq_zero_or_unit {G₀ : Type u_3} [GroupWithZero G₀] (a : G₀) :
      Or (Eq a 0) (Exists fun (u : Units G₀) => Eq a u.val)
      theorem IsUnit.mk0 {G₀ : Type u_3} [GroupWithZero G₀] (x : G₀) (hx : Ne x 0) :
      theorem isUnit_iff_ne_zero {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} :
      Iff (IsUnit a) (Ne a 0)
      theorem Ne.isUnit {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} :
      Ne a 0IsUnit a

      Alias of the reverse direction of isUnit_iff_ne_zero.

      theorem Units.mk0_mul {G₀ : Type u_3} [GroupWithZero G₀] (x y : G₀) (hxy : Ne (HMul.hMul x y) 0) :
      Eq (mk0 (HMul.hMul x y) hxy) (HMul.hMul (mk0 x ) (mk0 y ))
      theorem div_ne_zero {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (ha : Ne a 0) (hb : Ne b 0) :
      Ne (HDiv.hDiv a b) 0
      theorem div_eq_zero_iff {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} :
      Iff (Eq (HDiv.hDiv a b) 0) (Or (Eq a 0) (Eq b 0))
      theorem div_ne_zero_iff {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} :
      Iff (Ne (HDiv.hDiv a b) 0) (And (Ne a 0) (Ne b 0))
      theorem div_self {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (h : Ne a 0) :
      Eq (HDiv.hDiv a a) 1
      theorem eq_mul_inv_iff_mul_eq₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hc : Ne c 0) :
      Iff (Eq a (HMul.hMul b (Inv.inv c))) (Eq (HMul.hMul a c) b)
      theorem eq_inv_mul_iff_mul_eq₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      Iff (Eq a (HMul.hMul (Inv.inv b) c)) (Eq (HMul.hMul b a) c)
      theorem inv_mul_eq_iff_eq_mul₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (ha : Ne a 0) :
      Iff (Eq (HMul.hMul (Inv.inv a) b) c) (Eq b (HMul.hMul a c))
      theorem mul_inv_eq_iff_eq_mul₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      Iff (Eq (HMul.hMul a (Inv.inv b)) c) (Eq a (HMul.hMul c b))
      theorem mul_inv_eq_one₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (hb : Ne b 0) :
      Iff (Eq (HMul.hMul a (Inv.inv b)) 1) (Eq a b)
      theorem inv_mul_eq_one₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (ha : Ne a 0) :
      Iff (Eq (HMul.hMul (Inv.inv a) b) 1) (Eq a b)
      theorem mul_eq_one_iff_eq_inv₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (hb : Ne b 0) :
      Iff (Eq (HMul.hMul a b) 1) (Eq a (Inv.inv b))
      theorem mul_eq_one_iff_inv_eq₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (ha : Ne a 0) :
      Iff (Eq (HMul.hMul a b) 1) (Eq (Inv.inv a) b)
      theorem mul_eq_of_eq_mul_inv₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (ha : Ne a 0) (h : Eq a (HMul.hMul c (Inv.inv b))) :
      Eq (HMul.hMul a b) c

      A variant of eq_mul_inv_iff_mul_eq₀ that moves the nonzero hypothesis to another variable.

      theorem mul_eq_of_eq_inv_mul₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) (h : Eq b (HMul.hMul (Inv.inv a) c)) :
      Eq (HMul.hMul a b) c

      A variant of eq_inv_mul_iff_mul_eq₀ that moves the nonzero hypothesis to another variable.

      theorem eq_mul_of_inv_mul_eq₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hc : Ne c 0) (h : Eq (HMul.hMul (Inv.inv b) a) c) :
      Eq a (HMul.hMul b c)

      A variant of inv_mul_eq_iff_eq_mul₀ that moves the nonzero hypothesis to another variable.

      theorem eq_mul_of_mul_inv_eq₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) (h : Eq (HMul.hMul a (Inv.inv c)) b) :
      Eq a (HMul.hMul b c)

      A variant of mul_inv_eq_iff_eq_mul₀ that moves the nonzero hypothesis to another variable.

      theorem div_mul_cancel₀ {G₀ : Type u_3} [GroupWithZero G₀] {b : G₀} (a : G₀) (h : Ne b 0) :
      Eq (HMul.hMul (HDiv.hDiv a b) b) a
      theorem mul_one_div_cancel {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (h : Ne a 0) :
      Eq (HMul.hMul a (HDiv.hDiv 1 a)) 1
      theorem one_div_mul_cancel {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (h : Ne a 0) :
      Eq (HMul.hMul (HDiv.hDiv 1 a) a) 1
      theorem div_left_inj' {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hc : Ne c 0) :
      Iff (Eq (HDiv.hDiv a c) (HDiv.hDiv b c)) (Eq a b)
      theorem div_eq_iff {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      Iff (Eq (HDiv.hDiv a b) c) (Eq a (HMul.hMul c b))
      theorem eq_div_iff {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      Iff (Eq c (HDiv.hDiv a b)) (Eq (HMul.hMul c b) a)
      theorem div_eq_iff_mul_eq {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      Iff (Eq (HDiv.hDiv a b) c) (Eq (HMul.hMul c b) a)
      theorem eq_div_iff_mul_eq {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hc : Ne c 0) :
      Iff (Eq a (HDiv.hDiv b c)) (Eq (HMul.hMul a c) b)
      theorem div_eq_of_eq_mul {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      Eq a (HMul.hMul c b)Eq (HDiv.hDiv a b) c
      theorem eq_div_of_mul_eq {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hc : Ne c 0) :
      Eq (HMul.hMul a c) bEq a (HDiv.hDiv b c)
      theorem div_eq_one_iff_eq {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (hb : Ne b 0) :
      Iff (Eq (HDiv.hDiv a b) 1) (Eq a b)
      theorem div_mul_cancel_right₀ {G₀ : Type u_3} [GroupWithZero G₀] {b : G₀} (hb : Ne b 0) (a : G₀) :
      theorem mul_div_mul_right {G₀ : Type u_3} [GroupWithZero G₀] {c : G₀} (a b : G₀) (hc : Ne c 0) :
      theorem mul_mul_div {G₀ : Type u_3} [GroupWithZero G₀] {b : G₀} (a : G₀) (hb : Ne b 0) :
      theorem div_div_div_cancel_right₀ {G₀ : Type u_3} [GroupWithZero G₀] {c : G₀} (hc : Ne c 0) (a b : G₀) :
      theorem div_mul_div_cancel₀ {G₀ : Type u_3} [GroupWithZero G₀] {a b c : G₀} (hb : Ne b 0) :
      theorem div_mul_cancel_of_imp {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (h : Eq b 0Eq a 0) :
      Eq (HMul.hMul (HDiv.hDiv a b) b) a
      theorem mul_div_cancel_of_imp {G₀ : Type u_3} [GroupWithZero G₀] {a b : G₀} (h : Eq b 0Eq a 0) :
      Eq (HDiv.hDiv (HMul.hMul a b) b) a
      theorem divp_mk0 {G₀ : Type u_3} [GroupWithZero G₀] {b : G₀} (a : G₀) (hb : Ne b 0) :
      Eq (divp a (Units.mk0 b hb)) (HDiv.hDiv a b)
      theorem pow_sub₀ {G₀ : Type u_3} [GroupWithZero G₀] {m n : Nat} (a : G₀) (ha : Ne a 0) (h : LE.le n m) :
      theorem pow_sub_of_lt {G₀ : Type u_3} [GroupWithZero G₀] {m n : Nat} (a : G₀) (h : LT.lt n m) :
      theorem inv_pow_sub₀ {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} {m n : Nat} (ha : Ne a 0) (h : LE.le n m) :
      theorem inv_pow_sub_of_lt {G₀ : Type u_3} [GroupWithZero G₀] {m n : Nat} (a : G₀) (h : LT.lt n m) :
      theorem zpow_sub₀ {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (ha : Ne a 0) (m n : Int) :
      theorem zpow_natCast_sub_natCast₀ {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (ha : Ne a 0) (m n : Nat) :
      theorem zpow_natCast_sub_one₀ {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (ha : Ne a 0) (n : Nat) :
      theorem zpow_one_sub_natCast₀ {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (ha : Ne a 0) (n : Nat) :
      theorem zpow_ne_zero {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (n : Int) :
      Ne a 0Ne (HPow.hPow a n) 0
      theorem eq_zero_of_zpow_eq_zero {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} {n : Int} :
      Eq (HPow.hPow a n) 0Eq a 0
      theorem zpow_eq_zero_iff {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} {n : Int} (hn : Ne n 0) :
      Iff (Eq (HPow.hPow a n) 0) (Eq a 0)
      theorem zpow_ne_zero_iff {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} {n : Int} (hn : Ne n 0) :
      Iff (Ne (HPow.hPow a n) 0) (Ne a 0)
      theorem zpow_neg_mul_zpow_self {G₀ : Type u_3} [GroupWithZero G₀] {a : G₀} (n : Int) (ha : Ne a 0) :
      theorem Ring.inverse_eq_inv {G₀ : Type u_3} [GroupWithZero G₀] (a : G₀) :
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem div_mul_cancel_left₀ {G₀ : Type u_3} [CommGroupWithZero G₀] {a : G₀} (ha : Ne a 0) (b : G₀) :
          theorem mul_div_cancel_left_of_imp {G₀ : Type u_3} [CommGroupWithZero G₀] {a b : G₀} (h : Eq a 0Eq b 0) :
          Eq (HDiv.hDiv (HMul.hMul a b) a) b
          theorem mul_div_cancel_of_imp' {G₀ : Type u_3} [CommGroupWithZero G₀] {a b : G₀} (h : Eq b 0Eq a 0) :
          Eq (HMul.hMul b (HDiv.hDiv a b)) a
          theorem mul_div_cancel₀ {G₀ : Type u_3} [CommGroupWithZero G₀] {b : G₀} (a : G₀) (hb : Ne b 0) :
          Eq (HMul.hMul b (HDiv.hDiv a b)) a
          theorem mul_div_mul_left {G₀ : Type u_3} [CommGroupWithZero G₀] {c : G₀} (a b : G₀) (hc : Ne c 0) :
          theorem mul_eq_mul_of_div_eq_div {G₀ : Type u_3} [CommGroupWithZero G₀] {b d : G₀} (a c : G₀) (hb : Ne b 0) (hd : Ne d 0) (h : Eq (HDiv.hDiv a b) (HDiv.hDiv c d)) :
          Eq (HMul.hMul a d) (HMul.hMul c b)
          theorem div_eq_div_iff {G₀ : Type u_3} [CommGroupWithZero G₀] {a b c d : G₀} (hb : Ne b 0) (hd : Ne d 0) :
          Iff (Eq (HDiv.hDiv a b) (HDiv.hDiv c d)) (Eq (HMul.hMul a d) (HMul.hMul c b))
          theorem div_eq_div_iff_div_eq_div' {G₀ : Type u_3} [CommGroupWithZero G₀] {a b c d : G₀} (hb : Ne b 0) (hc : Ne c 0) :
          Iff (Eq (HDiv.hDiv a b) (HDiv.hDiv c d)) (Eq (HDiv.hDiv a c) (HDiv.hDiv b d))

          The CommGroupWithZero version of div_eq_div_iff_div_eq_div.

          theorem div_div_cancel₀ {G₀ : Type u_3} [CommGroupWithZero G₀] {a b : G₀} (ha : Ne a 0) :
          Eq (HDiv.hDiv a (HDiv.hDiv a b)) b
          @[deprecated div_div_cancel₀ (since := "2024-11-25")]
          theorem div_div_cancel' {G₀ : Type u_3} [CommGroupWithZero G₀] {a b : G₀} (ha : Ne a 0) :
          Eq (HDiv.hDiv a (HDiv.hDiv a b)) b

          Alias of div_div_cancel₀.

          theorem div_div_cancel_left' {G₀ : Type u_3} [CommGroupWithZero G₀] {a b : G₀} (ha : Ne a 0) :
          theorem div_helper {G₀ : Type u_3} [CommGroupWithZero G₀] {a : G₀} (b : G₀) (h : Ne a 0) :
          theorem div_div_div_cancel_left' {G₀ : Type u_3} [CommGroupWithZero G₀] {c : G₀} (a b : G₀) (hc : Ne c 0) :
          theorem div_mul_div_cancel₀' {G₀ : Type u_3} [CommGroupWithZero G₀] {a : G₀} (ha : Ne a 0) (b c : G₀) :
          noncomputable def groupWithZeroOfIsUnitOrEqZero {M : Type u_4} [Nontrivial M] [hM : MonoidWithZero M] (h : ∀ (a : M), Or (IsUnit a) (Eq a 0)) :

          Constructs a GroupWithZero structure on a MonoidWithZero consisting only of units and 0.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def commGroupWithZeroOfIsUnitOrEqZero {M : Type u_4} [Nontrivial M] [hM : CommMonoidWithZero M] (h : ∀ (a : M), Or (IsUnit a) (Eq a 0)) :

            Constructs a CommGroupWithZero structure on a CommMonoidWithZero consisting only of units and 0.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For