Documentation

Mathlib.Algebra.Hom.Equiv.Basic

Multiplicative and additive equivs #

In this file we define two extensions of Equiv called AddEquiv and MulEquiv, which are datatypes representing isomorphisms of AddMonoids/AddGroups and Monoids/Groups.

Notations #

The extended equivs all have coercions to functions, and the coercions are the canonical notation when treating the isomorphisms as maps.

Tags #

Equiv, MulEquiv, AddEquiv

def ZeroHom.inverse {M : Type u_6} {N : Type u_7} [Zero M] [Zero N] (f : ZeroHom M N) (g : NM) (h₁ : Function.LeftInverse g f) :

Make a ZeroHom inverse from the bijective inverse of a ZeroHom

Instances For
    theorem ZeroHom.inverse.proof_1 {M : Type u_1} {N : Type u_2} [Zero M] [Zero N] (f : ZeroHom M N) (g : NM) (h₁ : Function.LeftInverse g f) :
    g 0 = 0
    @[simp]
    theorem OneHom.inverse_apply {M : Type u_6} {N : Type u_7} [One M] [One N] (f : OneHom M N) (g : NM) (h₁ : Function.LeftInverse g f) :
    ∀ (a : N), ↑(OneHom.inverse f g h₁) a = g a
    @[simp]
    theorem ZeroHom.inverse_apply {M : Type u_6} {N : Type u_7} [Zero M] [Zero N] (f : ZeroHom M N) (g : NM) (h₁ : Function.LeftInverse g f) :
    ∀ (a : N), ↑(ZeroHom.inverse f g h₁) a = g a
    def OneHom.inverse {M : Type u_6} {N : Type u_7} [One M] [One N] (f : OneHom M N) (g : NM) (h₁ : Function.LeftInverse g f) :
    OneHom N M

    Makes a OneHom inverse from the bijective inverse of a OneHom

    Instances For
      theorem AddHom.inverse.proof_1 {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : AddHom M N) (g : NM) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) (x : N) (y : N) :
      g (x + y) = g x + g y
      def AddHom.inverse {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : AddHom M N) (g : NM) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
      AddHom N M

      Makes an additive inverse from a bijection which preserves addition.

      Instances For
        @[simp]
        theorem AddHom.inverse_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : AddHom M N) (g : NM) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
        ∀ (a : N), ↑(AddHom.inverse f g h₁ h₂) a = g a
        @[simp]
        theorem MulHom.inverse_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M →ₙ* N) (g : NM) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
        ∀ (a : N), ↑(MulHom.inverse f g h₁ h₂) a = g a
        def MulHom.inverse {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M →ₙ* N) (g : NM) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :

        Makes a multiplicative inverse from a bijection which preserves multiplication.

        Instances For
          def AddMonoidHom.inverse {A : Type u_12} {B : Type u_13} [AddMonoid A] [AddMonoid B] (f : A →+ B) (g : BA) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
          B →+ A

          The inverse of a bijective AddMonoidHom is an AddMonoidHom.

          Instances For
            theorem AddMonoidHom.inverse.proof_2 {A : Type u_1} {B : Type u_2} [AddMonoid A] [AddMonoid B] (f : A →+ B) (g : BA) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) (x : B) (y : B) :
            AddHom.toFun (AddHom.inverse (f) g h₁ h₂) (x + y) = AddHom.toFun (AddHom.inverse (f) g h₁ h₂) x + AddHom.toFun (AddHom.inverse (f) g h₁ h₂) y
            theorem AddMonoidHom.inverse.proof_1 {A : Type u_1} {B : Type u_2} [AddMonoid A] [AddMonoid B] (f : A →+ B) (g : BA) (h₁ : Function.LeftInverse g f) :
            ZeroHom.toFun (ZeroHom.inverse (f) g h₁) 0 = 0
            @[simp]
            theorem MonoidHom.inverse_apply {A : Type u_12} {B : Type u_13} [Monoid A] [Monoid B] (f : A →* B) (g : BA) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
            ∀ (a : B), ↑(MonoidHom.inverse f g h₁ h₂) a = g a
            @[simp]
            theorem AddMonoidHom.inverse_apply {A : Type u_12} {B : Type u_13} [AddMonoid A] [AddMonoid B] (f : A →+ B) (g : BA) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
            ∀ (a : B), ↑(AddMonoidHom.inverse f g h₁ h₂) a = g a
            def MonoidHom.inverse {A : Type u_12} {B : Type u_13} [Monoid A] [Monoid B] (f : A →* B) (g : BA) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
            B →* A

            The inverse of a bijective MonoidHom is a MonoidHom.

            Instances For
              structure AddEquiv (A : Type u_12) (B : Type u_13) [Add A] [Add B] extends Equiv :
              Type (max u_12 u_13)

              AddEquiv α β is the type of an equiv α ≃ β which preserves addition.

              Instances For
                class AddEquivClass (F : Type u_12) (A : outParam (Type u_13)) (B : outParam (Type u_14)) [Add A] [Add B] extends EquivLike :
                Type (max (max u_12 u_13) u_14)

                AddEquivClass F A B states that F is a type of addition-preserving morphisms. You should extend this class when you extend AddEquiv.

                Instances
                  @[reducible]
                  abbrev AddEquiv.toAddHom {A : Type u_12} {B : Type u_13} [Add A] [Add B] (self : A ≃+ B) :
                  AddHom A B

                  The AddHom underlying an AddEquiv.

                  Instances For
                    structure MulEquiv (M : Type u_12) (N : Type u_13) [Mul M] [Mul N] extends Equiv :
                    Type (max u_12 u_13)

                    MulEquiv α β is the type of an equiv α ≃ β which preserves multiplication.

                    Instances For
                      @[reducible]
                      abbrev MulEquiv.toMulHom {M : Type u_12} {N : Type u_13} [Mul M] [Mul N] (self : M ≃* N) :

                      The MulHom underlying a MulEquiv.

                      Instances For
                        class MulEquivClass (F : Type u_12) (A : outParam (Type u_13)) (B : outParam (Type u_14)) [Mul A] [Mul B] extends EquivLike :
                        Type (max (max u_12 u_13) u_14)

                        MulEquivClass F A B states that F is a type of multiplication-preserving morphisms. You should extend this class when you extend MulEquiv.

                        Instances

                          Notation for a MulEquiv.

                          Instances For

                            Notation for an AddEquiv.

                            Instances For
                              theorem AddEquivClass.instAddHomClass.proof_1 {M : Type u_2} {N : Type u_3} (F : Type u_1) [Add M] [Add N] [h : AddEquivClass F M N] :
                              Function.Injective FunLike.coe
                              instance AddEquivClass.instAddHomClass {M : Type u_6} {N : Type u_7} (F : Type u_12) [Add M] [Add N] [h : AddEquivClass F M N] :
                              instance MulEquivClass.instMulHomClass {M : Type u_6} {N : Type u_7} (F : Type u_12) [Mul M] [Mul N] [h : MulEquivClass F M N] :
                              theorem AddEquivClass.instAddMonoidHomClass.proof_2 (F : Type u_3) {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddZeroClass N] [AddEquivClass F M N] (f : F) (x : M) (y : M) :
                              f (x + y) = f x + f y
                              theorem AddEquivClass.instAddMonoidHomClass.proof_3 (F : Type u_3) {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddZeroClass N] [AddEquivClass F M N] (e : F) :
                              e 0 = 0
                              instance MulEquivClass.instMonoidHomClass (F : Type u_1) {M : Type u_6} {N : Type u_7} [MulOneClass M] [MulOneClass N] [MulEquivClass F M N] :
                              instance MulEquivClass.toZeroHomClass (F : Type u_1) {α : Type u_2} {β : Type u_3} [MulZeroClass α] [MulZeroClass β] [MulEquivClass F α β] :
                              ZeroHomClass F α β
                              @[simp]
                              theorem AddEquivClass.map_eq_zero_iff {F : Type u_1} {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] [AddEquivClass F M N] (h : F) {x : M} :
                              h x = 0 x = 0
                              @[simp]
                              theorem MulEquivClass.map_eq_one_iff {F : Type u_1} {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] [MulEquivClass F M N] (h : F) {x : M} :
                              h x = 1 x = 1
                              theorem AddEquivClass.map_ne_zero_iff {F : Type u_1} {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] [AddEquivClass F M N] (h : F) {x : M} :
                              h x 0 x 0
                              theorem MulEquivClass.map_ne_one_iff {F : Type u_1} {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] [MulEquivClass F M N] (h : F) {x : M} :
                              h x 1 x 1
                              def AddEquivClass.toAddEquiv {F : Type u_1} {α : Type u_2} {β : Type u_3} [Add α] [Add β] [AddEquivClass F α β] (f : F) :
                              α ≃+ β

                              Turn an element of a type F satisfying AddEquivClass F α β into an actual AddEquiv. This is declared as the default coercion from F to α ≃+ β.

                              Instances For
                                def MulEquivClass.toMulEquiv {F : Type u_1} {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] [MulEquivClass F α β] (f : F) :
                                α ≃* β

                                Turn an element of a type F satisfying MulEquivClass F α β into an actual MulEquiv. This is declared as the default coercion from F to α ≃* β.

                                Instances For
                                  instance instCoeTCAddEquiv {F : Type u_1} {α : Type u_2} {β : Type u_3} [Add α] [Add β] [AddEquivClass F α β] :
                                  CoeTC F (α ≃+ β)

                                  Any type satisfying AddEquivClass can be cast into AddEquiv via AddEquivClass.toAddEquiv.

                                  instance instCoeTCMulEquiv {F : Type u_1} {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] [MulEquivClass F α β] :
                                  CoeTC F (α ≃* β)

                                  Any type satisfying MulEquivClass can be cast into MulEquiv via MulEquivClass.toMulEquiv.

                                  theorem AddEquiv.instAddEquivClassAddEquiv.proof_3 {M : Type u_2} {N : Type u_1} [Add M] [Add N] (f : M ≃+ N) (g : M ≃+ N) (h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g) (h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g) :
                                  f = g
                                  instance AddEquiv.instAddEquivClassAddEquiv {M : Type u_6} {N : Type u_7} [Add M] [Add N] :
                                  theorem AddEquiv.instAddEquivClassAddEquiv.proof_1 {M : Type u_2} {N : Type u_1} [Add M] [Add N] (f : M ≃+ N) :
                                  Function.LeftInverse f.invFun f.toFun
                                  theorem AddEquiv.instAddEquivClassAddEquiv.proof_2 {M : Type u_2} {N : Type u_1} [Add M] [Add N] (f : M ≃+ N) :
                                  Function.RightInverse f.invFun f.toFun
                                  instance MulEquiv.instMulEquivClassMulEquiv {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] :
                                  instance AddEquiv.instCoeFunAddEquivForAll {M : Type u_6} {N : Type u_7} [Add M] [Add N] :
                                  CoeFun (M ≃+ N) fun x => MN
                                  instance MulEquiv.instCoeFunMulEquivForAll {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] :
                                  CoeFun (M ≃* N) fun x => MN
                                  @[simp]
                                  theorem AddEquiv.toEquiv_eq_coe {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                  f.toEquiv = f
                                  @[simp]
                                  theorem MulEquiv.toEquiv_eq_coe {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                  f.toEquiv = f
                                  @[simp]
                                  theorem AddEquiv.toAddHom_eq_coe {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                  @[simp]
                                  theorem MulEquiv.toMulHom_eq_coe {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                  @[simp]
                                  theorem AddEquiv.coe_toEquiv {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                  f = f
                                  @[simp]
                                  theorem MulEquiv.coe_toEquiv {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                  f = f
                                  @[simp]
                                  theorem AddEquiv.coe_toAddHom {M : Type u_6} {N : Type u_7} [Add M] [Add N] {f : M ≃+ N} :
                                  ↑(AddEquiv.toAddHom f) = f
                                  @[simp]
                                  theorem MulEquiv.coe_toMulHom {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {f : M ≃* N} :
                                  ↑(MulEquiv.toMulHom f) = f
                                  theorem AddEquiv.map_add {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) (x : M) (y : M) :
                                  f (x + y) = f x + f y

                                  An additive isomorphism preserves addition.

                                  theorem MulEquiv.map_mul {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) (x : M) (y : M) :
                                  f (x * y) = f x * f y

                                  A multiplicative isomorphism preserves multiplication.

                                  def AddEquiv.mk' {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M N) (h : ∀ (x y : M), f (x + y) = f x + f y) :
                                  M ≃+ N

                                  Makes an additive isomorphism from a bijection which preserves addition.

                                  Instances For
                                    def MulEquiv.mk' {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M N) (h : ∀ (x y : M), f (x * y) = f x * f y) :
                                    M ≃* N

                                    Makes a multiplicative isomorphism from a bijection which preserves multiplication.

                                    Instances For
                                      theorem AddEquiv.bijective {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                      theorem MulEquiv.bijective {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                      theorem AddEquiv.injective {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                      theorem MulEquiv.injective {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                      theorem AddEquiv.surjective {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                      theorem MulEquiv.surjective {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                      theorem AddEquiv.refl.proof_1 (M : Type u_1) [Add M] :
                                      ∀ (x x_1 : M), Equiv.toFun { toFun := (Equiv.refl M).toFun, invFun := (Equiv.refl M).invFun, left_inv := (_ : Function.LeftInverse (Equiv.refl M).invFun (Equiv.refl M).toFun), right_inv := (_ : Function.RightInverse (Equiv.refl M).invFun (Equiv.refl M).toFun) } (x + x_1) = Equiv.toFun { toFun := (Equiv.refl M).toFun, invFun := (Equiv.refl M).invFun, left_inv := (_ : Function.LeftInverse (Equiv.refl M).invFun (Equiv.refl M).toFun), right_inv := (_ : Function.RightInverse (Equiv.refl M).invFun (Equiv.refl M).toFun) } (x + x_1)
                                      def AddEquiv.refl (M : Type u_12) [Add M] :
                                      M ≃+ M

                                      The identity map is an additive isomorphism.

                                      Instances For
                                        def MulEquiv.refl (M : Type u_12) [Mul M] :
                                        M ≃* M

                                        The identity map is a multiplicative isomorphism.

                                        Instances For
                                          def AddEquiv.symm {M : Type u_12} {N : Type u_13} [Add M] [Add N] (h : M ≃+ N) :
                                          N ≃+ M

                                          The inverse of an isomorphism is an isomorphism.

                                          Instances For
                                            theorem AddEquiv.symm.proof_1 {M : Type u_1} {N : Type u_2} [Add M] [Add N] (h : M ≃+ N) (a : N) (b : N) :
                                            ↑(AddHom.inverse (AddEquiv.toAddHom h) h.symm (_ : Function.LeftInverse h.invFun h.toFun) (_ : Function.RightInverse h.invFun h.toFun)) (a + b) = ↑(AddHom.inverse (AddEquiv.toAddHom h) h.symm (_ : Function.LeftInverse h.invFun h.toFun) (_ : Function.RightInverse h.invFun h.toFun)) a + ↑(AddHom.inverse (AddEquiv.toAddHom h) h.symm (_ : Function.LeftInverse h.invFun h.toFun) (_ : Function.RightInverse h.invFun h.toFun)) b
                                            def MulEquiv.symm {M : Type u_12} {N : Type u_13} [Mul M] [Mul N] (h : M ≃* N) :
                                            N ≃* M

                                            The inverse of an isomorphism is an isomorphism.

                                            Instances For
                                              theorem AddEquiv.invFun_eq_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] {f : M ≃+ N} :
                                              f.invFun = ↑(AddEquiv.symm f)
                                              theorem MulEquiv.invFun_eq_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {f : M ≃* N} :
                                              f.invFun = ↑(MulEquiv.symm f)
                                              @[simp]
                                              theorem AddEquiv.coe_toEquiv_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                              (f).symm = ↑(AddEquiv.symm f)
                                              @[simp]
                                              theorem MulEquiv.coe_toEquiv_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                              (f).symm = ↑(MulEquiv.symm f)
                                              @[simp]
                                              theorem AddEquiv.equivLike_neg_eq_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                              @[simp]
                                              theorem MulEquiv.equivLike_inv_eq_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                              def AddEquiv.Simps.symm_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                              NM

                                              See Note [custom simps projection]

                                              Instances For
                                                def MulEquiv.Simps.symm_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                                NM

                                                See Note [custom simps projection]

                                                Instances For
                                                  @[simp]
                                                  theorem AddEquiv.toEquiv_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                                  ↑(AddEquiv.symm f) = (f).symm
                                                  @[simp]
                                                  theorem MulEquiv.toEquiv_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                                  ↑(MulEquiv.symm f) = (f).symm
                                                  @[simp]
                                                  theorem AddEquiv.coe_mk {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M N) (hf : ∀ (x y : M), f (x + y) = f x + f y) :
                                                  { toEquiv := f, map_add' := hf } = f
                                                  @[simp]
                                                  theorem MulEquiv.coe_mk {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M N) (hf : ∀ (x y : M), f (x * y) = f x * f y) :
                                                  { toEquiv := f, map_mul' := hf } = f
                                                  @[simp]
                                                  theorem AddEquiv.symm_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M ≃+ N) :
                                                  @[simp]
                                                  theorem MulEquiv.symm_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M ≃* N) :
                                                  theorem AddEquiv.symm_bijective {M : Type u_6} {N : Type u_7} [Add M] [Add N] :
                                                  Function.Bijective AddEquiv.symm
                                                  theorem MulEquiv.symm_bijective {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] :
                                                  Function.Bijective MulEquiv.symm
                                                  @[simp]
                                                  theorem AddEquiv.symm_mk {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : M N) (h : ∀ (x y : M), Equiv.toFun f (x + y) = Equiv.toFun f x + Equiv.toFun f y) :
                                                  AddEquiv.symm { toEquiv := f, map_add' := h } = { toEquiv := f.symm, map_add' := (_ : ∀ (x y : N), Equiv.toFun (AddEquiv.symm { toEquiv := f, map_add' := h }).toEquiv (x + y) = Equiv.toFun (AddEquiv.symm { toEquiv := f, map_add' := h }).toEquiv x + Equiv.toFun (AddEquiv.symm { toEquiv := f, map_add' := h }).toEquiv y) }
                                                  @[simp]
                                                  theorem MulEquiv.symm_mk {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M N) (h : ∀ (x y : M), Equiv.toFun f (x * y) = Equiv.toFun f x * Equiv.toFun f y) :
                                                  MulEquiv.symm { toEquiv := f, map_mul' := h } = { toEquiv := f.symm, map_mul' := (_ : ∀ (x y : N), Equiv.toFun (MulEquiv.symm { toEquiv := f, map_mul' := h }).toEquiv (x * y) = Equiv.toFun (MulEquiv.symm { toEquiv := f, map_mul' := h }).toEquiv x * Equiv.toFun (MulEquiv.symm { toEquiv := f, map_mul' := h }).toEquiv y) }
                                                  def AddEquiv.trans {M : Type u_6} {N : Type u_7} {P : Type u_8} [Add M] [Add N] [Add P] (h1 : M ≃+ N) (h2 : N ≃+ P) :
                                                  M ≃+ P

                                                  Transitivity of addition-preserving isomorphisms

                                                  Instances For
                                                    theorem AddEquiv.trans.proof_1 {M : Type u_3} {N : Type u_2} {P : Type u_1} [Add M] [Add N] [Add P] (h1 : M ≃+ N) (h2 : N ≃+ P) (x : M) (y : M) :
                                                    h2 (h1 (x + y)) = h2 (h1 x) + h2 (h1 y)
                                                    def MulEquiv.trans {M : Type u_6} {N : Type u_7} {P : Type u_8} [Mul M] [Mul N] [Mul P] (h1 : M ≃* N) (h2 : N ≃* P) :
                                                    M ≃* P

                                                    Transitivity of multiplication-preserving isomorphisms

                                                    Instances For
                                                      @[simp]
                                                      theorem AddEquiv.apply_symm_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) (y : N) :
                                                      e (↑(AddEquiv.symm e) y) = y

                                                      e.symm is a right inverse of e, written as e (e.symm y) = y.

                                                      @[simp]
                                                      theorem MulEquiv.apply_symm_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) (y : N) :
                                                      e (↑(MulEquiv.symm e) y) = y

                                                      e.symm is a right inverse of e, written as e (e.symm y) = y.

                                                      @[simp]
                                                      theorem AddEquiv.symm_apply_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) (x : M) :
                                                      ↑(AddEquiv.symm e) (e x) = x

                                                      e.symm is a left inverse of e, written as e.symm (e y) = y.

                                                      @[simp]
                                                      theorem MulEquiv.symm_apply_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) (x : M) :
                                                      ↑(MulEquiv.symm e) (e x) = x

                                                      e.symm is a left inverse of e, written as e.symm (e y) = y.

                                                      @[simp]
                                                      theorem AddEquiv.symm_comp_self {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                                      ↑(AddEquiv.symm e) e = id
                                                      @[simp]
                                                      theorem MulEquiv.symm_comp_self {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                                      ↑(MulEquiv.symm e) e = id
                                                      @[simp]
                                                      theorem AddEquiv.self_comp_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                                      e ↑(AddEquiv.symm e) = id
                                                      @[simp]
                                                      theorem MulEquiv.self_comp_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                                      e ↑(MulEquiv.symm e) = id
                                                      @[simp]
                                                      theorem AddEquiv.coe_refl {M : Type u_6} [Add M] :
                                                      ↑(AddEquiv.refl M) = id
                                                      @[simp]
                                                      theorem MulEquiv.coe_refl {M : Type u_6} [Mul M] :
                                                      ↑(MulEquiv.refl M) = id
                                                      @[simp]
                                                      theorem AddEquiv.refl_apply {M : Type u_6} [Add M] (m : M) :
                                                      ↑(AddEquiv.refl M) m = m
                                                      @[simp]
                                                      theorem MulEquiv.refl_apply {M : Type u_6} [Mul M] (m : M) :
                                                      ↑(MulEquiv.refl M) m = m
                                                      @[simp]
                                                      theorem AddEquiv.coe_trans {M : Type u_6} {N : Type u_7} {P : Type u_8} [Add M] [Add N] [Add P] (e₁ : M ≃+ N) (e₂ : N ≃+ P) :
                                                      ↑(AddEquiv.trans e₁ e₂) = e₂ e₁
                                                      @[simp]
                                                      theorem MulEquiv.coe_trans {M : Type u_6} {N : Type u_7} {P : Type u_8} [Mul M] [Mul N] [Mul P] (e₁ : M ≃* N) (e₂ : N ≃* P) :
                                                      ↑(MulEquiv.trans e₁ e₂) = e₂ e₁
                                                      @[simp]
                                                      theorem AddEquiv.trans_apply {M : Type u_6} {N : Type u_7} {P : Type u_8} [Add M] [Add N] [Add P] (e₁ : M ≃+ N) (e₂ : N ≃+ P) (m : M) :
                                                      ↑(AddEquiv.trans e₁ e₂) m = e₂ (e₁ m)
                                                      @[simp]
                                                      theorem MulEquiv.trans_apply {M : Type u_6} {N : Type u_7} {P : Type u_8} [Mul M] [Mul N] [Mul P] (e₁ : M ≃* N) (e₂ : N ≃* P) (m : M) :
                                                      ↑(MulEquiv.trans e₁ e₂) m = e₂ (e₁ m)
                                                      @[simp]
                                                      theorem AddEquiv.symm_trans_apply {M : Type u_6} {N : Type u_7} {P : Type u_8} [Add M] [Add N] [Add P] (e₁ : M ≃+ N) (e₂ : N ≃+ P) (p : P) :
                                                      ↑(AddEquiv.symm (AddEquiv.trans e₁ e₂)) p = ↑(AddEquiv.symm e₁) (↑(AddEquiv.symm e₂) p)
                                                      @[simp]
                                                      theorem MulEquiv.symm_trans_apply {M : Type u_6} {N : Type u_7} {P : Type u_8} [Mul M] [Mul N] [Mul P] (e₁ : M ≃* N) (e₂ : N ≃* P) (p : P) :
                                                      ↑(MulEquiv.symm (MulEquiv.trans e₁ e₂)) p = ↑(MulEquiv.symm e₁) (↑(MulEquiv.symm e₂) p)
                                                      theorem AddEquiv.apply_eq_iff_eq {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) {x : M} {y : M} :
                                                      e x = e y x = y
                                                      theorem MulEquiv.apply_eq_iff_eq {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) {x : M} {y : M} :
                                                      e x = e y x = y
                                                      theorem AddEquiv.apply_eq_iff_symm_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) {x : M} {y : N} :
                                                      e x = y x = ↑(AddEquiv.symm e) y
                                                      theorem MulEquiv.apply_eq_iff_symm_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) {x : M} {y : N} :
                                                      e x = y x = ↑(MulEquiv.symm e) y
                                                      theorem AddEquiv.symm_apply_eq {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) {x : N} {y : M} :
                                                      ↑(AddEquiv.symm e) x = y x = e y
                                                      theorem MulEquiv.symm_apply_eq {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) {x : N} {y : (fun x => M) x} :
                                                      ↑(MulEquiv.symm e) x = y x = e y
                                                      theorem AddEquiv.eq_symm_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) {x : N} {y : M} :
                                                      y = ↑(AddEquiv.symm e) x e y = x
                                                      theorem MulEquiv.eq_symm_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) {x : N} {y : (fun x => M) x} :
                                                      y = ↑(MulEquiv.symm e) x e y = x
                                                      theorem AddEquiv.eq_comp_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] {α : Type u_12} (e : M ≃+ N) (f : Nα) (g : Mα) :
                                                      f = g ↑(AddEquiv.symm e) f e = g
                                                      theorem MulEquiv.eq_comp_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {α : Type u_12} (e : M ≃* N) (f : Nα) (g : Mα) :
                                                      f = g ↑(MulEquiv.symm e) f e = g
                                                      theorem AddEquiv.comp_symm_eq {M : Type u_6} {N : Type u_7} [Add M] [Add N] {α : Type u_12} (e : M ≃+ N) (f : Nα) (g : Mα) :
                                                      g ↑(AddEquiv.symm e) = f g = f e
                                                      theorem MulEquiv.comp_symm_eq {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {α : Type u_12} (e : M ≃* N) (f : Nα) (g : Mα) :
                                                      g ↑(MulEquiv.symm e) = f g = f e
                                                      theorem AddEquiv.eq_symm_comp {M : Type u_6} {N : Type u_7} [Add M] [Add N] {α : Type u_12} (e : M ≃+ N) (f : αM) (g : αN) :
                                                      f = ↑(AddEquiv.symm e) g e f = g
                                                      theorem MulEquiv.eq_symm_comp {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {α : Type u_12} (e : M ≃* N) (f : αM) (g : αN) :
                                                      f = ↑(MulEquiv.symm e) g e f = g
                                                      theorem AddEquiv.symm_comp_eq {M : Type u_6} {N : Type u_7} [Add M] [Add N] {α : Type u_12} (e : M ≃+ N) (f : αM) (g : αN) :
                                                      ↑(AddEquiv.symm e) g = f g = e f
                                                      theorem MulEquiv.symm_comp_eq {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {α : Type u_12} (e : M ≃* N) (f : αM) (g : αN) :
                                                      ↑(MulEquiv.symm e) g = f g = e f
                                                      @[simp]
                                                      theorem AddEquiv.symm_trans_self {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                                      @[simp]
                                                      theorem MulEquiv.symm_trans_self {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                                      @[simp]
                                                      theorem AddEquiv.self_trans_symm {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) :
                                                      @[simp]
                                                      theorem MulEquiv.self_trans_symm {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) :
                                                      theorem AddEquiv.coe_addMonoidHom_trans {M : Type u_12} {N : Type u_13} {P : Type u_14} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (e₁ : M ≃+ N) (e₂ : N ≃+ P) :
                                                      ↑(AddEquiv.trans e₁ e₂) = AddMonoidHom.comp e₂ e₁
                                                      theorem MulEquiv.coe_monoidHom_trans {M : Type u_12} {N : Type u_13} {P : Type u_14} [MulOneClass M] [MulOneClass N] [MulOneClass P] (e₁ : M ≃* N) (e₂ : N ≃* P) :
                                                      ↑(MulEquiv.trans e₁ e₂) = MonoidHom.comp e₂ e₁
                                                      theorem AddEquiv.ext {M : Type u_6} {N : Type u_7} [Add M] [Add N] {f : M ≃+ N} {g : M ≃+ N} (h : ∀ (x : M), f x = g x) :
                                                      f = g

                                                      Two additive isomorphisms agree if they are defined by the same underlying function.

                                                      theorem MulEquiv.ext {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {f : M ≃* N} {g : M ≃* N} (h : ∀ (x : M), f x = g x) :
                                                      f = g

                                                      Two multiplicative isomorphisms agree if they are defined by the same underlying function.

                                                      theorem AddEquiv.ext_iff {M : Type u_6} {N : Type u_7} [Add M] [Add N] {f : M ≃+ N} {g : M ≃+ N} :
                                                      f = g ∀ (x : M), f x = g x
                                                      theorem MulEquiv.ext_iff {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {f : M ≃* N} {g : M ≃* N} :
                                                      f = g ∀ (x : M), f x = g x
                                                      @[simp]
                                                      theorem AddEquiv.mk_coe {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) (e' : NM) (h₁ : Function.LeftInverse e' e) (h₂ : Function.RightInverse e' e) (h₃ : ∀ (x y : M), Equiv.toFun { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ } (x + y) = Equiv.toFun { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ } x + Equiv.toFun { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ } y) :
                                                      { toEquiv := { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }, map_add' := h₃ } = e
                                                      @[simp]
                                                      theorem MulEquiv.mk_coe {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) (e' : NM) (h₁ : Function.LeftInverse e' e) (h₂ : Function.RightInverse e' e) (h₃ : ∀ (x y : M), Equiv.toFun { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ } (x * y) = Equiv.toFun { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ } x * Equiv.toFun { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ } y) :
                                                      { toEquiv := { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }, map_mul' := h₃ } = e
                                                      @[simp]
                                                      theorem AddEquiv.mk_coe' {M : Type u_6} {N : Type u_7} [Add M] [Add N] (e : M ≃+ N) (f : NM) (h₁ : Function.LeftInverse (e) f) (h₂ : Function.RightInverse (e) f) (h₃ : ∀ (x y : N), Equiv.toFun { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ } (x + y) = Equiv.toFun { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ } x + Equiv.toFun { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ } y) :
                                                      { toEquiv := { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ }, map_add' := h₃ } = AddEquiv.symm e
                                                      @[simp]
                                                      theorem MulEquiv.mk_coe' {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (e : M ≃* N) (f : NM) (h₁ : Function.LeftInverse (e) f) (h₂ : Function.RightInverse (e) f) (h₃ : ∀ (x y : N), Equiv.toFun { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ } (x * y) = Equiv.toFun { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ } x * Equiv.toFun { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ } y) :
                                                      { toEquiv := { toFun := f, invFun := e, left_inv := h₁, right_inv := h₂ }, map_mul' := h₃ } = MulEquiv.symm e
                                                      theorem AddEquiv.congr_arg {M : Type u_6} {N : Type u_7} [Add M] [Add N] {f : M ≃+ N} {x : M} {x' : M} :
                                                      x = x'f x = f x'
                                                      theorem MulEquiv.congr_arg {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {f : M ≃* N} {x : M} {x' : M} :
                                                      x = x'f x = f x'
                                                      theorem AddEquiv.congr_fun {M : Type u_6} {N : Type u_7} [Add M] [Add N] {f : M ≃+ N} {g : M ≃+ N} (h : f = g) (x : M) :
                                                      f x = g x
                                                      theorem MulEquiv.congr_fun {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] {f : M ≃* N} {g : M ≃* N} (h : f = g) (x : M) :
                                                      f x = g x
                                                      theorem AddEquiv.addEquivOfUnique.proof_1 {M : Type u_2} {N : Type u_1} [Unique M] [Unique N] [Add M] [Add N] :
                                                      ∀ (x x_1 : M), Equiv.toFun { toFun := (Equiv.equivOfUnique M N).toFun, invFun := (Equiv.equivOfUnique M N).invFun, left_inv := (_ : Function.LeftInverse (Equiv.equivOfUnique M N).invFun (Equiv.equivOfUnique M N).toFun), right_inv := (_ : Function.RightInverse (Equiv.equivOfUnique M N).invFun (Equiv.equivOfUnique M N).toFun) } (x + x_1) = Equiv.toFun { toFun := (Equiv.equivOfUnique M N).toFun, invFun := (Equiv.equivOfUnique M N).invFun, left_inv := (_ : Function.LeftInverse (Equiv.equivOfUnique M N).invFun (Equiv.equivOfUnique M N).toFun), right_inv := (_ : Function.RightInverse (Equiv.equivOfUnique M N).invFun (Equiv.equivOfUnique M N).toFun) } x + Equiv.toFun { toFun := (Equiv.equivOfUnique M N).toFun, invFun := (Equiv.equivOfUnique M N).invFun, left_inv := (_ : Function.LeftInverse (Equiv.equivOfUnique M N).invFun (Equiv.equivOfUnique M N).toFun), right_inv := (_ : Function.RightInverse (Equiv.equivOfUnique M N).invFun (Equiv.equivOfUnique M N).toFun) } x_1
                                                      def AddEquiv.addEquivOfUnique {M : Type u_12} {N : Type u_13} [Unique M] [Unique N] [Add M] [Add N] :
                                                      M ≃+ N

                                                      The AddEquiv between two AddMonoids with a unique element.

                                                      Instances For
                                                        def MulEquiv.mulEquivOfUnique {M : Type u_12} {N : Type u_13} [Unique M] [Unique N] [Mul M] [Mul N] :
                                                        M ≃* N

                                                        The MulEquiv between two monoids with a unique element.

                                                        Instances For
                                                          instance AddEquiv.instUniqueAddEquiv {M : Type u_12} {N : Type u_13} [Unique M] [Unique N] [Add M] [Add N] :
                                                          Unique (M ≃+ N)

                                                          There is a unique additive monoid homomorphism between two additive monoids with a unique element.

                                                          theorem AddEquiv.instUniqueAddEquiv.proof_1 {M : Type u_2} {N : Type u_1} [Unique M] [Unique N] [Add M] [Add N] :
                                                          ∀ (x : M ≃+ N), x = default
                                                          instance MulEquiv.instUniqueMulEquiv {M : Type u_12} {N : Type u_13} [Unique M] [Unique N] [Mul M] [Mul N] :
                                                          Unique (M ≃* N)

                                                          There is a unique monoid homomorphism between two monoids with a unique element.

                                                          Monoids #

                                                          theorem AddEquiv.map_zero {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] (h : M ≃+ N) :
                                                          h 0 = 0

                                                          An additive isomorphism of additive monoids sends 0 to 0 (and is hence an additive monoid isomorphism).

                                                          theorem MulEquiv.map_one {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] (h : M ≃* N) :
                                                          h 1 = 1

                                                          A multiplicative isomorphism of monoids sends 1 to 1 (and is hence a monoid isomorphism).

                                                          theorem AddEquiv.map_eq_zero_iff {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] (h : M ≃+ N) {x : M} :
                                                          h x = 0 x = 0
                                                          theorem MulEquiv.map_eq_one_iff {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] (h : M ≃* N) {x : M} :
                                                          h x = 1 x = 1
                                                          theorem AddEquiv.map_ne_zero_iff {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] (h : M ≃+ N) {x : M} :
                                                          h x 0 x 0
                                                          theorem MulEquiv.map_ne_one_iff {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] (h : M ≃* N) {x : M} :
                                                          h x 1 x 1
                                                          noncomputable def AddEquiv.ofBijective {M : Type u_12} {N : Type u_13} {F : Type u_14} [Add M] [Add N] [AddHomClass F M N] (f : F) (hf : Function.Bijective f) :
                                                          M ≃+ N

                                                          A bijective AddSemigroup homomorphism is an isomorphism

                                                          Instances For
                                                            @[simp]
                                                            theorem AddEquiv.ofBijective_apply {M : Type u_12} {N : Type u_13} {F : Type u_14} [Add M] [Add N] [AddHomClass F M N] (f : F) (hf : Function.Bijective f) (a : M) :
                                                            ↑(AddEquiv.ofBijective f hf) a = f a
                                                            @[simp]
                                                            theorem MulEquiv.ofBijective_apply {M : Type u_12} {N : Type u_13} {F : Type u_14} [Mul M] [Mul N] [MulHomClass F M N] (f : F) (hf : Function.Bijective f) (a : M) :
                                                            ↑(MulEquiv.ofBijective f hf) a = f a
                                                            noncomputable def MulEquiv.ofBijective {M : Type u_12} {N : Type u_13} {F : Type u_14} [Mul M] [Mul N] [MulHomClass F M N] (f : F) (hf : Function.Bijective f) :
                                                            M ≃* N

                                                            A bijective Semigroup homomorphism is an isomorphism

                                                            Instances For
                                                              @[simp]
                                                              theorem AddEquiv.ofBijective_apply_symm_apply {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] {n : N} (f : M →+ N) (hf : Function.Bijective f) :
                                                              f ((Equiv.ofBijective (f) hf).symm n) = n
                                                              @[simp]
                                                              theorem MulEquiv.ofBijective_apply_symm_apply {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] {n : N} (f : M →* N) (hf : Function.Bijective f) :
                                                              f ((Equiv.ofBijective (f) hf).symm n) = n
                                                              theorem AddEquiv.toAddMonoidHom.proof_1 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddZeroClass N] (h : M ≃+ N) (x : M) (y : M) :
                                                              Equiv.toFun h.toEquiv (x + y) = Equiv.toFun h.toEquiv x + Equiv.toFun h.toEquiv y
                                                              def AddEquiv.toAddMonoidHom {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] (h : M ≃+ N) :
                                                              M →+ N

                                                              Extract the forward direction of an additive equivalence as an addition-preserving function.

                                                              Instances For
                                                                def MulEquiv.toMonoidHom {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] (h : M ≃* N) :
                                                                M →* N

                                                                Extract the forward direction of a multiplicative equivalence as a multiplication-preserving function.

                                                                Instances For
                                                                  @[simp]
                                                                  theorem AddEquiv.coe_toAddMonoidHom {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) :
                                                                  @[simp]
                                                                  theorem MulEquiv.coe_toMonoidHom {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] (e : M ≃* N) :
                                                                  theorem AddEquiv.toAddMonoidHom_injective {M : Type u_12} {N : Type u_13} [AddZeroClass M] [AddZeroClass N] :
                                                                  Function.Injective AddEquiv.toAddMonoidHom
                                                                  theorem MulEquiv.toMonoidHom_injective {M : Type u_12} {N : Type u_13} [MulOneClass M] [MulOneClass N] :
                                                                  Function.Injective MulEquiv.toMonoidHom
                                                                  theorem AddEquiv.arrowCongr.proof_3 {M : Type u_3} {N : Type u_1} {P : Type u_4} {Q : Type u_2} [Add P] [Add Q] (f : M N) (g : P ≃+ Q) (h : MP) (k : MP) :
                                                                  Equiv.toFun { toFun := fun h n => g (h (f.symm n)), invFun := fun k m => ↑(AddEquiv.symm g) (k (f m)), left_inv := (_ : ∀ (h : MP), (fun k m => ↑(AddEquiv.symm g) (k (f m))) ((fun h n => g (h (f.symm n))) h) = h), right_inv := (_ : ∀ (k : NQ), (fun h n => g (h (f.symm n))) ((fun k m => ↑(AddEquiv.symm g) (k (f m))) k) = k) } (h + k) = Equiv.toFun { toFun := fun h n => g (h (f.symm n)), invFun := fun k m => ↑(AddEquiv.symm g) (k (f m)), left_inv := (_ : ∀ (h : MP), (fun k m => ↑(AddEquiv.symm g) (k (f m))) ((fun h n => g (h (f.symm n))) h) = h), right_inv := (_ : ∀ (k : NQ), (fun h n => g (h (f.symm n))) ((fun k m => ↑(AddEquiv.symm g) (k (f m))) k) = k) } h + Equiv.toFun { toFun := fun h n => g (h (f.symm n)), invFun := fun k m => ↑(AddEquiv.symm g) (k (f m)), left_inv := (_ : ∀ (h : MP), (fun k m => ↑(AddEquiv.symm g) (k (f m))) ((fun h n => g (h (f.symm n))) h) = h), right_inv := (_ : ∀ (k : NQ), (fun h n => g (h (f.symm n))) ((fun k m => ↑(AddEquiv.symm g) (k (f m))) k) = k) } k
                                                                  theorem AddEquiv.arrowCongr.proof_1 {M : Type u_1} {N : Type u_4} {P : Type u_2} {Q : Type u_3} [Add P] [Add Q] (f : M N) (g : P ≃+ Q) (h : MP) :
                                                                  (fun k m => ↑(AddEquiv.symm g) (k (f m))) ((fun h n => g (h (f.symm n))) h) = h
                                                                  theorem AddEquiv.arrowCongr.proof_2 {M : Type u_4} {N : Type u_1} {P : Type u_3} {Q : Type u_2} [Add P] [Add Q] (f : M N) (g : P ≃+ Q) (k : NQ) :
                                                                  (fun h n => g (h (f.symm n))) ((fun k m => ↑(AddEquiv.symm g) (k (f m))) k) = k
                                                                  def AddEquiv.arrowCongr {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [Add P] [Add Q] (f : M N) (g : P ≃+ Q) :
                                                                  (MP) ≃+ (NQ)

                                                                  An additive analogue of Equiv.arrowCongr, where the equivalence between the targets is additive.

                                                                  Instances For
                                                                    @[simp]
                                                                    theorem AddEquiv.arrowCongr_apply {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [Add P] [Add Q] (f : M N) (g : P ≃+ Q) (h : MP) (n : N) :
                                                                    ↑(AddEquiv.arrowCongr f g) h n = g (h (f.symm n))
                                                                    @[simp]
                                                                    theorem MulEquiv.arrowCongr_apply {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [Mul P] [Mul Q] (f : M N) (g : P ≃* Q) (h : MP) (n : N) :
                                                                    ↑(MulEquiv.arrowCongr f g) h n = g (h (f.symm n))
                                                                    def MulEquiv.arrowCongr {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [Mul P] [Mul Q] (f : M N) (g : P ≃* Q) :
                                                                    (MP) ≃* (NQ)

                                                                    A multiplicative analogue of Equiv.arrowCongr, where the equivalence between the targets is multiplicative.

                                                                    Instances For
                                                                      def AddEquiv.addMonoidHomCongr {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] [AddCommMonoid Q] (f : M ≃+ N) (g : P ≃+ Q) :
                                                                      (M →+ P) ≃+ (N →+ Q)

                                                                      An additive analogue of Equiv.arrowCongr, for additive maps from an additive monoid to a commutative additive monoid.

                                                                      Instances For
                                                                        theorem AddEquiv.addMonoidHomCongr.proof_3 {M : Type u_2} {N : Type u_3} {P : Type u_1} {Q : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] [AddCommMonoid Q] (f : M ≃+ N) (g : P ≃+ Q) (h : M →+ P) (k : M →+ P) :
                                                                        Equiv.toFun { toFun := fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f))), invFun := fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f)), left_inv := (_ : ∀ (h : M →+ P), (fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f))) ((fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f)))) h) = h), right_inv := (_ : ∀ (k : N →+ Q), (fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f)))) ((fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f))) k) = k) } (h + k) = Equiv.toFun { toFun := fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f))), invFun := fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f)), left_inv := (_ : ∀ (h : M →+ P), (fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f))) ((fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f)))) h) = h), right_inv := (_ : ∀ (k : N →+ Q), (fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f)))) ((fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f))) k) = k) } h + Equiv.toFun { toFun := fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f))), invFun := fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f)), left_inv := (_ : ∀ (h : M →+ P), (fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f))) ((fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f)))) h) = h), right_inv := (_ : ∀ (k : N →+ Q), (fun h => AddMonoidHom.comp (AddEquiv.toAddMonoidHom g) (AddMonoidHom.comp h (AddEquiv.toAddMonoidHom (AddEquiv.symm f)))) ((fun k => AddMonoidHom.comp (AddEquiv.toAddMonoidHom (AddEquiv.symm g)) (AddMonoidHom.comp k (AddEquiv.toAddMonoidHom f))) k) = k) } k
                                                                        @[simp]
                                                                        theorem MulEquiv.monoidHomCongr_apply {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [MulOneClass M] [MulOneClass N] [CommMonoid P] [CommMonoid Q] (f : M ≃* N) (g : P ≃* Q) (h : M →* P) :
                                                                        def MulEquiv.monoidHomCongr {M : Type u_12} {N : Type u_13} {P : Type u_14} {Q : Type u_15} [MulOneClass M] [MulOneClass N] [CommMonoid P] [CommMonoid Q] (f : M ≃* N) (g : P ≃* Q) :
                                                                        (M →* P) ≃* (N →* Q)

                                                                        A multiplicative analogue of Equiv.arrowCongr, for multiplicative maps from a monoid to a commutative monoid.

                                                                        Instances For
                                                                          def AddEquiv.piCongrRight {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] (es : (j : η) → Ms j ≃+ Ns j) :
                                                                          ((j : η) → Ms j) ≃+ ((j : η) → Ns j)

                                                                          A family of additive equivalences Π j, (Ms j ≃+ Ns j) generates an additive equivalence between Π j, Ms j and Π j, Ns j.

                                                                          This is the AddEquiv version of Equiv.piCongrRight, and the dependent version of AddEquiv.arrowCongr.

                                                                          Instances For
                                                                            theorem AddEquiv.piCongrRight.proof_2 {η : Type u_1} {Ms : ηType u_2} {Ns : ηType u_3} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] (es : (j : η) → Ms j ≃+ Ns j) :
                                                                            Function.RightInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun
                                                                            theorem AddEquiv.piCongrRight.proof_3 {η : Type u_1} {Ms : ηType u_3} {Ns : ηType u_2} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] (es : (j : η) → Ms j ≃+ Ns j) (x : (j : η) → Ms j) (y : (j : η) → Ms j) :
                                                                            Equiv.toFun { toFun := fun x j => ↑(es j) (x j), invFun := fun x j => ↑(AddEquiv.symm (es j)) (x j), left_inv := (_ : Function.LeftInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun), right_inv := (_ : Function.RightInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun) } (x + y) = Equiv.toFun { toFun := fun x j => ↑(es j) (x j), invFun := fun x j => ↑(AddEquiv.symm (es j)) (x j), left_inv := (_ : Function.LeftInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun), right_inv := (_ : Function.RightInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun) } x + Equiv.toFun { toFun := fun x j => ↑(es j) (x j), invFun := fun x j => ↑(AddEquiv.symm (es j)) (x j), left_inv := (_ : Function.LeftInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun), right_inv := (_ : Function.RightInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun) } y
                                                                            theorem AddEquiv.piCongrRight.proof_1 {η : Type u_1} {Ms : ηType u_2} {Ns : ηType u_3} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] (es : (j : η) → Ms j ≃+ Ns j) :
                                                                            Function.LeftInverse (Equiv.piCongrRight fun j => (es j).toEquiv).invFun (Equiv.piCongrRight fun j => (es j).toEquiv).toFun
                                                                            @[simp]
                                                                            theorem AddEquiv.piCongrRight_apply {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] (es : (j : η) → Ms j ≃+ Ns j) (x : (j : η) → Ms j) (j : η) :
                                                                            ↑(AddEquiv.piCongrRight es) x j = ↑(es j) (x j)
                                                                            @[simp]
                                                                            theorem MulEquiv.piCongrRight_apply {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} [(j : η) → Mul (Ms j)] [(j : η) → Mul (Ns j)] (es : (j : η) → Ms j ≃* Ns j) (x : (j : η) → Ms j) (j : η) :
                                                                            ↑(MulEquiv.piCongrRight es) x j = ↑(es j) (x j)
                                                                            def MulEquiv.piCongrRight {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} [(j : η) → Mul (Ms j)] [(j : η) → Mul (Ns j)] (es : (j : η) → Ms j ≃* Ns j) :
                                                                            ((j : η) → Ms j) ≃* ((j : η) → Ns j)

                                                                            A family of multiplicative equivalences Π j, (Ms j ≃* Ns j) generates a multiplicative equivalence between Π j, Ms j and Π j, Ns j.

                                                                            This is the MulEquiv version of Equiv.piCongrRight, and the dependent version of MulEquiv.arrowCongr.

                                                                            Instances For
                                                                              @[simp]
                                                                              theorem AddEquiv.piCongrRight_refl {η : Type u_12} {Ms : ηType u_13} [(j : η) → Add (Ms j)] :
                                                                              (AddEquiv.piCongrRight fun j => AddEquiv.refl (Ms j)) = AddEquiv.refl ((j : η) → Ms j)
                                                                              @[simp]
                                                                              theorem MulEquiv.piCongrRight_refl {η : Type u_12} {Ms : ηType u_13} [(j : η) → Mul (Ms j)] :
                                                                              (MulEquiv.piCongrRight fun j => MulEquiv.refl (Ms j)) = MulEquiv.refl ((j : η) → Ms j)
                                                                              @[simp]
                                                                              theorem AddEquiv.piCongrRight_symm {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] (es : (j : η) → Ms j ≃+ Ns j) :
                                                                              @[simp]
                                                                              theorem MulEquiv.piCongrRight_symm {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} [(j : η) → Mul (Ms j)] [(j : η) → Mul (Ns j)] (es : (j : η) → Ms j ≃* Ns j) :
                                                                              @[simp]
                                                                              theorem AddEquiv.piCongrRight_trans {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} {Ps : ηType u_15} [(j : η) → Add (Ms j)] [(j : η) → Add (Ns j)] [(j : η) → Add (Ps j)] (es : (j : η) → Ms j ≃+ Ns j) (fs : (j : η) → Ns j ≃+ Ps j) :
                                                                              @[simp]
                                                                              theorem MulEquiv.piCongrRight_trans {η : Type u_12} {Ms : ηType u_13} {Ns : ηType u_14} {Ps : ηType u_15} [(j : η) → Mul (Ms j)] [(j : η) → Mul (Ns j)] [(j : η) → Mul (Ps j)] (es : (j : η) → Ms j ≃* Ns j) (fs : (j : η) → Ns j ≃* Ps j) :
                                                                              theorem AddEquiv.piSubsingleton.proof_3 {ι : Type u_2} (M : ιType u_1) [(j : ι) → Add (M j)] (i : ι) :
                                                                              ∀ (x x_1 : (j : ι) → M j), (((i : ι) → M i) + ((i : ι) → M i)) ((i : ι) → M i) instHAdd x x_1 i = x i + x_1 i
                                                                              theorem AddEquiv.piSubsingleton.proof_2 {ι : Type u_1} (M : ιType u_2) [Subsingleton ι] (i : ι) :
                                                                              theorem AddEquiv.piSubsingleton.proof_1 {ι : Type u_1} (M : ιType u_2) [Subsingleton ι] (i : ι) :
                                                                              def AddEquiv.piSubsingleton {ι : Type u_12} (M : ιType u_13) [(j : ι) → Add (M j)] [Subsingleton ι] (i : ι) :
                                                                              ((j : ι) → M j) ≃+ M i

                                                                              A family indexed by a nonempty subsingleton type is equivalent to the element at the single index.

                                                                              Instances For
                                                                                @[simp]
                                                                                theorem MulEquiv.piSubsingleton_symm_apply {ι : Type u_12} (M : ιType u_13) [(j : ι) → Mul (M j)] [Subsingleton ι] (i : ι) (x : M i) (b : ι) :
                                                                                ↑(MulEquiv.symm (MulEquiv.piSubsingleton M i)) x b = cast (_ : M i = M b) x
                                                                                @[simp]
                                                                                theorem MulEquiv.piSubsingleton_apply {ι : Type u_12} (M : ιType u_13) [(j : ι) → Mul (M j)] [Subsingleton ι] (i : ι) (f : (x : ι) → M x) :
                                                                                ↑(MulEquiv.piSubsingleton M i) f = f i
                                                                                @[simp]
                                                                                theorem AddEquiv.piSubsingleton_apply {ι : Type u_12} (M : ιType u_13) [(j : ι) → Add (M j)] [Subsingleton ι] (i : ι) (f : (x : ι) → M x) :
                                                                                ↑(AddEquiv.piSubsingleton M i) f = f i
                                                                                @[simp]
                                                                                theorem AddEquiv.piSubsingleton_symm_apply {ι : Type u_12} (M : ιType u_13) [(j : ι) → Add (M j)] [Subsingleton ι] (i : ι) (x : M i) (b : ι) :
                                                                                ↑(AddEquiv.symm (AddEquiv.piSubsingleton M i)) x b = cast (_ : M i = M b) x
                                                                                def MulEquiv.piSubsingleton {ι : Type u_12} (M : ιType u_13) [(j : ι) → Mul (M j)] [Subsingleton ι] (i : ι) :
                                                                                ((j : ι) → M j) ≃* M i

                                                                                A family indexed by a nonempty subsingleton type is equivalent to the element at the single index.

                                                                                Instances For

                                                                                  Groups #

                                                                                  theorem AddEquiv.map_neg {G : Type u_10} {H : Type u_11} [AddGroup G] [SubtractionMonoid H] (h : G ≃+ H) (x : G) :
                                                                                  h (-x) = -h x

                                                                                  An additive equivalence of additive groups preserves negation.

                                                                                  theorem MulEquiv.map_inv {G : Type u_10} {H : Type u_11} [Group G] [DivisionMonoid H] (h : G ≃* H) (x : G) :
                                                                                  h x⁻¹ = (h x)⁻¹

                                                                                  A multiplicative equivalence of groups preserves inversion.

                                                                                  theorem AddEquiv.map_sub {G : Type u_10} {H : Type u_11} [AddGroup G] [SubtractionMonoid H] (h : G ≃+ H) (x : G) (y : G) :
                                                                                  h (x - y) = h x - h y

                                                                                  An additive equivalence of additive groups preserves subtractions.

                                                                                  theorem MulEquiv.map_div {G : Type u_10} {H : Type u_11} [Group G] [DivisionMonoid H] (h : G ≃* H) (x : G) (y : G) :
                                                                                  h (x / y) = h x / h y

                                                                                  A multiplicative equivalence of groups preserves division.

                                                                                  theorem AddHom.toAddEquiv.proof_2 {M : Type u_2} {N : Type u_1} [Add M] [Add N] (f : AddHom M N) (g : AddHom N M) (h₂ : AddHom.comp f g = AddHom.id N) (x : N) :
                                                                                  ↑(AddHom.comp f g) x = ↑(AddHom.id N) x
                                                                                  def AddHom.toAddEquiv {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : AddHom M N) (g : AddHom N M) (h₁ : AddHom.comp g f = AddHom.id M) (h₂ : AddHom.comp f g = AddHom.id N) :
                                                                                  M ≃+ N

                                                                                  Given a pair of additive homomorphisms f, g such that g.comp f = id and f.comp g = id, returns an additive equivalence with toFun = f and invFun = g. This constructor is useful if the underlying type(s) have specialized ext lemmas for additive homomorphisms.

                                                                                  Instances For
                                                                                    theorem AddHom.toAddEquiv.proof_1 {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : AddHom M N) (g : AddHom N M) (h₁ : AddHom.comp g f = AddHom.id M) (x : M) :
                                                                                    ↑(AddHom.comp g f) x = ↑(AddHom.id M) x
                                                                                    def MulHom.toMulEquiv {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M) (h₁ : MulHom.comp g f = MulHom.id M) (h₂ : MulHom.comp f g = MulHom.id N) :
                                                                                    M ≃* N

                                                                                    Given a pair of multiplicative homomorphisms f, g such that g.comp f = id and f.comp g = id, returns a multiplicative equivalence with toFun = f and invFun = g. This constructor is useful if the underlying type(s) have specialized ext lemmas for multiplicative homomorphisms.

                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem AddHom.toAddEquiv_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : AddHom M N) (g : AddHom N M) (h₁ : AddHom.comp g f = AddHom.id M) (h₂ : AddHom.comp f g = AddHom.id N) :
                                                                                      ↑(AddHom.toAddEquiv f g h₁ h₂) = f
                                                                                      @[simp]
                                                                                      theorem MulHom.toMulEquiv_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M) (h₁ : MulHom.comp g f = MulHom.id M) (h₂ : MulHom.comp f g = MulHom.id N) :
                                                                                      ↑(MulHom.toMulEquiv f g h₁ h₂) = f
                                                                                      @[simp]
                                                                                      theorem AddHom.toAddEquiv_symm_apply {M : Type u_6} {N : Type u_7} [Add M] [Add N] (f : AddHom M N) (g : AddHom N M) (h₁ : AddHom.comp g f = AddHom.id M) (h₂ : AddHom.comp f g = AddHom.id N) :
                                                                                      ↑(AddEquiv.symm (AddHom.toAddEquiv f g h₁ h₂)) = g
                                                                                      @[simp]
                                                                                      theorem MulHom.toMulEquiv_symm_apply {M : Type u_6} {N : Type u_7} [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M) (h₁ : MulHom.comp g f = MulHom.id M) (h₂ : MulHom.comp f g = MulHom.id N) :
                                                                                      ↑(MulEquiv.symm (MulHom.toMulEquiv f g h₁ h₂)) = g
                                                                                      theorem AddMonoidHom.toAddEquiv.proof_1 {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (g : N →+ M) (h₁ : AddMonoidHom.comp g f = AddMonoidHom.id M) (x : M) :
                                                                                      ↑(AddMonoidHom.comp g f) x = ↑(AddMonoidHom.id M) x
                                                                                      theorem AddMonoidHom.toAddEquiv.proof_2 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (g : N →+ M) (h₂ : AddMonoidHom.comp f g = AddMonoidHom.id N) (x : N) :
                                                                                      ↑(AddMonoidHom.comp f g) x = ↑(AddMonoidHom.id N) x
                                                                                      def AddMonoidHom.toAddEquiv {M : Type u_6} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (g : N →+ M) (h₁ : AddMonoidHom.comp g f = AddMonoidHom.id M) (h₂ : AddMonoidHom.comp f g = AddMonoidHom.id N) :
                                                                                      M ≃+ N

                                                                                      Given a pair of additive monoid homomorphisms f, g such that g.comp f = id and f.comp g = id, returns an additive equivalence with toFun = f and invFun = g. This constructor is useful if the underlying type(s) have specialized ext lemmas for additive monoid homomorphisms.

                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem AddMonoidHom.toAddEquiv_apply {M : Type u_6} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (g : N →+ M) (h₁ : AddMonoidHom.comp g f = AddMonoidHom.id M) (h₂ : AddMonoidHom.comp f g = AddMonoidHom.id N) :
                                                                                        ↑(AddMonoidHom.toAddEquiv f g h₁ h₂) = f
                                                                                        @[simp]
                                                                                        theorem AddMonoidHom.toAddEquiv_symm_apply {M : Type u_6} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (g : N →+ M) (h₁ : AddMonoidHom.comp g f = AddMonoidHom.id M) (h₂ : AddMonoidHom.comp f g = AddMonoidHom.id N) :
                                                                                        ↑(AddEquiv.symm (AddMonoidHom.toAddEquiv f g h₁ h₂)) = g
                                                                                        @[simp]
                                                                                        theorem MonoidHom.toMulEquiv_apply {M : Type u_6} {N : Type u_7} [MulOneClass M] [MulOneClass N] (f : M →* N) (g : N →* M) (h₁ : MonoidHom.comp g f = MonoidHom.id M) (h₂ : MonoidHom.comp f g = MonoidHom.id N) :
                                                                                        ↑(MonoidHom.toMulEquiv f g h₁ h₂) = f
                                                                                        @[simp]
                                                                                        theorem MonoidHom.toMulEquiv_symm_apply {M : Type u_6} {N : Type u_7} [MulOneClass M] [MulOneClass N] (f : M →* N) (g : N →* M) (h₁ : MonoidHom.comp g f = MonoidHom.id M) (h₂ : MonoidHom.comp f g = MonoidHom.id N) :
                                                                                        ↑(MulEquiv.symm (MonoidHom.toMulEquiv f g h₁ h₂)) = g
                                                                                        def MonoidHom.toMulEquiv {M : Type u_6} {N : Type u_7} [MulOneClass M] [MulOneClass N] (f : M →* N) (g : N →* M) (h₁ : MonoidHom.comp g f = MonoidHom.id M) (h₂ : MonoidHom.comp f g = MonoidHom.id N) :
                                                                                        M ≃* N

                                                                                        Given a pair of monoid homomorphisms f, g such that g.comp f = id and f.comp g = id, returns a multiplicative equivalence with toFun = f and invFun = g. This constructor is useful if the underlying type(s) have specialized ext lemmas for monoid homomorphisms.

                                                                                        Instances For
                                                                                          def Equiv.neg (G : Type u_10) [InvolutiveNeg G] :

                                                                                          Negation on an AddGroup is a permutation of the underlying type.

                                                                                          Instances For
                                                                                            @[simp]
                                                                                            theorem Equiv.inv_apply (G : Type u_10) [InvolutiveInv G] :
                                                                                            ↑(Equiv.inv G) = Inv.inv
                                                                                            @[simp]
                                                                                            theorem Equiv.neg_apply (G : Type u_10) [InvolutiveNeg G] :
                                                                                            ↑(Equiv.neg G) = Neg.neg
                                                                                            def Equiv.inv (G : Type u_10) [InvolutiveInv G] :

                                                                                            Inversion on a Group or GroupWithZero is a permutation of the underlying type.

                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem Equiv.neg_symm {G : Type u_10} [InvolutiveNeg G] :
                                                                                              (Equiv.neg G).symm = Equiv.neg G
                                                                                              @[simp]
                                                                                              theorem Equiv.inv_symm {G : Type u_10} [InvolutiveInv G] :
                                                                                              (Equiv.inv G).symm = Equiv.inv G