Lemmas about divisibility in rings #
theorem
dvd_neg_of_dvd
{α : Type u_1}
[inst : Semigroup α]
[inst : HasDistribNeg α]
{a : α}
{b : α}
(h : a ∣ b)
:
theorem
dvd_of_dvd_neg
{α : Type u_1}
[inst : Semigroup α]
[inst : HasDistribNeg α]
{a : α}
{b : α}
(h : a ∣ -b)
:
a ∣ b
theorem
neg_dvd_of_dvd
{α : Type u_1}
[inst : Semigroup α]
[inst : HasDistribNeg α]
{a : α}
{b : α}
(h : a ∣ b)
:
theorem
dvd_of_neg_dvd
{α : Type u_1}
[inst : Semigroup α]
[inst : HasDistribNeg α]
{a : α}
{b : α}
(h : -a ∣ b)
:
a ∣ b
theorem
dvd_add_iff_left
{α : Type u_1}
[inst : NonUnitalRing α]
{a : α}
{b : α}
{c : α}
(h : a ∣ c)
:
theorem
dvd_add_iff_right
{α : Type u_1}
[inst : NonUnitalRing α]
{a : α}
{b : α}
{c : α}
(h : a ∣ b)
:
If an element a divides another element c in a commutative ring, a divides the sum of another element b with c iff a divides b.
If an element a divides another element b in a commutative ring, a divides the sum of b and another element c iff a divides c.
theorem
dvd_iff_dvd_of_dvd_sub
{α : Type u_1}
[inst : NonUnitalRing α]
{a : α}
{b : α}
{c : α}
(h : a ∣ b - c)
: