Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Group

Group law on Weierstrass curves #

This file proves that the nonsingular rational points on a Weierstrass curve form an abelian group under the geometric group law defined in Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean, in Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean, and in Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean.

Mathematical background #

Let W be a Weierstrass curve over a field F given by a Weierstrass equation W(X, Y) = 0 in affine coordinates. As in Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean, the set of nonsingular rational points W⟮F⟯ of W consist of the unique point at infinity 𝓞 and nonsingular affine points (x, y). With this description, there is an addition-preserving injection between W⟮F⟯ and the ideal class group of the coordinate ring F[W] := F[X, Y] / ⟨W(X, Y)⟩ of W. This is defined by mapping the point at infinity 𝓞 to the trivial ideal class and an affine point (x, y) to the ideal class of the invertible fractional ideal ⟨X - x, Y - y⟩. Proving that this is well-defined and preserves addition reduce to checking several equalities of integral ideals, which is done in WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul and in WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal via explicit ideal computations. Now F[W] is a free rank two F[X]-algebra with basis {1, Y}, so every element of F[W] is of the form p + qY for some p, q ∈ F[X], and there is an algebra norm N : F[W] → F[X]. Injectivity can then be shown by computing the degree of such a norm N(p + qY) in two different ways, which is done in WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis and in the auxiliary lemmas in the proof of WeierstrassCurve.Affine.Point.instAddCommGroup.

When W is given in Jacobian coordinates, WeierstrassCurve.Jacobian.Point.toAffineAddEquiv pulls back the group law on WeierstrassCurve.Affine.Point to WeierstrassCurve.Jacobian.Point.

When W is given in projective coordinates, WeierstrassCurve.Projective.Point.toAffineAddEquiv pulls back the group law on WeierstrassCurve.Affine.Point to WeierstrassCurve.Projective.Point.

Main definitions #

Main statements #

References #

https://drops.dagstuhl.de/storage/00lipics/lipics-vol268-itp2023/LIPIcs.ITP.2023.6/LIPIcs.ITP.2023.6.pdf

Tags #

elliptic curve, group law, class group

Weierstrass curves in affine coordinates #

@[reducible, inline]

The coordinate ring $R[W] := R[X, Y] / \langle W(X, Y) \rangle$ of W.

Equations
Instances For
    @[reducible, inline]

    The function field $R(W) := \mathrm{Frac}(R[W])$ of W.

    Equations
    Instances For

      The coordinate ring as an R[X]-algebra #

      @[reducible, inline]

      The natural ring homomorphism mapping an element of R[X][Y] to an element of R[W].

      Equations
      Instances For

        The basis $\{1, Y\}$ for the coordinate ring $R[W]$ over the polynomial ring $R[X]$.

        Equations
        Instances For
          theorem WeierstrassCurve.Affine.CoordinateRing.smul_basis_eq_zero {R : Type u} [CommRing R] {W : Affine R} {p q : Polynomial R} (hpq : p 1 + q (mk W) Polynomial.X = 0) :
          p = 0 q = 0

          The ring homomorphism R[W] →+* S[W.map f] induced by a ring homomorphism f : R →+* S.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem WeierstrassCurve.Affine.CoordinateRing.map_smul {R : Type u} {S : Type v} [CommRing R] [CommRing S] {W : Affine R} (f : R →+* S) (x : Polynomial R) (y : W.CoordinateRing) :
            (map W f) (x y) = Polynomial.map f x (map W f) y

            Ideals in the coordinate ring over a ring #

            noncomputable def WeierstrassCurve.Affine.CoordinateRing.XClass {R : Type u} [CommRing R] (W : Affine R) (x : R) :

            The class of the element $X - x$ in $R[W]$ for some $x \in R$.

            Equations
            Instances For

              The class of the element $Y - y(X)$ in $R[W]$ for some $y(X) \in R[X]$.

              Equations
              Instances For

                The ideal $\langle X - x \rangle$ of $R[W]$ for some $x \in R$.

                Equations
                Instances For

                  The ideal $\langle Y - y(X) \rangle$ of $R[W]$ for some $y(X) \in R[X]$.

                  Equations
                  Instances For
                    noncomputable def WeierstrassCurve.Affine.CoordinateRing.XYIdeal {R : Type u} [CommRing R] (W : Affine R) (x : R) (y : Polynomial R) :

                    The ideal $\langle X - x, Y - y(X) \rangle$ of $R[W]$ for some $x \in R$ and $y(X) \in R[X]$.

                    Equations
                    Instances For
                      theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq {R : Type u} [CommRing R] (W : Affine R) (x₁ x₂ y₁ L : R) :
                      XYIdeal W (W.addX x₁ x₂ L) (Polynomial.C (W.addY x₁ x₂ y₁ L)) = Ideal.span {(mk W) (W.negPolynomial - Polynomial.C (linePolynomial x₁ y₁ L))} XIdeal W (W.addX x₁ x₂ L)

                      The $R$-algebra isomorphism from $R[W] / \langle X - x, Y - y(X) \rangle$ to $R$ obtained by evaluation at $y(X)$ and at $x$ provided that $W(x, y(x)) = 0$.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        Ideals in the coordinate ring over a field #

                        theorem WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                        (mk W) (Polynomial.C (W.addPolynomial x₁ y₁ (W.slope x₁ x₂ y₁ y₂))) = -(XClass W x₁ * XClass W x₂ * XClass W (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂)))
                        theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eq₂ {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                        XYIdeal W x₂ (Polynomial.C y₂) = XYIdeal W x₂ (linePolynomial x₁ y₁ (W.slope x₁ x₂ y₁ y₂))
                        theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                        XIdeal W (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂)) * (XYIdeal W x₁ (Polynomial.C y₁) * XYIdeal W x₂ (Polynomial.C y₂)) = YIdeal W (linePolynomial x₁ y₁ (W.slope x₁ x₂ y₁ y₂)) * XYIdeal W (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂)) (Polynomial.C (W.addY x₁ x₂ y₁ (W.slope x₁ x₂ y₁ y₂)))

                        The non-zero fractional ideal $\langle X - x, Y - y \rangle$ of $F(W)$ for some $x, y \in F$.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq {F : Type u} [Field F] {W : Affine F} {x y : F} (h : W.Nonsingular x y) :
                          (XYIdeal' h) = (XYIdeal W x (Polynomial.C y))
                          theorem WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal' {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Nonsingular x₁ y₁) (h₂ : W.Nonsingular x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :

                          Norms on the coordinate ring #

                          The axioms for nonsingular rational points on a Weierstrass curve #

                          The set function mapping an affine point $(x, y)$ of W to the class of the non-zero fractional ideal $\langle X - x, Y - y \rangle$ of $F(W)$ in the class group of $F[W]$.

                          Equations
                          Instances For

                            The group homomorphism mapping an affine point $(x, y)$ of W to the class of the non-zero fractional ideal $\langle X - x, Y - y \rangle$ of $F(W)$ in the class group of $F[W]$.

                            Equations
                            Instances For
                              @[simp]
                              theorem WeierstrassCurve.Affine.Point.toClass_apply {F : Type u} [Field F] {W : Affine F} (a✝ : W.Point) :
                              toClass a✝ = a✝.toClassFun

                              Weierstrass curves in projective coordinates #

                              Weierstrass curves in Jacobian coordinates #

                              Elliptic curves in affine coordinates #

                              An affine point on an elliptic curve E over R.

                              Equations
                              Instances For