Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Group

Group law on Weierstrass curves #

This file proves that the nonsingular rational points on a Weierstrass curve form an abelian group under the geometric group law defined in Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean, in Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean, and in Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean.

Mathematical background #

Let W be a Weierstrass curve over a field F given by a Weierstrass equation W(X, Y) = 0 in affine coordinates. As in Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean, the set of nonsingular rational points W⟮F⟯ of W consist of the unique point at infinity 𝓞 and nonsingular affine points (x, y). With this description, there is an addition-preserving injection between W⟮F⟯ and the ideal class group of the coordinate ring F[W] := F[X, Y] / ⟨W(X, Y)⟩ of W. This is defined by mapping the point at infinity 𝓞 to the trivial ideal class and an affine point (x, y) to the ideal class of the invertible fractional ideal ⟨X - x, Y - y⟩. Proving that this is well-defined and preserves addition reduce to checking several equalities of integral ideals, which is done in WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul and in WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal via explicit ideal computations. Now F[W] is a free rank two F[X]-algebra with basis {1, Y}, so every element of F[W] is of the form p + qY for some p, q ∈ F[X], and there is an algebra norm N : F[W] → F[X]. Injectivity can then be shown by computing the degree of such a norm N(p + qY) in two different ways, which is done in WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis and in the auxiliary lemmas in the proof of WeierstrassCurve.Affine.Point.instAddCommGroup.

When W is given in Jacobian coordinates, WeierstrassCurve.Jacobian.Point.toAffineAddEquiv pulls back the group law on WeierstrassCurve.Affine.Point to WeierstrassCurve.Jacobian.Point.

When W is given in projective coordinates, WeierstrassCurve.Projective.Point.toAffineAddEquiv pulls back the group law on WeierstrassCurve.Affine.Point to WeierstrassCurve.Projective.Point.

Main definitions #

Main statements #

References #

https://drops.dagstuhl.de/storage/00lipics/lipics-vol268-itp2023/LIPIcs.ITP.2023.6/LIPIcs.ITP.2023.6.pdf

Tags #

elliptic curve, group law, class group

Weierstrass curves in affine coordinates #

@[reducible, inline]

The coordinate ring $R[W] := R[X, Y] / \langle W(X, Y) \rangle$ of W.

Equations
Instances For
    @[reducible, inline]

    The function field $R(W) := \mathrm{Frac}(R[W])$ of W.

    Equations
    Instances For

      The coordinate ring as an R[X]-algebra #

      @[reducible, inline]
      noncomputable abbrev WeierstrassCurve.Affine.CoordinateRing.mk {R : Type u} [CommRing R] (W : Affine R) :
      Polynomial (Polynomial R) →+* W.CoordinateRing

      The natural ring homomorphism mapping an element of R[X][Y] to an element of R[W].

      Equations
      Instances For
        noncomputable def WeierstrassCurve.Affine.CoordinateRing.basis {R : Type u} [CommRing R] (W : Affine R) :
        Basis (Fin 2) (Polynomial R) W.CoordinateRing

        The basis $\{1, Y\}$ for the coordinate ring $R[W]$ over the polynomial ring $R[X]$.

        Equations
        Instances For
          theorem WeierstrassCurve.Affine.CoordinateRing.smul {R : Type u} [CommRing R] {W : Affine R} (x : Polynomial R) (y : W.CoordinateRing) :
          x y = (mk W) (Polynomial.C x) * y
          theorem WeierstrassCurve.Affine.CoordinateRing.smul_basis_eq_zero {R : Type u} [CommRing R] {W : Affine R} {p q : Polynomial R} (hpq : p 1 + q (mk W) Polynomial.X = 0) :
          p = 0 q = 0
          theorem WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq {R : Type u} [CommRing R] {W : Affine R} (x : W.CoordinateRing) :
          ∃ (p : Polynomial R) (q : Polynomial R), p 1 + q (mk W) Polynomial.X = x
          theorem WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C {R : Type u} [CommRing R] (W : Affine R) (y p q : Polynomial R) :
          (p 1 + q (mk W) Polynomial.X) * (mk W) (Polynomial.C y) = (p * y) 1 + (q * y) (mk W) Polynomial.X
          theorem WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y {R : Type u} [CommRing R] (W : Affine R) (p q : Polynomial R) :
          (p 1 + q (mk W) Polynomial.X) * (mk W) Polynomial.X = (q * (Polynomial.X ^ 3 + Polynomial.C W.a₂ * Polynomial.X ^ 2 + Polynomial.C W.a₄ * Polynomial.X + Polynomial.C W.a₆)) 1 + (p - q * (Polynomial.C W.a₁ * Polynomial.X + Polynomial.C W.a₃)) (mk W) Polynomial.X
          noncomputable def WeierstrassCurve.Affine.CoordinateRing.map {R : Type u} {S : Type v} [CommRing R] [CommRing S] (W : Affine R) (f : R →+* S) :
          W.CoordinateRing →+* (WeierstrassCurve.map W f).toAffine.CoordinateRing

          The ring homomorphism R[W] →+* S[W.map f] induced by a ring homomorphism f : R →+* S.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem WeierstrassCurve.Affine.CoordinateRing.map_smul {R : Type u} {S : Type v} [CommRing R] [CommRing S] {W : Affine R} (f : R →+* S) (x : Polynomial R) (y : W.CoordinateRing) :
            (map W f) (x y) = Polynomial.map f x (map W f) y

            Ideals in the coordinate ring over a ring #

            noncomputable def WeierstrassCurve.Affine.CoordinateRing.XClass {R : Type u} [CommRing R] (W : Affine R) (x : R) :
            W.CoordinateRing

            The class of the element $X - x$ in $R[W]$ for some $x \in R$.

            Equations
            Instances For
              noncomputable def WeierstrassCurve.Affine.CoordinateRing.YClass {R : Type u} [CommRing R] (W : Affine R) (y : Polynomial R) :
              W.CoordinateRing

              The class of the element $Y - y(X)$ in $R[W]$ for some $y(X) \in R[X]$.

              Equations
              Instances For
                theorem WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial {R : Type u} [CommRing R] (W : Affine R) (x y L : R) :
                (mk W) (Polynomial.C (W.addPolynomial x y L)) = (mk W) ((Polynomial.X - Polynomial.C (linePolynomial x y L)) * (W.negPolynomial - Polynomial.C (linePolynomial x y L)))
                noncomputable def WeierstrassCurve.Affine.CoordinateRing.XIdeal {R : Type u} [CommRing R] (W : Affine R) (x : R) :
                Ideal W.CoordinateRing

                The ideal $\langle X - x \rangle$ of $R[W]$ for some $x \in R$.

                Equations
                Instances For
                  noncomputable def WeierstrassCurve.Affine.CoordinateRing.YIdeal {R : Type u} [CommRing R] (W : Affine R) (y : Polynomial R) :
                  Ideal W.CoordinateRing

                  The ideal $\langle Y - y(X) \rangle$ of $R[W]$ for some $y(X) \in R[X]$.

                  Equations
                  Instances For
                    noncomputable def WeierstrassCurve.Affine.CoordinateRing.XYIdeal {R : Type u} [CommRing R] (W : Affine R) (x : R) (y : Polynomial R) :
                    Ideal W.CoordinateRing

                    The ideal $\langle X - x, Y - y(X) \rangle$ of $R[W]$ for some $x \in R$ and $y(X) \in R[X]$.

                    Equations
                    Instances For
                      theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eq₁ {R : Type u} [CommRing R] (W : Affine R) (x y L : R) :
                      XYIdeal W x (Polynomial.C y) = XYIdeal W x (linePolynomial x y L)
                      theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq {R : Type u} [CommRing R] (W : Affine R) (x₁ x₂ y₁ L : R) :
                      XYIdeal W (W.addX x₁ x₂ L) (Polynomial.C (W.addY x₁ x₂ y₁ L)) = Ideal.span {(mk W) (W.negPolynomial - Polynomial.C (linePolynomial x₁ y₁ L))} XIdeal W (W.addX x₁ x₂ L)
                      noncomputable def WeierstrassCurve.Affine.CoordinateRing.quotientXYIdealEquiv {R : Type u} [CommRing R] (W : Affine R) {x : R} {y : Polynomial R} (h : Polynomial.eval x (Polynomial.eval y W.polynomial) = 0) :
                      (W.CoordinateRing XYIdeal W x y) ≃ₐ[R] R

                      The $R$-algebra isomorphism from $R[W] / \langle X - x, Y - y(X) \rangle$ to $R$ obtained by evaluation at $y(X)$ and at $x$ provided that $W(x, y(x)) = 0$.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        Ideals in the coordinate ring over a field #

                        theorem WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                        (mk W) (Polynomial.C (W.addPolynomial x₁ y₁ (W.slope x₁ x₂ y₁ y₂))) = -(XClass W x₁ * XClass W x₂ * XClass W (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂)))
                        theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eq₂ {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                        XYIdeal W x₂ (Polynomial.C y₂) = XYIdeal W x₂ (linePolynomial x₁ y₁ (W.slope x₁ x₂ y₁ y₂))
                        theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul {F : Type u} [Field F] {W : Affine F} {x y : F} (h : W.Nonsingular x y) :
                        XYIdeal W x (Polynomial.C (W.negY x y)) * XYIdeal W x (Polynomial.C y) = XIdeal W x
                        theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                        XIdeal W (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂)) * (XYIdeal W x₁ (Polynomial.C y₁) * XYIdeal W x₂ (Polynomial.C y₂)) = YIdeal W (linePolynomial x₁ y₁ (W.slope x₁ x₂ y₁ y₂)) * XYIdeal W (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂)) (Polynomial.C (W.addY x₁ x₂ y₁ (W.slope x₁ x₂ y₁ y₂)))
                        noncomputable def WeierstrassCurve.Affine.CoordinateRing.XYIdeal' {F : Type u} [Field F] {W : Affine F} {x y : F} (h : W.Nonsingular x y) :
                        (FractionalIdeal (nonZeroDivisors W.CoordinateRing) W.FunctionField)ˣ

                        The non-zero fractional ideal $\langle X - x, Y - y \rangle$ of $F(W)$ for some $x, y \in F$.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq {F : Type u} [Field F] {W : Affine F} {x y : F} (h : W.Nonsingular x y) :
                          (XYIdeal' h) = (XYIdeal W x (Polynomial.C y))
                          theorem WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal'_of_Yeq {F : Type u} [Field F] {W : Affine F} {x y : F} (h : W.Nonsingular x y) :
                          ClassGroup.mk (XYIdeal' ) * ClassGroup.mk (XYIdeal' h) = 1
                          theorem WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal' {F : Type u} [Field F] {W : Affine F} {x₁ x₂ y₁ y₂ : F} (h₁ : W.Nonsingular x₁ y₁) (h₂ : W.Nonsingular x₂ y₂) (hxy : x₁ = x₂y₁ W.negY x₂ y₂) :
                          ClassGroup.mk (XYIdeal' h₁) * ClassGroup.mk (XYIdeal' h₂) = ClassGroup.mk (XYIdeal' )

                          Norms on the coordinate ring #

                          theorem WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis {R : Type u} [CommRing R] (W : Affine R) (p q : Polynomial R) :
                          (Algebra.norm (Polynomial R)) (p 1 + q (mk W) Polynomial.X) = p ^ 2 - p * q * (Polynomial.C W.a₁ * Polynomial.X + Polynomial.C W.a₃) - q ^ 2 * (Polynomial.X ^ 3 + Polynomial.C W.a₂ * Polynomial.X ^ 2 + Polynomial.C W.a₄ * Polynomial.X + Polynomial.C W.a₆)
                          theorem WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis {R : Type u} [CommRing R] (W : Affine R) (p q : Polynomial R) :
                          (AdjoinRoot.of W.polynomial) ((Algebra.norm (Polynomial R)) (p 1 + q (mk W) Polynomial.X)) = (mk W) ((Polynomial.C p + Polynomial.C q * Polynomial.X) * (Polynomial.C p + Polynomial.C q * (-Polynomial.X - Polynomial.C (Polynomial.C W.a₁ * Polynomial.X + Polynomial.C W.a₃))))
                          theorem WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis {R : Type u} [CommRing R] (W : Affine R) [IsDomain R] (p q : Polynomial R) :
                          ((Algebra.norm (Polynomial R)) (p 1 + q (mk W) Polynomial.X)).degree = 2 p.degree (2 q.degree + 3)
                          theorem WeierstrassCurve.Affine.CoordinateRing.degree_norm_ne_one {R : Type u} [CommRing R] {W : Affine R} [IsDomain R] (x : W.CoordinateRing) :
                          ((Algebra.norm (Polynomial R)) x).degree 1
                          theorem WeierstrassCurve.Affine.CoordinateRing.natDegree_norm_ne_one {R : Type u} [CommRing R] {W : Affine R} [IsDomain R] (x : W.CoordinateRing) :
                          ((Algebra.norm (Polynomial R)) x).natDegree 1

                          The axioms for nonsingular rational points on a Weierstrass curve #

                          noncomputable def WeierstrassCurve.Affine.Point.toClassFun {F : Type u} [Field F] {W : Affine F} :
                          W.PointAdditive (ClassGroup W.CoordinateRing)

                          The set function mapping an affine point $(x, y)$ of W to the class of the non-zero fractional ideal $\langle X - x, Y - y \rangle$ of $F(W)$ in the class group of $F[W]$.

                          Equations
                          Instances For
                            noncomputable def WeierstrassCurve.Affine.Point.toClass {F : Type u} [Field F] {W : Affine F} :
                            W.Point →+ Additive (ClassGroup W.CoordinateRing)

                            The group homomorphism mapping an affine point $(x, y)$ of W to the class of the non-zero fractional ideal $\langle X - x, Y - y \rangle$ of $F(W)$ in the class group of $F[W]$.

                            Equations
                            Instances For
                              @[simp]
                              theorem WeierstrassCurve.Affine.Point.toClass_apply {F : Type u} [Field F] {W : Affine F} (a✝ : W.Point) :
                              toClass a✝ = a✝.toClassFun
                              theorem WeierstrassCurve.Affine.Point.toClass_zero {F : Type u} [Field F] {W : Affine F} :
                              toClass 0 = 0
                              theorem WeierstrassCurve.Affine.Point.toClass_some {F : Type u} [Field F] {W : Affine F} {x y : F} (h : W.Nonsingular x y) :
                              toClass (some h) = ClassGroup.mk (CoordinateRing.XYIdeal' h)
                              theorem WeierstrassCurve.Affine.Point.toClass_eq_zero {F : Type u} [Field F] {W : Affine F} (P : W.Point) :
                              toClass P = 0 P = 0

                              Weierstrass curves in projective coordinates #

                              Weierstrass curves in Jacobian coordinates #

                              Elliptic curves in affine coordinates #

                              def WeierstrassCurve.Affine.Point.mk {R : Type u_1} [Nontrivial R] [CommRing R] (E : WeierstrassCurve R) [E.IsElliptic] {x y : R} (h : E.toAffine.Equation x y) :
                              E.toAffine.Point

                              An affine point on an elliptic curve E over R.

                              Equations
                              Instances For