Documentation

Mathlib.Analysis.Calculus.ContDiff.Bounds

Bounds on higher derivatives #

norm_iteratedFDeriv_comp_le gives the bound n! * C * D ^ n for the n-th derivative of g ∘ f assuming that the derivatives of g are bounded by C and the i-th derivative of f is bounded by D ^ i.

Quantitative bounds #

theorem ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_aux {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {Du Eu Fu Gu : Type u} [NormedAddCommGroup Du] [NormedSpace 𝕜 Du] [NormedAddCommGroup Eu] [NormedSpace 𝕜 Eu] [NormedAddCommGroup Fu] [NormedSpace 𝕜 Fu] [NormedAddCommGroup Gu] [NormedSpace 𝕜 Gu] (B : ContinuousLinearMap (RingHom.id 𝕜) Eu (ContinuousLinearMap (RingHom.id 𝕜) Fu Gu)) {f : DuEu} {g : DuFu} {n : Nat} {s : Set Du} {x : Du} (hf : ContDiffOn 𝕜 n.cast f s) (hg : ContDiffOn 𝕜 n.cast g s) (hs : UniqueDiffOn 𝕜 s) (hx : Membership.mem s x) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : Du) => DFunLike.coe (DFunLike.coe B (f y)) (g y)) s x)) (HMul.hMul (Norm.norm B) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDerivWithin 𝕜 i f s x))) (Norm.norm (iteratedFDerivWithin 𝕜 (HSub.hSub n i) g s x))))

Bounding the norm of the iterated derivative of B (f x) (g x) within a set in terms of the iterated derivatives of f and g when B is bilinear. This lemma is an auxiliary version assuming all spaces live in the same universe, to enable an induction. Use instead ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear that removes this assumption.

theorem ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {D : Type uD} [NormedAddCommGroup D] [NormedSpace 𝕜 D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] (B : ContinuousLinearMap (RingHom.id 𝕜) E (ContinuousLinearMap (RingHom.id 𝕜) F G)) {f : DE} {g : DF} {N : WithTop ENat} {s : Set D} {x : D} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) (hx : Membership.mem s x) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : D) => DFunLike.coe (DFunLike.coe B (f y)) (g y)) s x)) (HMul.hMul (Norm.norm B) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDerivWithin 𝕜 i f s x))) (Norm.norm (iteratedFDerivWithin 𝕜 (HSub.hSub n i) g s x))))

Bounding the norm of the iterated derivative of B (f x) (g x) within a set in terms of the iterated derivatives of f and g when B is bilinear: ‖D^n (x ↦ B (f x) (g x))‖ ≤ ‖B‖ ∑_{k ≤ n} n.choose k ‖D^k f‖ ‖D^{n-k} g‖

theorem ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {D : Type uD} [NormedAddCommGroup D] [NormedSpace 𝕜 D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] (B : ContinuousLinearMap (RingHom.id 𝕜) E (ContinuousLinearMap (RingHom.id 𝕜) F G)) {f : DE} {g : DF} {N : WithTop ENat} (hf : ContDiff 𝕜 N f) (hg : ContDiff 𝕜 N g) (x : D) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (y : D) => DFunLike.coe (DFunLike.coe B (f y)) (g y)) x)) (HMul.hMul (Norm.norm B) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDeriv 𝕜 i f x))) (Norm.norm (iteratedFDeriv 𝕜 (HSub.hSub n i) g x))))

Bounding the norm of the iterated derivative of B (f x) (g x) in terms of the iterated derivatives of f and g when B is bilinear: ‖D^n (x ↦ B (f x) (g x))‖ ≤ ‖B‖ ∑_{k ≤ n} n.choose k ‖D^k f‖ ‖D^{n-k} g‖

theorem ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_of_le_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {D : Type uD} [NormedAddCommGroup D] [NormedSpace 𝕜 D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] (B : ContinuousLinearMap (RingHom.id 𝕜) E (ContinuousLinearMap (RingHom.id 𝕜) F G)) {f : DE} {g : DF} {N : WithTop ENat} {s : Set D} {x : D} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) (hx : Membership.mem s x) {n : Nat} (hn : LE.le n.cast N) (hB : LE.le (Norm.norm B) 1) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : D) => DFunLike.coe (DFunLike.coe B (f y)) (g y)) s x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDerivWithin 𝕜 i f s x))) (Norm.norm (iteratedFDerivWithin 𝕜 (HSub.hSub n i) g s x)))

Bounding the norm of the iterated derivative of B (f x) (g x) within a set in terms of the iterated derivatives of f and g when B is bilinear of norm at most 1: ‖D^n (x ↦ B (f x) (g x))‖ ≤ ∑_{k ≤ n} n.choose k ‖D^k f‖ ‖D^{n-k} g‖

theorem ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear_of_le_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {D : Type uD} [NormedAddCommGroup D] [NormedSpace 𝕜 D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] (B : ContinuousLinearMap (RingHom.id 𝕜) E (ContinuousLinearMap (RingHom.id 𝕜) F G)) {f : DE} {g : DF} {N : WithTop ENat} (hf : ContDiff 𝕜 N f) (hg : ContDiff 𝕜 N g) (x : D) {n : Nat} (hn : LE.le n.cast N) (hB : LE.le (Norm.norm B) 1) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (y : D) => DFunLike.coe (DFunLike.coe B (f y)) (g y)) x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDeriv 𝕜 i f x))) (Norm.norm (iteratedFDeriv 𝕜 (HSub.hSub n i) g x)))

Bounding the norm of the iterated derivative of B (f x) (g x) in terms of the iterated derivatives of f and g when B is bilinear of norm at most 1: ‖D^n (x ↦ B (f x) (g x))‖ ≤ ∑_{k ≤ n} n.choose k ‖D^k f‖ ‖D^{n-k} g‖

theorem norm_iteratedFDerivWithin_smul_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {s : Set E} {𝕜' : Type u_2} [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormedSpace 𝕜' F] [IsScalarTower 𝕜 𝕜' F] {f : E𝕜'} {g : EF} {N : WithTop ENat} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) {x : E} (hx : Membership.mem s x) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : E) => HSMul.hSMul (f y) (g y)) s x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDerivWithin 𝕜 i f s x))) (Norm.norm (iteratedFDerivWithin 𝕜 (HSub.hSub n i) g s x)))
theorem norm_iteratedFDeriv_smul_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {𝕜' : Type u_2} [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormedSpace 𝕜' F] [IsScalarTower 𝕜 𝕜' F] {f : E𝕜'} {g : EF} {N : WithTop ENat} (hf : ContDiff 𝕜 N f) (hg : ContDiff 𝕜 N g) (x : E) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (y : E) => HSMul.hSMul (f y) (g y)) x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDeriv 𝕜 i f x))) (Norm.norm (iteratedFDeriv 𝕜 (HSub.hSub n i) g x)))
theorem norm_iteratedFDerivWithin_mul_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {s : Set E} {A : Type u_3} [NormedRing A] [NormedAlgebra 𝕜 A] {f g : EA} {N : WithTop ENat} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) {x : E} (hx : Membership.mem s x) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : E) => HMul.hMul (f y) (g y)) s x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDerivWithin 𝕜 i f s x))) (Norm.norm (iteratedFDerivWithin 𝕜 (HSub.hSub n i) g s x)))
theorem norm_iteratedFDeriv_mul_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_3} [NormedRing A] [NormedAlgebra 𝕜 A] {f g : EA} {N : WithTop ENat} (hf : ContDiff 𝕜 N f) (hg : ContDiff 𝕜 N g) (x : E) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (y : E) => HMul.hMul (f y) (g y)) x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDeriv 𝕜 i f x))) (Norm.norm (iteratedFDeriv 𝕜 (HSub.hSub n i) g x)))
theorem norm_iteratedFDerivWithin_prod_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {s : Set E} {ι : Type u_2} {A' : Type u_4} [NormedCommRing A'] [NormedAlgebra 𝕜 A'] [DecidableEq ι] [NormOneClass A'] {u : Finset ι} {f : ιEA'} {N : WithTop ENat} (hf : ∀ (i : ι), Membership.mem u iContDiffOn 𝕜 N (f i) s) (hs : UniqueDiffOn 𝕜 s) {x : E} (hx : Membership.mem s x) {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (x : E) => u.prod fun (j : ι) => f j x) s x)) ((u.sym n).sum fun (p : Sym ι n) => HMul.hMul p.toMultiset.multinomial.cast (u.prod fun (j : ι) => Norm.norm (iteratedFDerivWithin 𝕜 (Multiset.count j p.toMultiset) (f j) s x)))
theorem norm_iteratedFDeriv_prod_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_2} {A' : Type u_4} [NormedCommRing A'] [NormedAlgebra 𝕜 A'] [DecidableEq ι] [NormOneClass A'] {u : Finset ι} {f : ιEA'} {N : WithTop ENat} (hf : ∀ (i : ι), Membership.mem u iContDiff 𝕜 N (f i)) {x : E} {n : Nat} (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (x : E) => u.prod fun (j : ι) => f j x) x)) ((u.sym n).sum fun (p : Sym ι n) => HMul.hMul p.toMultiset.multinomial.cast (u.prod fun (j : ι) => Norm.norm (iteratedFDeriv 𝕜 (Multiset.count j p.toMultiset) (f j) x)))
theorem norm_iteratedFDerivWithin_comp_le_aux {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {Fu Gu : Type u} [NormedAddCommGroup Fu] [NormedSpace 𝕜 Fu] [NormedAddCommGroup Gu] [NormedSpace 𝕜 Gu] {g : FuGu} {f : EFu} {n : Nat} {s : Set E} {t : Set Fu} {x : E} (hg : ContDiffOn 𝕜 n.cast g t) (hf : ContDiffOn 𝕜 n.cast f s) (ht : UniqueDiffOn 𝕜 t) (hs : UniqueDiffOn 𝕜 s) (hst : Set.MapsTo f s t) (hx : Membership.mem s x) {C D : Real} (hC : ∀ (i : Nat), LE.le i nLE.le (Norm.norm (iteratedFDerivWithin 𝕜 i g t (f x))) C) (hD : ∀ (i : Nat), LE.le 1 iLE.le i nLE.le (Norm.norm (iteratedFDerivWithin 𝕜 i f s x)) (HPow.hPow D i)) :

If the derivatives within a set of g at f x are bounded by C, and the i-th derivative within a set of f at x is bounded by D^i for all 1 ≤ i ≤ n, then the n-th derivative of g ∘ f is bounded by n! * C * D^n. This lemma proves this estimate assuming additionally that two of the spaces live in the same universe, to make an induction possible. Use instead norm_iteratedFDerivWithin_comp_le that removes this assumption.

theorem norm_iteratedFDerivWithin_comp_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] {g : FG} {f : EF} {n : Nat} {s : Set E} {t : Set F} {x : E} {N : WithTop ENat} (hg : ContDiffOn 𝕜 N g t) (hf : ContDiffOn 𝕜 N f s) (hn : LE.le n.cast N) (ht : UniqueDiffOn 𝕜 t) (hs : UniqueDiffOn 𝕜 s) (hst : Set.MapsTo f s t) (hx : Membership.mem s x) {C D : Real} (hC : ∀ (i : Nat), LE.le i nLE.le (Norm.norm (iteratedFDerivWithin 𝕜 i g t (f x))) C) (hD : ∀ (i : Nat), LE.le 1 iLE.le i nLE.le (Norm.norm (iteratedFDerivWithin 𝕜 i f s x)) (HPow.hPow D i)) :

If the derivatives within a set of g at f x are bounded by C, and the i-th derivative within a set of f at x is bounded by D^i for all 1 ≤ i ≤ n, then the n-th derivative of g ∘ f is bounded by n! * C * D^n.

theorem norm_iteratedFDeriv_comp_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] {g : FG} {f : EF} {n : Nat} {N : WithTop ENat} (hg : ContDiff 𝕜 N g) (hf : ContDiff 𝕜 N f) (hn : LE.le n.cast N) (x : E) {C D : Real} (hC : ∀ (i : Nat), LE.le i nLE.le (Norm.norm (iteratedFDeriv 𝕜 i g (f x))) C) (hD : ∀ (i : Nat), LE.le 1 iLE.le i nLE.le (Norm.norm (iteratedFDeriv 𝕜 i f x)) (HPow.hPow D i)) :

If the derivatives of g at f x are bounded by C, and the i-th derivative of f at x is bounded by D^i for all 1 ≤ i ≤ n, then the n-th derivative of g ∘ f is bounded by n! * C * D^n.

theorem norm_iteratedFDerivWithin_clm_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EContinuousLinearMap (RingHom.id 𝕜) F G} {g : EF} {s : Set E} {x : E} {N : WithTop ENat} {n : Nat} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) (hx : Membership.mem s x) (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : E) => DFunLike.coe (f y) (g y)) s x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDerivWithin 𝕜 i f s x))) (Norm.norm (iteratedFDerivWithin 𝕜 (HSub.hSub n i) g s x)))
theorem norm_iteratedFDeriv_clm_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EContinuousLinearMap (RingHom.id 𝕜) F G} {g : EF} {N : WithTop ENat} {n : Nat} (hf : ContDiff 𝕜 N f) (hg : ContDiff 𝕜 N g) (x : E) (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (y : E) => DFunLike.coe (f y) (g y)) x)) ((Finset.range (HAdd.hAdd n 1)).sum fun (i : Nat) => HMul.hMul (HMul.hMul (n.choose i).cast (Norm.norm (iteratedFDeriv 𝕜 i f x))) (Norm.norm (iteratedFDeriv 𝕜 (HSub.hSub n i) g x)))
theorem norm_iteratedFDerivWithin_clm_apply_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EContinuousLinearMap (RingHom.id 𝕜) F G} {c : F} {s : Set E} {x : E} {N : WithTop ENat} {n : Nat} (hf : ContDiffWithinAt 𝕜 N f s x) (hs : UniqueDiffOn 𝕜 s) (hx : Membership.mem s x) (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDerivWithin 𝕜 n (fun (y : E) => DFunLike.coe (f y) c) s x)) (HMul.hMul (Norm.norm c) (Norm.norm (iteratedFDerivWithin 𝕜 n f s x)))
theorem norm_iteratedFDeriv_clm_apply_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type uE} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EContinuousLinearMap (RingHom.id 𝕜) F G} {c : F} {x : E} {N : WithTop ENat} {n : Nat} (hf : ContDiffAt 𝕜 N f x) (hn : LE.le n.cast N) :
LE.le (Norm.norm (iteratedFDeriv 𝕜 n (fun (y : E) => DFunLike.coe (f y) c) x)) (HMul.hMul (Norm.norm c) (Norm.norm (iteratedFDeriv 𝕜 n f x)))