Documentation

Mathlib.Analysis.NormedSpace.IndicatorFunction

Indicator function and (e)norm #

This file contains a few simple lemmas about Set.indicator, norm and enorm.

Tags #

indicator, norm

theorem norm_indicator_eq_indicator_norm {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :
s.indicator f a = s.indicator (fun (a : α) => f a) a
theorem nnnorm_indicator_eq_indicator_nnnorm {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :
s.indicator f a‖₊ = s.indicator (fun (a : α) => f a‖₊) a
theorem enorm_indicator_eq_indicator_enorm {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :
s.indicator f a‖ₑ = s.indicator (fun (a : α) => f a‖ₑ) a
theorem norm_indicator_le_of_subset {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s t : Set α} (h : s t) (f : αE) (a : α) :
theorem enorm_indicator_le_of_subset {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s t : Set α} (h : s t) (f : αE) (a : α) :
theorem indicator_norm_le_norm_self {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :
s.indicator (fun (a : α) => f a) a f a
theorem indicator_enorm_le_enorm_self {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :
s.indicator (fun (a : α) => f a‖ₑ) a f a‖ₑ
theorem norm_indicator_le_norm_self {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :
theorem enorm_indicator_le_enorm_self {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] {s : Set α} (f : αE) (a : α) :