Normalized vector #
Function that returns unit length vector that points in the same direction (if the given vector is nonzero vector) or returns zero vector (if the given vector is zero vector).
noncomputable def
NormedSpace.normalize
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
(x : V)
:
V
For a nonzero vector x
, normalize x
is the unit-length vector that points
in the same direction as x
. If x = 0
, then normalize x = 0
.
Instances For
@[simp]
theorem
NormedSpace.normalize_zero_eq_zero
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
:
@[simp]
theorem
NormedSpace.norm_smul_normalize
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
(x : V)
:
@[simp]
theorem
NormedSpace.norm_normalize_eq_one_iff
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
{x : V}
:
theorem
NormedSpace.normalize_eq_self_of_norm_eq_one
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
{x : V}
(h : ‖x‖ = 1)
:
@[simp]
theorem
NormedSpace.normalize_normalize
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
(x : V)
:
@[simp]
theorem
NormedSpace.normalize_smul_of_pos
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
{r : ℝ}
(hr : 0 < r)
(x : V)
:
theorem
NormedSpace.normalize_smul_of_neg
{V : Type u_1}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
{r : ℝ}
(hr : r < 0)
(x : V)
: