Documentation

Mathlib.Analysis.NormedSpace.OperatorNorm

Operator norm on the space of continuous linear maps #

Define the operator norm on the space of continuous (semi)linear maps between normed spaces, and prove its basic properties. In particular, show that this space is itself a normed space.

Since a lot of elementary properties don't require ‖x‖ = 0 → x = 0 we start setting up the theory for SeminormedAddCommGroup and we specialize to NormedAddCommGroup at the end.

Note that most of statements that apply to semilinear maps only hold when the ring homomorphism is isometric, as expressed by the typeclass [RingHomIsometric σ].

theorem norm_image_of_norm_zero {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} {𝓕 : Type u_10} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f) {x : E} (hx : x = 0) :
f x = 0

If ‖x‖ = 0 and f is continuous then ‖f x‖ = 0.

theorem SemilinearMapClass.bound_of_shell_semi_normed {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} {𝓕 : Type u_10} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) {ε : } {C : } (ε_pos : 0 < ε) {c : 𝕜} (hc : 1 < c) (hf : ∀ (x : E), ε / c xx < εf x C * x) {x : E} (hx : x 0) :
f x C * x
theorem SemilinearMapClass.bound_of_continuous {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} {𝓕 : Type u_10} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f) :
C, 0 < C ∀ (x : E), f x C * x

A continuous linear map between seminormed spaces is bounded when the field is nontrivially normed. The continuity ensures boundedness on a ball of some radius ε. The nontriviality of the norm is then used to rescale any element into an element of norm in [ε/C, ε], whose image has a controlled norm. The norm control for the original element follows by rescaling.

theorem ContinuousLinearMap.bound {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
C, 0 < C ∀ (x : E), f x C * x
def LinearIsometry.toSpanSingleton (𝕜 : Type u_1) (E : Type u_4) [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {v : E} (hv : v = 1) :
𝕜 →ₗᵢ[𝕜] E

Given a unit-length element x of a normed space E over a field 𝕜, the natural linear isometry map from 𝕜 to E by taking multiples of x.

Instances For
    @[simp]
    theorem LinearIsometry.toSpanSingleton_apply {𝕜 : Type u_1} {E : Type u_4} [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {v : E} (hv : v = 1) (a : 𝕜) :
    ↑(LinearIsometry.toSpanSingleton 𝕜 E hv) a = a v
    @[simp]
    theorem LinearIsometry.coe_toSpanSingleton {𝕜 : Type u_1} {E : Type u_4} [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {v : E} (hv : v = 1) :
    def ContinuousLinearMap.opNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) :

    The operator norm of a continuous linear map is the inf of all its bounds.

    Instances For
      instance ContinuousLinearMap.hasOpNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} :
      Norm (E →SL[σ₁₂] F)
      theorem ContinuousLinearMap.norm_def {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) :
      f = sInf {c | 0 c ∀ (x : E), f x c * x}
      theorem ContinuousLinearMap.bounds_nonempty {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} :
      c, c {c | 0 c ∀ (x : E), f x c * x}
      theorem ContinuousLinearMap.bounds_bddBelow {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {f : E →SL[σ₁₂] F} :
      BddBelow {c | 0 c ∀ (x : E), f x c * x}
      theorem ContinuousLinearMap.isLeast_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
      IsLeast {c | 0 c ∀ (x : E), f x c * x} f
      theorem ContinuousLinearMap.op_norm_le_bound {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) {M : } (hMp : 0 M) (hM : ∀ (x : E), f x M * x) :

      If one controls the norm of every A x, then one controls the norm of A.

      theorem ContinuousLinearMap.op_norm_le_bound' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) {M : } (hMp : 0 M) (hM : ∀ (x : E), x 0f x M * x) :

      If one controls the norm of every A x, ‖x‖ ≠ 0, then one controls the norm of A.

      theorem ContinuousLinearMap.op_norm_le_of_lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {f : E →SL[σ₁₂] F} {K : NNReal} (hf : LipschitzWith K f) :
      f K
      theorem ContinuousLinearMap.op_norm_eq_of_bounds {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {φ : E →SL[σ₁₂] F} {M : } (M_nonneg : 0 M) (h_above : ∀ (x : E), φ x M * x) (h_below : ∀ (N : ), N 0(∀ (x : E), φ x N * x) → M N) :
      φ = M
      theorem ContinuousLinearMap.op_norm_neg {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) :
      theorem ContinuousLinearMap.op_norm_nonneg {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) :
      theorem ContinuousLinearMap.op_norm_zero {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} :

      The norm of the 0 operator is 0.

      The norm of the identity is at most 1. It is in fact 1, except when the space is trivial where it is 0. It means that one can not do better than an inequality in general.

      theorem ContinuousLinearMap.le_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) :

      The fundamental property of the operator norm: ‖f x‖ ≤ ‖f‖ * ‖x‖.

      theorem ContinuousLinearMap.dist_le_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) (y : E) :
      dist (f x) (f y) f * dist x y
      theorem ContinuousLinearMap.le_of_op_norm_le_of_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {x : E} {a : } {b : } (hf : f a) (hx : x b) :
      f x a * b
      theorem ContinuousLinearMap.le_op_norm_of_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {c : } {x : E} (h : x c) :
      f x f * c
      theorem ContinuousLinearMap.le_of_op_norm_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {c : } (h : f c) (x : E) :
      f x c * x
      theorem ContinuousLinearMap.op_norm_le_iff {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {M : } (hMp : 0 M) :
      f M ∀ (x : E), f x M * x
      theorem ContinuousLinearMap.ratio_le_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) :
      theorem ContinuousLinearMap.unit_le_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) :
      x 1f x f

      The image of the unit ball under a continuous linear map is bounded.

      theorem ContinuousLinearMap.op_norm_le_of_shell {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {ε : } {C : } (ε_pos : 0 < ε) (hC : 0 C) {c : 𝕜} (hc : 1 < c) (hf : ∀ (x : E), ε / c xx < εf x C * x) :
      theorem ContinuousLinearMap.op_norm_le_of_ball {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {ε : } {C : } (ε_pos : 0 < ε) (hC : 0 C) (hf : ∀ (x : E), x Metric.ball 0 εf x C * x) :
      theorem ContinuousLinearMap.op_norm_le_of_nhds_zero {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {C : } (hC : 0 C) (hf : ∀ᶠ (x : E) in nhds 0, f x C * x) :
      theorem ContinuousLinearMap.op_norm_le_of_shell' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {ε : } {C : } (ε_pos : 0 < ε) (hC : 0 C) {c : 𝕜} (hc : c < 1) (hf : ∀ (x : E), ε * c xx < εf x C * x) :
      theorem ContinuousLinearMap.op_norm_le_of_unit_norm {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace E] [NormedSpace F] {f : E →L[] F} {C : } (hC : 0 C) (hf : ∀ (x : E), x = 1f x C) :

      For a continuous real linear map f, if one controls the norm of every f x, ‖x‖ = 1, then one controls the norm of f.

      theorem ContinuousLinearMap.op_norm_add_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (g : E →SL[σ₁₂] F) :

      The operator norm satisfies the triangle inequality.

      If there is an element with norm different from 0, then the norm of the identity equals 1. (Since we are working with seminorms supposing that the space is non-trivial is not enough.)

      theorem ContinuousLinearMap.op_norm_smul_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {𝕜' : Type u_11} [NormedField 𝕜'] [NormedSpace 𝕜' F] [SMulCommClass 𝕜₂ 𝕜' F] (c : 𝕜') (f : E →SL[σ₁₂] F) :
      def ContinuousLinearMap.tmpSeminormedAddCommGroup {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :

      Continuous linear maps themselves form a seminormed space with respect to the operator norm. This is only a temporary definition because we want to replace the topology with ContinuousLinearMap.topologicalSpace to avoid diamond issues. See Note [forgetful inheritance]

      Instances For
        def ContinuousLinearMap.tmpPseudoMetricSpace {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :

        The PseudoMetricSpace structure on E →SL[σ₁₂] F coming from ContinuousLinearMap.tmpSeminormedAddCommGroup. See Note [forgetful inheritance]

        Instances For
          def ContinuousLinearMap.tmpUniformSpace {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :
          UniformSpace (E →SL[σ₁₂] F)

          The UniformSpace structure on E →SL[σ₁₂] F coming from ContinuousLinearMap.tmpSeminormedAddCommGroup. See Note [forgetful inheritance]

          Instances For
            def ContinuousLinearMap.tmpTopologicalSpace {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :

            The TopologicalSpace structure on E →SL[σ₁₂] F coming from ContinuousLinearMap.tmpSeminormedAddCommGroup. See Note [forgetful inheritance]

            Instances For
              theorem ContinuousLinearMap.tmpTopologicalAddGroup {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :
              theorem ContinuousLinearMap.tmp_closedBall_div_subset {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {a : } {b : } (ha : 0 < a) (hb : 0 < b) :
              Metric.closedBall 0 (a / b) {f | ∀ (x : E), x Metric.closedBall 0 bf x Metric.closedBall 0 a}
              theorem ContinuousLinearMap.tmp_topology_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :
              ContinuousLinearMap.tmpTopologicalSpace = ContinuousLinearMap.topologicalSpace
              theorem ContinuousLinearMap.tmpUniformSpace_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :
              ContinuousLinearMap.tmpUniformSpace = ContinuousLinearMap.uniformSpace
              instance ContinuousLinearMap.toPseudoMetricSpace {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :
              instance ContinuousLinearMap.toSeminormedAddCommGroup {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :

              Continuous linear maps themselves form a seminormed space with respect to the operator norm.

              theorem ContinuousLinearMap.nnnorm_def {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
              f‖₊ = sInf {c | ∀ (x : E), f x‖₊ c * x‖₊}
              theorem ContinuousLinearMap.op_nnnorm_le_bound {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (M : NNReal) (hM : ∀ (x : E), f x‖₊ M * x‖₊) :

              If one controls the norm of every A x, then one controls the norm of A.

              theorem ContinuousLinearMap.op_nnnorm_le_bound' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (M : NNReal) (hM : ∀ (x : E), x‖₊ 0f x‖₊ M * x‖₊) :

              If one controls the norm of every A x, ‖x‖₊ ≠ 0, then one controls the norm of A.

              For a continuous real linear map f, if one controls the norm of every f x, ‖x‖₊ = 1, then one controls the norm of f.

              theorem ContinuousLinearMap.op_nnnorm_le_of_lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {K : NNReal} (hf : LipschitzWith K f) :
              theorem ContinuousLinearMap.op_nnnorm_eq_of_bounds {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {φ : E →SL[σ₁₂] F} (M : NNReal) (h_above : ∀ (x : E), φ x M * x) (h_below : ∀ (N : NNReal), (∀ (x : E), φ x‖₊ N * x‖₊) → M N) :
              theorem ContinuousLinearMap.op_nnnorm_le_iff {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {C : NNReal} :
              f‖₊ C ∀ (x : E), f x‖₊ C * x‖₊
              theorem ContinuousLinearMap.isLeast_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
              IsLeast {C | ∀ (x : E), f x‖₊ C * x‖₊} f‖₊
              instance ContinuousLinearMap.toNormedSpace {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {𝕜' : Type u_11} [NormedField 𝕜'] [NormedSpace 𝕜' F] [SMulCommClass 𝕜₂ 𝕜' F] :
              NormedSpace 𝕜' (E →SL[σ₁₂] F)
              theorem ContinuousLinearMap.op_norm_comp_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₁₂] [RingHomIsometric σ₂₃] (h : F →SL[σ₂₃] G) (f : E →SL[σ₁₂] F) :

              The operator norm is submultiplicative.

              theorem ContinuousLinearMap.op_norm_comp_le' {𝕜 : Type u_1} {E : Type u_4} {Eₗ : Type u_5} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] (h : Eₗ →L[𝕜] Fₗ) (f : E →L[𝕜] Eₗ) :

              The operator norm is submultiplicative.

              theorem ContinuousLinearMap.op_nnnorm_comp_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₁₂] [RingHomIsometric σ₂₃] (h : F →SL[σ₂₃] G) [RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) :

              Continuous linear maps form a seminormed ring with respect to the operator norm.

              For a normed space E, continuous linear endomorphisms form a normed algebra with respect to the operator norm.

              theorem ContinuousLinearMap.le_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) :
              theorem ContinuousLinearMap.nndist_le_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) (y : E) :
              nndist (f x) (f y) f‖₊ * nndist x y
              theorem ContinuousLinearMap.lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :

              continuous linear maps are Lipschitz continuous.

              theorem ContinuousLinearMap.lipschitz_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (x : E) :
              LipschitzWith x‖₊ fun f => f x

              Evaluation of a continuous linear map f at a point is Lipschitz continuous in f.

              theorem ContinuousLinearMap.exists_mul_lt_apply_of_lt_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : NNReal} (hr : r < f‖₊) :
              x, r * x‖₊ < f x‖₊
              theorem ContinuousLinearMap.exists_mul_lt_of_lt_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : } (hr₀ : 0 r) (hr : r < f) :
              x, r * x < f x
              theorem ContinuousLinearMap.exists_lt_apply_of_lt_op_nnnorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : NNReal} (hr : r < f‖₊) :
              x, x‖₊ < 1 r < f x‖₊
              theorem ContinuousLinearMap.exists_lt_apply_of_lt_op_norm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : } (hr : r < f) :
              x, x < 1 r < f x
              theorem ContinuousLinearMap.sSup_unit_ball_eq_nnnorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
              sSup ((fun x => f x‖₊) '' Metric.ball 0 1) = f‖₊
              theorem ContinuousLinearMap.sSup_unit_ball_eq_norm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
              sSup ((fun x => f x) '' Metric.ball 0 1) = f
              theorem ContinuousLinearMap.sSup_closed_unit_ball_eq_nnnorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
              sSup ((fun x => f x‖₊) '' Metric.closedBall 0 1) = f‖₊
              theorem ContinuousLinearMap.sSup_closed_unit_ball_eq_norm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
              sSup ((fun x => f x) '' Metric.closedBall 0 1) = f
              theorem ContinuousLinearMap.op_norm_ext {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) (g : E →SL[σ₁₃] G) (h : ∀ (x : E), f x = g x) :
              theorem ContinuousLinearMap.op_norm_le_bound₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {C : } (h0 : 0 C) (hC : ∀ (x : E) (y : F), ↑(f x) y C * x * y) :
              theorem ContinuousLinearMap.le_op_norm₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) :
              ↑(f x) y f * x * y
              theorem ContinuousLinearMap.le_of_op_norm₂_le_of_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {x : E} {y : F} {a : } {b : } {c : } (hf : f a) (hx : x b) (hy : y c) :
              ↑(f x) y a * b * c
              @[simp]
              theorem ContinuousLinearMap.op_norm_prod {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ) (g : E →L[𝕜] Gₗ) :
              @[simp]
              theorem ContinuousLinearMap.op_nnnorm_prod {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ) (g : E →L[𝕜] Gₗ) :
              def ContinuousLinearMap.prodₗᵢ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (R : Type u_11) [Semiring R] [Module R Fₗ] [Module R Gₗ] [ContinuousConstSMul R Fₗ] [ContinuousConstSMul R Gₗ] [SMulCommClass 𝕜 R Fₗ] [SMulCommClass 𝕜 R Gₗ] :
              (E →L[𝕜] Fₗ) × (E →L[𝕜] Gₗ) ≃ₗᵢ[R] E →L[𝕜] Fₗ × Gₗ

              ContinuousLinearMap.prod as a LinearIsometryEquiv.

              Instances For
                @[simp]
                theorem ContinuousLinearMap.op_norm_subsingleton {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) [Subsingleton E] :
                theorem ContinuousLinearMap.isBigOWith_id {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) :
                Asymptotics.IsBigOWith f l f fun x => x
                theorem ContinuousLinearMap.isBigO_id {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) :
                f =O[l] fun x => x
                theorem ContinuousLinearMap.isBigOWith_comp {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} [RingHomIsometric σ₂₃] {α : Type u_11} (g : F →SL[σ₂₃] G) (f : αF) (l : Filter α) :
                Asymptotics.IsBigOWith g l (fun x' => g (f x')) f
                theorem ContinuousLinearMap.isBigO_comp {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} [RingHomIsometric σ₂₃] {α : Type u_11} (g : F →SL[σ₂₃] G) (f : αF) (l : Filter α) :
                (fun x' => g (f x')) =O[l] f
                theorem ContinuousLinearMap.isBigOWith_sub {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) (x : E) :
                Asymptotics.IsBigOWith f l (fun x' => f (x' - x)) fun x' => x' - x
                theorem ContinuousLinearMap.isBigO_sub {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) (x : E) :
                (fun x' => f (x' - x)) =O[l] fun x' => x' - x
                theorem LinearIsometry.norm_toContinuousLinearMap_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →ₛₗᵢ[σ₁₂] F) :
                theorem LinearMap.mkContinuous_norm_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →ₛₗ[σ₁₂] F) {C : } (hC : 0 C) (h : ∀ (x : E), f x C * x) :

                If a continuous linear map is constructed from a linear map via the constructor mkContinuous, then its norm is bounded by the bound given to the constructor if it is nonnegative.

                theorem LinearMap.mkContinuous_norm_le' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →ₛₗ[σ₁₂] F) {C : } (h : ∀ (x : E), f x C * x) :

                If a continuous linear map is constructed from a linear map via the constructor mkContinuous, then its norm is bounded by the bound or zero if bound is negative.

                theorem LinearMap.norm_mkContinuous₂_aux {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (C : ) (h : ∀ (x : E) (y : F), ↑(f x) y C * x * y) (x : E) :
                def LinearMap.mkContinuousOfExistsBound₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (h : C, ∀ (x : E) (y : F), ↑(f x) y C * x * y) :
                E →SL[σ₁₃] F →SL[σ₂₃] G

                Create a bilinear map (represented as a map E →L[𝕜] F →L[𝕜] G) from the corresponding linear map and existence of a bound on the norm of the image. The linear map can be constructed using LinearMap.mk₂.

                If you have an explicit bound, use LinearMap.mkContinuous₂ instead, as a norm estimate will follow automatically in LinearMap.mkContinuous₂_norm_le.

                Instances For
                  def LinearMap.mkContinuous₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (C : ) (hC : ∀ (x : E) (y : F), ↑(f x) y C * x * y) :
                  E →SL[σ₁₃] F →SL[σ₂₃] G

                  Create a bilinear map (represented as a map E →L[𝕜] F →L[𝕜] G) from the corresponding linear map and a bound on the norm of the image. The linear map can be constructed using LinearMap.mk₂. Lemmas LinearMap.mkContinuous₂_norm_le' and LinearMap.mkContinuous₂_norm_le provide estimates on the norm of an operator constructed using this function.

                  Instances For
                    @[simp]
                    theorem LinearMap.mkContinuous₂_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (hC : ∀ (x : E) (y : F), ↑(f x) y C * x * y) (x : E) (y : F) :
                    ↑(↑(LinearMap.mkContinuous₂ f C hC) x) y = ↑(f x) y
                    theorem LinearMap.mkContinuous₂_norm_le' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (hC : ∀ (x : E) (y : F), ↑(f x) y C * x * y) :
                    theorem LinearMap.mkContinuous₂_norm_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (h0 : 0 C) (hC : ∀ (x : E) (y : F), ↑(f x) y C * x * y) :
                    def ContinuousLinearMap.flip {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
                    F →SL[σ₂₃] E →SL[σ₁₃] G

                    Flip the order of arguments of a continuous bilinear map. For a version bundled as LinearIsometryEquiv, see ContinuousLinearMap.flipL.

                    Instances For
                      @[simp]
                      theorem ContinuousLinearMap.flip_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) :
                      ↑(↑(ContinuousLinearMap.flip f) y) x = ↑(f x) y
                      @[simp]
                      theorem ContinuousLinearMap.flip_flip {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
                      @[simp]
                      theorem ContinuousLinearMap.op_norm_flip {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
                      @[simp]
                      theorem ContinuousLinearMap.flip_add {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (g : E →SL[σ₁₃] F →SL[σ₂₃] G) :
                      @[simp]
                      theorem ContinuousLinearMap.flip_smul {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (c : 𝕜₃) (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
                      def ContinuousLinearMap.flipₗᵢ' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₂₃ : 𝕜₂ →+* 𝕜₃) (σ₁₃ : 𝕜 →+* 𝕜₃) [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] :
                      (E →SL[σ₁₃] F →SL[σ₂₃] G) ≃ₗᵢ[𝕜₃] F →SL[σ₂₃] E →SL[σ₁₃] G

                      Flip the order of arguments of a continuous bilinear map. This is a version bundled as a LinearIsometryEquiv. For an unbundled version see ContinuousLinearMap.flip.

                      Instances For
                        @[simp]
                        theorem ContinuousLinearMap.flipₗᵢ'_symm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] :
                        @[simp]
                        theorem ContinuousLinearMap.coe_flipₗᵢ' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] :
                        ↑(ContinuousLinearMap.flipₗᵢ' E F G σ₂₃ σ₁₃) = ContinuousLinearMap.flip
                        def ContinuousLinearMap.flipₗᵢ (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                        (E →L[𝕜] Fₗ →L[𝕜] Gₗ) ≃ₗᵢ[𝕜] Fₗ →L[𝕜] E →L[𝕜] Gₗ

                        Flip the order of arguments of a continuous bilinear map. This is a version bundled as a LinearIsometryEquiv. For an unbundled version see ContinuousLinearMap.flip.

                        Instances For
                          @[simp]
                          theorem ContinuousLinearMap.coe_flipₗᵢ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                          ↑(ContinuousLinearMap.flipₗᵢ 𝕜 E Fₗ Gₗ) = ContinuousLinearMap.flip
                          noncomputable def ContinuousLinearMap.apply' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} (F : Type u_6) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] (σ₁₂ : 𝕜 →+* 𝕜₂) [RingHomIsometric σ₁₂] :
                          E →SL[σ₁₂] (E →SL[σ₁₂] F) →L[𝕜₂] F

                          The continuous semilinear map obtained by applying a continuous semilinear map at a given vector.

                          This is the continuous version of LinearMap.applyₗ.

                          Instances For
                            @[simp]
                            theorem ContinuousLinearMap.apply_apply' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (v : E) (f : E →SL[σ₁₂] F) :
                            ↑(↑(ContinuousLinearMap.apply' F σ₁₂) v) f = f v
                            noncomputable def ContinuousLinearMap.apply (𝕜 : Type u_1) {E : Type u_4} (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] :
                            E →L[𝕜] (E →L[𝕜] Fₗ) →L[𝕜] Fₗ

                            The continuous semilinear map obtained by applying a continuous semilinear map at a given vector.

                            This is the continuous version of LinearMap.applyₗ.

                            Instances For
                              @[simp]
                              theorem ContinuousLinearMap.apply_apply {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (v : E) (f : E →L[𝕜] Fₗ) :
                              ↑(↑(ContinuousLinearMap.apply 𝕜 Fₗ) v) f = f v
                              noncomputable def ContinuousLinearMap.compSL {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₁₂ : 𝕜 →+* 𝕜₂) (σ₂₃ : 𝕜₂ →+* 𝕜₃) {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] :
                              (F →SL[σ₂₃] G) →L[𝕜₃] (E →SL[σ₁₂] F) →SL[σ₂₃] E →SL[σ₁₃] G

                              Composition of continuous semilinear maps as a continuous semibilinear map.

                              Instances For
                                def ContinuousLinearMap.instNormContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldIdToNonAssocSemiringContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapTopologicalSpaceAddCommMonoidModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulTopologicalSpaceAddCommGroupToRingToNormedRingToNormedCommRingToRingToNormedRingAddCommGroupToRingToNormedRingTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupToSeminormedAddCommGroupModuleModuleSmulCommClassToMonoidToDistribMulActionToSMulZeroClassToAddZeroClassToDistribSMulContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroToMulActionWithZeroContinuousSMulToPseudoMetricSpaceZeroBoundedSMulToNormedSpace {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₁₂ : 𝕜 →+* 𝕜₂) (σ₂₃ : 𝕜₂ →+* 𝕜₃) {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] :
                                Norm ((F →SL[σ₂₃] G) →L[𝕜₃] (E →SL[σ₁₂] F) →SL[σ₂₃] E →SL[σ₁₃] G)

                                Porting note: Local instance for norm_compSL_le. Should be by inferInstance, and indeed not be needed.

                                Instances For
                                  theorem ContinuousLinearMap.norm_compSL_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₁₂ : 𝕜 →+* 𝕜₂) (σ₂₃ : 𝕜₂ →+* 𝕜₃) {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] :
                                  ContinuousLinearMap.compSL E F G σ₁₂ σ₂₃ 1
                                  @[simp]
                                  theorem ContinuousLinearMap.compSL_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] (f : F →SL[σ₂₃] G) (g : E →SL[σ₁₂] F) :
                                  ↑(↑(ContinuousLinearMap.compSL E F G σ₁₂ σ₂₃) f) g = ContinuousLinearMap.comp f g
                                  theorem Continuous.const_clm_comp {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] {X : Type u_11} [TopologicalSpace X] {f : XE →SL[σ₁₂] F} (hf : Continuous f) (g : F →SL[σ₂₃] G) :
                                  theorem Continuous.clm_comp_const {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] {X : Type u_11} [TopologicalSpace X] {g : XF →SL[σ₂₃] G} (hg : Continuous g) (f : E →SL[σ₁₂] F) :
                                  def ContinuousLinearMap.compL (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                                  (Fₗ →L[𝕜] Gₗ) →L[𝕜] (E →L[𝕜] Fₗ) →L[𝕜] E →L[𝕜] Gₗ

                                  Composition of continuous linear maps as a continuous bilinear map.

                                  Instances For
                                    def ContinuousLinearMap.instNormContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldIdToNonAssocSemiringContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapTopologicalSpaceAddCommMonoidModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulModuleSmulCommClass_selfToMulActionToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroContinuousSMulBoundedSMulTopologicalSpaceAddCommGroupToRingToNormedRingAddCommGroupTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupToSeminormedAddCommGroupIdsModuleModuleSmulCommClassToMonoidToDistribMulActionToSMulZeroClassToAddZeroClassToDistribSMulContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroToMulActionWithZeroContinuousSMulIds (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                                    Norm ((Fₗ →L[𝕜] Gₗ) →L[𝕜] (E →L[𝕜] Fₗ) →L[𝕜] E →L[𝕜] Gₗ)

                                    Porting note: Local instance for norm_compL_le. Should be by inferInstance, and indeed not be needed.

                                    Instances For
                                      theorem ContinuousLinearMap.norm_compL_le (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                                      @[simp]
                                      theorem ContinuousLinearMap.compL_apply (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : Fₗ →L[𝕜] Gₗ) (g : E →L[𝕜] Fₗ) :
                                      ↑(↑(ContinuousLinearMap.compL 𝕜 E Fₗ Gₗ) f) g = ContinuousLinearMap.comp f g
                                      @[simp]
                                      theorem ContinuousLinearMap.precompR_apply {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                                      ∀ (a : E), ↑(ContinuousLinearMap.precompR Eₗ L) a = ↑(ContinuousLinearMap.compL 𝕜 Eₗ Fₗ Gₗ) (L a)
                                      def ContinuousLinearMap.precompR {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                                      E →L[𝕜] (Eₗ →L[𝕜] Fₗ) →L[𝕜] Eₗ →L[𝕜] Gₗ

                                      Apply L(x,-) pointwise to bilinear maps, as a continuous bilinear map

                                      Instances For
                                        def ContinuousLinearMap.precompL {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                                        (Eₗ →L[𝕜] E) →L[𝕜] Fₗ →L[𝕜] Eₗ →L[𝕜] Gₗ

                                        Apply L(-,y) pointwise to bilinear maps, as a continuous bilinear map

                                        Instances For
                                          def ContinuousLinearMap.instSeminormedAddCommGroupContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldIdToNonAssocSemiringContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulModuleSmulCommClass_selfToMulActionToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroContinuousSMulBoundedSMul {𝕜 : Type u_1} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                                          SeminormedAddCommGroup ((Eₗ →L[𝕜] Fₗ) →L[𝕜] Eₗ →L[𝕜] Gₗ)

                                          Porting note: Local instances for norm_precompR_le. Should be by inferInstance, and indeed not be needed.

                                          Instances For
                                            def ContinuousLinearMap.instNormedSpaceContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldIdToNonAssocSemiringContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulModuleSmulCommClass_selfToMulActionToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroContinuousSMulBoundedSMulInstSeminormedAddCommGroupContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldIdToNonAssocSemiringContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulModuleSmulCommClass_selfToMulActionToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroContinuousSMulBoundedSMul {𝕜 : Type u_1} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                                            NormedSpace 𝕜 ((Eₗ →L[𝕜] Fₗ) →L[𝕜] Eₗ →L[𝕜] Gₗ)
                                            Instances For
                                              theorem ContinuousLinearMap.norm_precompR_le {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                                              def ContinuousLinearMap.instNormContinuousLinearMapToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldIdToNonAssocSemiringContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupContinuousLinearMapToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToModuleTopologicalSpaceToTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupToModuleModuleSmulCommClass_selfToCommMonoidToCommRingToEuclideanDomainToMulActionToMonoidWithZeroToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToSMulToZeroToAddMonoidToSMulZeroClassToZeroToSMulWithZeroContinuousSMulToZeroToCommMonoidWithZeroToCommGroupWithZeroBoundedSMulTopologicalSpaceAddCommGroupToRingToNormedRingTopologicalAddGroupAddCommMonoidToContinuousAddToAddGroupToSeminormedAddGroupToSeminormedAddCommGroupIdsModuleSmulCommClass_selfToMulActionToZeroToNegZeroClassToSubNegZeroMonoidToSubtractionMonoidToDivisionAddCommMonoidToMulActionWithZeroContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroContinuousSMulBoundedSMulModuleSmulCommClassToMonoidToDistribMulActionToSMulZeroClassToAddZeroClassToDistribSMulContinuousConstSMulToSMulToZeroToAddMonoidToSMulZeroClassToSMulWithZeroToMulActionWithZeroContinuousSMulIds {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                                              Norm ((Eₗ →L[𝕜] E) →L[𝕜] Fₗ →L[𝕜] Eₗ →L[𝕜] Gₗ)

                                              Porting note: Local instance for norm_precompL_le. Should be by inferInstance, and indeed not be needed.

                                              Instances For
                                                theorem ContinuousLinearMap.norm_precompL_le {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                                                def ContinuousLinearMap.prodMapL (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (M₁ : Type u₁) [SeminormedAddCommGroup M₁] [NormedSpace 𝕜 M₁] (M₂ : Type u₂) [SeminormedAddCommGroup M₂] [NormedSpace 𝕜 M₂] (M₃ : Type u₃) [SeminormedAddCommGroup M₃] [NormedSpace 𝕜 M₃] (M₄ : Type u₄) [SeminormedAddCommGroup M₄] [NormedSpace 𝕜 M₄] :
                                                (M₁ →L[𝕜] M₂) × (M₃ →L[𝕜] M₄) →L[𝕜] M₁ × M₃ →L[𝕜] M₂ × M₄

                                                ContinuousLinearMap.prodMap as a continuous linear map.

                                                Instances For
                                                  @[simp]
                                                  theorem ContinuousLinearMap.prodMapL_apply (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M₁ : Type u₁} [SeminormedAddCommGroup M₁] [NormedSpace 𝕜 M₁] {M₂ : Type u₂} [SeminormedAddCommGroup M₂] [NormedSpace 𝕜 M₂] {M₃ : Type u₃} [SeminormedAddCommGroup M₃] [NormedSpace 𝕜 M₃] {M₄ : Type u₄} [SeminormedAddCommGroup M₄] [NormedSpace 𝕜 M₄] (p : (M₁ →L[𝕜] M₂) × (M₃ →L[𝕜] M₄)) :
                                                  ↑(ContinuousLinearMap.prodMapL 𝕜 M₁ M₂ M₃ M₄) p = ContinuousLinearMap.prodMap p.fst p.snd
                                                  theorem Continuous.prod_mapL (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M₁ : Type u₁} [SeminormedAddCommGroup M₁] [NormedSpace 𝕜 M₁] {M₂ : Type u₂} [SeminormedAddCommGroup M₂] [NormedSpace 𝕜 M₂] {M₃ : Type u₃} [SeminormedAddCommGroup M₃] [NormedSpace 𝕜 M₃] {M₄ : Type u₄} [SeminormedAddCommGroup M₄] [NormedSpace 𝕜 M₄] {X : Type u_11} [TopologicalSpace X] {f : XM₁ →L[𝕜] M₂} {g : XM₃ →L[𝕜] M₄} (hf : Continuous f) (hg : Continuous g) :
                                                  theorem Continuous.prod_map_equivL (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M₁ : Type u₁} [SeminormedAddCommGroup M₁] [NormedSpace 𝕜 M₁] {M₂ : Type u₂} [SeminormedAddCommGroup M₂] [NormedSpace 𝕜 M₂] {M₃ : Type u₃} [SeminormedAddCommGroup M₃] [NormedSpace 𝕜 M₃] {M₄ : Type u₄} [SeminormedAddCommGroup M₄] [NormedSpace 𝕜 M₄] {X : Type u_11} [TopologicalSpace X] {f : XM₁ ≃L[𝕜] M₂} {g : XM₃ ≃L[𝕜] M₄} (hf : Continuous fun x => ↑(f x)) (hg : Continuous fun x => ↑(g x)) :
                                                  Continuous fun x => ↑(ContinuousLinearEquiv.prod (f x) (g x))
                                                  theorem ContinuousOn.prod_mapL (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M₁ : Type u₁} [SeminormedAddCommGroup M₁] [NormedSpace 𝕜 M₁] {M₂ : Type u₂} [SeminormedAddCommGroup M₂] [NormedSpace 𝕜 M₂] {M₃ : Type u₃} [SeminormedAddCommGroup M₃] [NormedSpace 𝕜 M₃] {M₄ : Type u₄} [SeminormedAddCommGroup M₄] [NormedSpace 𝕜 M₄] {X : Type u_11} [TopologicalSpace X] {f : XM₁ →L[𝕜] M₂} {g : XM₃ →L[𝕜] M₄} {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) :
                                                  ContinuousOn (fun x => ContinuousLinearMap.prodMap (f x) (g x)) s
                                                  theorem ContinuousOn.prod_map_equivL (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M₁ : Type u₁} [SeminormedAddCommGroup M₁] [NormedSpace 𝕜 M₁] {M₂ : Type u₂} [SeminormedAddCommGroup M₂] [NormedSpace 𝕜 M₂] {M₃ : Type u₃} [SeminormedAddCommGroup M₃] [NormedSpace 𝕜 M₃] {M₄ : Type u₄} [SeminormedAddCommGroup M₄] [NormedSpace 𝕜 M₄] {X : Type u_11} [TopologicalSpace X] {f : XM₁ ≃L[𝕜] M₂} {g : XM₃ ≃L[𝕜] M₄} {s : Set X} (hf : ContinuousOn (fun x => ↑(f x)) s) (hg : ContinuousOn (fun x => ↑(g x)) s) :
                                                  ContinuousOn (fun x => ↑(ContinuousLinearEquiv.prod (f x) (g x))) s
                                                  def ContinuousLinearMap.mul (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :
                                                  𝕜' →L[𝕜] 𝕜' →L[𝕜] 𝕜'

                                                  Multiplication in a non-unital normed algebra as a continuous bilinear map.

                                                  Instances For
                                                    @[simp]
                                                    theorem ContinuousLinearMap.mul_apply' (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] (x : 𝕜') (y : 𝕜') :
                                                    ↑(↑(ContinuousLinearMap.mul 𝕜 𝕜') x) y = x * y
                                                    @[simp]
                                                    theorem ContinuousLinearMap.op_norm_mul_apply_le (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] (x : 𝕜') :
                                                    theorem ContinuousLinearMap.op_norm_mul_le (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :
                                                    def NonUnitalAlgHom.Lmul (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :
                                                    𝕜' →ₙₐ[𝕜] 𝕜' →L[𝕜] 𝕜'

                                                    Multiplication on the left in a non-unital normed algebra 𝕜' as a non-unital algebra homomorphism into the algebra of continuous linear maps. This is the left regular representation of A acting on itself.

                                                    This has more algebraic structure than ContinuousLinearMap.mul, but there is no longer continuity bundled in the first coordinate. An alternative viewpoint is that this upgrades NonUnitalAlgHom.lmul from a homomorphism into linear maps to a homomorphism into continuous linear maps.

                                                    Instances For
                                                      @[simp]
                                                      theorem NonUnitalAlgHom.coe_Lmul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {𝕜' : Type u_11} [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :
                                                      ↑(NonUnitalAlgHom.Lmul 𝕜 𝕜') = ↑(ContinuousLinearMap.mul 𝕜 𝕜')
                                                      def ContinuousLinearMap.mulLeftRight (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :
                                                      𝕜' →L[𝕜] 𝕜' →L[𝕜] 𝕜' →L[𝕜] 𝕜'

                                                      Simultaneous left- and right-multiplication in a non-unital normed algebra, considered as a continuous trilinear map. This is akin to its non-continuous version LinearMap.mulLeftRight, but there is a minor difference: LinearMap.mulLeftRight is uncurried.

                                                      Instances For
                                                        @[simp]
                                                        theorem ContinuousLinearMap.mulLeftRight_apply (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] (x : 𝕜') (y : 𝕜') (z : 𝕜') :
                                                        ↑(↑(↑(ContinuousLinearMap.mulLeftRight 𝕜 𝕜') x) y) z = x * z * y
                                                        theorem ContinuousLinearMap.op_norm_mulLeftRight_apply_apply_le (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] (x : 𝕜') (y : 𝕜') :
                                                        theorem ContinuousLinearMap.op_norm_mulLeftRight_apply_le (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] (x : 𝕜') :
                                                        theorem ContinuousLinearMap.op_norm_mulLeftRight_le (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :
                                                        class RegularNormedAlgebra (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] :

                                                        This is a mixin class for non-unital normed algebras which states that the left-regular representation of the algebra on itself is isometric. Every unital normed algebra with ‖1‖ = 1 is a regular normed algebra (see NormedAlgebra.instRegularNormedAlgebra). In addition, so is every C⋆-algebra, non-unital included (see CstarRing.instRegularNormedAlgebra), but there are yet other examples. Any algebra with an approximate identity (e.g., $$L^1$$) is also regular.

                                                        This is a useful class because it gives rise to a nice norm on the unitization; in particular it is a C⋆-norm when the norm on A is a C⋆-norm.

                                                        Instances
                                                          instance NormedAlgebra.instRegularNormedAlgebra {𝕜 : Type u_12} {𝕜' : Type u_13} [NontriviallyNormedField 𝕜] [SeminormedRing 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormOneClass 𝕜'] :

                                                          Every (unital) normed algebra such that ‖1‖ = 1 is a RegularNormedAlgebra.

                                                          theorem ContinuousLinearMap.isometry_mul (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] [RegularNormedAlgebra 𝕜 𝕜'] :
                                                          @[simp]
                                                          theorem ContinuousLinearMap.op_norm_mul_apply (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] [RegularNormedAlgebra 𝕜 𝕜'] (x : 𝕜') :
                                                          @[simp]
                                                          theorem ContinuousLinearMap.op_nnnorm_mul_apply (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] [RegularNormedAlgebra 𝕜 𝕜'] (x : 𝕜') :
                                                          def ContinuousLinearMap.mulₗᵢ (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] [RegularNormedAlgebra 𝕜 𝕜'] :
                                                          𝕜' →ₗᵢ[𝕜] 𝕜' →L[𝕜] 𝕜'

                                                          Multiplication in a normed algebra as a linear isometry to the space of continuous linear maps.

                                                          Instances For
                                                            @[simp]
                                                            theorem ContinuousLinearMap.coe_mulₗᵢ (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (𝕜' : Type u_11) [NonUnitalSeminormedRing 𝕜'] [NormedSpace 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' 𝕜'] [SMulCommClass 𝕜 𝕜' 𝕜'] [RegularNormedAlgebra 𝕜 𝕜'] :
                                                            def ContinuousLinearMap.lsmul (𝕜 : Type u_1) {E : Type u_4} [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (𝕜' : Type u_11) [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] :
                                                            𝕜' →L[𝕜] E →L[𝕜] E

                                                            Scalar multiplication as a continuous bilinear map.

                                                            Instances For
                                                              @[simp]
                                                              theorem ContinuousLinearMap.lsmul_apply (𝕜 : Type u_1) {E : Type u_4} [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (𝕜' : Type u_11) [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] (c : 𝕜') (x : E) :
                                                              ↑(↑(ContinuousLinearMap.lsmul 𝕜 𝕜') c) x = c x
                                                              theorem ContinuousLinearMap.op_norm_lsmul_apply_le {𝕜 : Type u_1} {E : Type u_4} [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {𝕜' : Type u_11} [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] (x : 𝕜') :
                                                              theorem ContinuousLinearMap.op_norm_lsmul_le {𝕜 : Type u_1} {E : Type u_4} [SeminormedAddCommGroup E] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {𝕜' : Type u_11} [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] :

                                                              The norm of lsmul is at most 1 in any semi-normed group.

                                                              @[simp]
                                                              theorem ContinuousLinearMap.norm_restrictScalars {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] {𝕜' : Type u_11} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] (f : E →L[𝕜] Fₗ) :
                                                              def ContinuousLinearMap.restrictScalarsIsometry (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (𝕜' : Type u_11) [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] (𝕜'' : Type u_12) [Ring 𝕜''] [Module 𝕜'' Fₗ] [ContinuousConstSMul 𝕜'' Fₗ] [SMulCommClass 𝕜 𝕜'' Fₗ] [SMulCommClass 𝕜' 𝕜'' Fₗ] :
                                                              (E →L[𝕜] Fₗ) →ₗᵢ[𝕜''] E →L[𝕜'] Fₗ

                                                              ContinuousLinearMap.restrictScalars as a LinearIsometry.

                                                              Instances For
                                                                @[simp]
                                                                theorem ContinuousLinearMap.coe_restrictScalarsIsometry (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (𝕜' : Type u_11) [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] {𝕜'' : Type u_12} [Ring 𝕜''] [Module 𝕜'' Fₗ] [ContinuousConstSMul 𝕜'' Fₗ] [SMulCommClass 𝕜 𝕜'' Fₗ] [SMulCommClass 𝕜' 𝕜'' Fₗ] :
                                                                @[simp]
                                                                theorem ContinuousLinearMap.restrictScalarsIsometry_toLinearMap (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (𝕜' : Type u_11) [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] {𝕜'' : Type u_12} [Ring 𝕜''] [Module 𝕜'' Fₗ] [ContinuousConstSMul 𝕜'' Fₗ] [SMulCommClass 𝕜 𝕜'' Fₗ] [SMulCommClass 𝕜' 𝕜'' Fₗ] :
                                                                (ContinuousLinearMap.restrictScalarsIsometry 𝕜 E Fₗ 𝕜' 𝕜'').toLinearMap = ContinuousLinearMap.restrictScalarsₗ 𝕜 E Fₗ 𝕜' 𝕜''
                                                                def ContinuousLinearMap.restrictScalarsL (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (𝕜' : Type u_11) [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] (𝕜'' : Type u_12) [Ring 𝕜''] [Module 𝕜'' Fₗ] [ContinuousConstSMul 𝕜'' Fₗ] [SMulCommClass 𝕜 𝕜'' Fₗ] [SMulCommClass 𝕜' 𝕜'' Fₗ] :
                                                                (E →L[𝕜] Fₗ) →L[𝕜''] E →L[𝕜'] Fₗ

                                                                ContinuousLinearMap.restrictScalars as a ContinuousLinearMap.

                                                                Instances For
                                                                  @[simp]
                                                                  theorem ContinuousLinearMap.coe_restrictScalarsL {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] {𝕜' : Type u_11} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] {𝕜'' : Type u_12} [Ring 𝕜''] [Module 𝕜'' Fₗ] [ContinuousConstSMul 𝕜'' Fₗ] [SMulCommClass 𝕜 𝕜'' Fₗ] [SMulCommClass 𝕜' 𝕜'' Fₗ] :
                                                                  ↑(ContinuousLinearMap.restrictScalarsL 𝕜 E Fₗ 𝕜' 𝕜'') = ContinuousLinearMap.restrictScalarsₗ 𝕜 E Fₗ 𝕜' 𝕜''
                                                                  @[simp]
                                                                  theorem ContinuousLinearMap.coe_restrict_scalarsL' {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] {𝕜' : Type u_11} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜] [NormedSpace 𝕜' E] [IsScalarTower 𝕜' 𝕜 E] [NormedSpace 𝕜' Fₗ] [IsScalarTower 𝕜' 𝕜 Fₗ] {𝕜'' : Type u_12} [Ring 𝕜''] [Module 𝕜'' Fₗ] [ContinuousConstSMul 𝕜'' Fₗ] [SMulCommClass 𝕜 𝕜'' Fₗ] [SMulCommClass 𝕜' 𝕜'' Fₗ] :
                                                                  theorem ContinuousLinearEquiv.lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₁₂] (e : E ≃SL[σ₁₂] F) :
                                                                  theorem ContinuousLinearEquiv.isBigO_comp {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₁₂] (e : E ≃SL[σ₁₂] F) {α : Type u_11} (f : αE) (l : Filter α) :
                                                                  (fun x' => e (f x')) =O[l] f
                                                                  theorem ContinuousLinearEquiv.isBigO_sub {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₁₂] (e : E ≃SL[σ₁₂] F) (l : Filter E) (x : E) :
                                                                  (fun x' => e (x' - x)) =O[l] fun x' => x' - x
                                                                  theorem ContinuousLinearEquiv.isBigO_comp_rev {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] (e : E ≃SL[σ₁₂] F) {α : Type u_11} (f : αE) (l : Filter α) :
                                                                  f =O[l] fun x' => e (f x')
                                                                  theorem ContinuousLinearEquiv.isBigO_sub_rev {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] (e : E ≃SL[σ₁₂] F) (l : Filter E) (x : E) :
                                                                  (fun x' => x' - x) =O[l] fun x' => e (x' - x)
                                                                  def ContinuousLinearMap.bilinearComp {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} {E' : Type u_11} {F' : Type u_12} [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] {𝕜₁' : Type u_13} {𝕜₂' : Type u_14} [NontriviallyNormedField 𝕜₁'] [NontriviallyNormedField 𝕜₂'] [NormedSpace 𝕜₁' E'] [NormedSpace 𝕜₂' F'] {σ₁' : 𝕜₁' →+* 𝕜} {σ₁₃' : 𝕜₁' →+* 𝕜₃} {σ₂' : 𝕜₂' →+* 𝕜₂} {σ₂₃' : 𝕜₂' →+* 𝕜₃} [RingHomCompTriple σ₁' σ₁₃ σ₁₃'] [RingHomCompTriple σ₂' σ₂₃ σ₂₃'] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃'] [RingHomIsometric σ₂₃'] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (gE : E' →SL[σ₁'] E) (gF : F' →SL[σ₂'] F) :
                                                                  E' →SL[σ₁₃'] F' →SL[σ₂₃'] G

                                                                  Compose a bilinear map E →SL[σ₁₃] F →SL[σ₂₃] G with two linear maps E' →SL[σ₁'] E and F' →SL[σ₂'] F.

                                                                  Instances For
                                                                    @[simp]
                                                                    theorem ContinuousLinearMap.bilinearComp_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} {E' : Type u_11} {F' : Type u_12} [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] {𝕜₁' : Type u_13} {𝕜₂' : Type u_14} [NontriviallyNormedField 𝕜₁'] [NontriviallyNormedField 𝕜₂'] [NormedSpace 𝕜₁' E'] [NormedSpace 𝕜₂' F'] {σ₁' : 𝕜₁' →+* 𝕜} {σ₁₃' : 𝕜₁' →+* 𝕜₃} {σ₂' : 𝕜₂' →+* 𝕜₂} {σ₂₃' : 𝕜₂' →+* 𝕜₃} [RingHomCompTriple σ₁' σ₁₃ σ₁₃'] [RingHomCompTriple σ₂' σ₂₃ σ₂₃'] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃'] [RingHomIsometric σ₂₃'] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (gE : E' →SL[σ₁'] E) (gF : F' →SL[σ₂'] F) (x : E') (y : F') :
                                                                    ↑(↑(ContinuousLinearMap.bilinearComp f gE gF) x) y = ↑(f (gE x)) (gF y)
                                                                    def ContinuousLinearMap.deriv₂ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                                                                    E × Fₗ →L[𝕜] E × Fₗ →L[𝕜] Gₗ

                                                                    Derivative of a continuous bilinear map f : E →L[𝕜] F →L[𝕜] G interpreted as a map E × F → G at point p : E × F evaluated at q : E × F, as a continuous bilinear map.

                                                                    Instances For
                                                                      @[simp]
                                                                      theorem ContinuousLinearMap.coe_deriv₂ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (p : E × Fₗ) :
                                                                      ↑(↑(ContinuousLinearMap.deriv₂ f) p) = fun q => ↑(f p.fst) q.snd + ↑(f q.fst) p.snd
                                                                      theorem ContinuousLinearMap.map_add_add {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (x : E) (x' : E) (y : Fₗ) (y' : Fₗ) :
                                                                      ↑(f (x + x')) (y + y') = ↑(f x) y + ↑(↑(ContinuousLinearMap.deriv₂ f) (x, y)) (x', y') + ↑(f x') y'
                                                                      theorem LinearMap.bound_of_shell {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →ₛₗ[σ₁₂] F) {ε : } {C : } (ε_pos : 0 < ε) {c : 𝕜} (hc : 1 < c) (hf : ∀ (x : E), ε / c xx < εf x C * x) (x : E) :
                                                                      f x C * x
                                                                      theorem LinearMap.bound_of_ball_bound {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [NormedAddCommGroup E] [NormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] {r : } (r_pos : 0 < r) (c : ) (f : E →ₗ[𝕜] Fₗ) (h : ∀ (z : E), z Metric.ball 0 rf z c) :
                                                                      C, ∀ (z : E), f z C * z

                                                                      LinearMap.bound_of_ball_bound' is a version of this lemma over a field satisfying IsROrC that produces a concrete bound.

                                                                      theorem LinearMap.antilipschitz_of_comap_nhds_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [h : RingHomIsometric σ₁₂] (f : E →ₛₗ[σ₁₂] F) (hf : Filter.comap (f) (nhds 0) nhds 0) :
                                                                      K, AntilipschitzWith K f
                                                                      theorem ContinuousLinearMap.op_norm_zero_iff {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) [RingHomIsometric σ₁₂] :
                                                                      f = 0 f = 0

                                                                      An operator is zero iff its norm vanishes.

                                                                      @[simp]

                                                                      If a normed space is non-trivial, then the norm of the identity equals 1.

                                                                      instance ContinuousLinearMap.toNormedAddCommGroup {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] :

                                                                      Continuous linear maps themselves form a normed space with respect to the operator norm.

                                                                      Continuous linear maps form a normed ring with respect to the operator norm.

                                                                      theorem ContinuousLinearMap.homothety_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] [Nontrivial E] (f : E →SL[σ₁₂] F) {a : } (hf : ∀ (x : E), f x = a * x) :
                                                                      theorem ContinuousLinearMap.antilipschitz_of_embedding {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [NormedAddCommGroup E] [NormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (f : E →L[𝕜] Fₗ) (hf : Embedding f) :
                                                                      K, AntilipschitzWith K f

                                                                      If a continuous linear map is a topology embedding, then it is expands the distances by a positive factor.

                                                                      @[simp]
                                                                      theorem ContinuousLinearMap.ofMemClosureImageCoeBounded_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {F : Type u_6} [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {E' : Type u_11} [SeminormedAddCommGroup E'] [NormedSpace 𝕜 E'] [RingHomIsometric σ₁₂] (f : E'F) {s : Set (E' →SL[σ₁₂] F)} (hs : Bornology.IsBounded s) (hf : f closure (FunLike.coe '' s)) :
                                                                      def ContinuousLinearMap.ofMemClosureImageCoeBounded {𝕜 : Type u_1} {𝕜₂ : Type u_2} {F : Type u_6} [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {E' : Type u_11} [SeminormedAddCommGroup E'] [NormedSpace 𝕜 E'] [RingHomIsometric σ₁₂] (f : E'F) {s : Set (E' →SL[σ₁₂] F)} (hs : Bornology.IsBounded s) (hf : f closure (FunLike.coe '' s)) :
                                                                      E' →SL[σ₁₂] F

                                                                      Construct a bundled continuous (semi)linear map from a map f : E → F and a proof of the fact that it belongs to the closure of the image of a bounded set s : Set (E →SL[σ₁₂] F) under coercion to function. Coercion to function of the result is definitionally equal to f.

                                                                      Instances For
                                                                        @[simp]
                                                                        theorem ContinuousLinearMap.ofTendstoOfBoundedRange_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {F : Type u_6} [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {E' : Type u_11} [SeminormedAddCommGroup E'] [NormedSpace 𝕜 E'] [RingHomIsometric σ₁₂] {α : Type u_12} {l : Filter α} [Filter.NeBot l] (f : E'F) (g : αE' →SL[σ₁₂] F) (hf : Filter.Tendsto (fun a x => ↑(g a) x) l (nhds f)) (hg : Bornology.IsBounded (Set.range g)) :
                                                                        def ContinuousLinearMap.ofTendstoOfBoundedRange {𝕜 : Type u_1} {𝕜₂ : Type u_2} {F : Type u_6}