Gaussian integral #
We prove various versions of the formula for the Gaussian integral:
integral_gaussian
: for realb
we have∫ x:ℝ, exp (-b * x^2) = sqrt (π / b)
.integral_gaussian_complex
: for complexb
with0 < re b
we have∫ x:ℝ, exp (-b * x^2) = (π / b) ^ (1 / 2)
.integral_gaussian_Ioi
andintegral_gaussian_complex_Ioi
: variants for integrals overIoi 0
.Complex.Gamma_one_half_eq
: the formulaΓ (1 / 2) = √π
.
We also prove, more generally, that the Fourier transform of the Gaussian is another Gaussian:
integral_cexp_neg_mul_sq_add_const
: for all complexb
andc
with0 < re b
we have∫ (x : ℝ), exp (-b * (x + c) ^ 2) = (π / b) ^ (1 / 2)
.fourier_transform_gaussian
: for all complexb
andt
with0 < re b
, we have∫ x:ℝ, exp (I * t * x) * exp (-b * x^2) = (π / b) ^ (1 / 2) * exp (-t ^ 2 / (4 * b))
.fourier_transform_gaussian_pi
: a variant withb
andt
scaled to give a more symmetric statement, and formulated in terms of the Fourier transform operator𝓕
.
As an application, in Real.tsum_exp_neg_mul_int_sq
and cCmplex.tsum_exp_neg_mul_int_sq
, we use
Poisson summation to prove the identity
∑' (n : ℤ), exp (-π * a * n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), exp (-π / a * n ^ 2)
for positive real a
, or complex a
with positive real part. (See also
NumberTheory.ModularForms.JacobiTheta
.)
theorem
integrable_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b)
:
MeasureTheory.Integrable fun x => Real.exp (-b * x ^ 2)
theorem
integrable_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable fun x => Complex.exp (-b * ↑x ^ 2)
theorem
integrable_mul_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable fun x => ↑x * Complex.exp (-b * ↑x ^ 2)
theorem
continuousAt_gaussian_integral
(b : ℂ)
(hb : 0 < b.re)
:
ContinuousAt (fun c => ∫ (x : ℝ), Complex.exp (-c * ↑x ^ 2)) b
The special-value formula Γ(1/2) = √π
, which is equivalent to the Gaussian integral.
The special-value formula Γ(1/2) = √π
, which is equivalent to the Gaussian integral.
Fourier transform of the Gaussian integral #
theorem
GaussianFourier.tendsto_verticalIntegral
{b : ℂ}
(hb : 0 < b.re)
(c : ℝ)
:
Filter.Tendsto (GaussianFourier.verticalIntegral b c) Filter.atTop (nhds 0)
theorem
GaussianFourier.integrable_cexp_neg_mul_sq_add_real_mul_I
{b : ℂ}
(hb : 0 < b.re)
(c : ℝ)
:
MeasureTheory.Integrable fun x => Complex.exp (-b * (↑x + ↑c * Complex.I) ^ 2)
Poisson summation applied to the Gaussian #
theorem
tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact
{a : ℝ}
(ha : 0 < a)
(s : ℝ)
:
Filter.Tendsto (fun x => |x| ^ s * Real.exp (-a * x ^ 2)) (Filter.cocompact ℝ) (nhds 0)
theorem
isLittleO_exp_neg_mul_sq_cocompact
{a : ℂ}
(ha : 0 < a.re)
(s : ℝ)
:
(fun x => Complex.exp (-a * ↑x ^ 2)) =o[Filter.cocompact ℝ] fun x => |x| ^ s