Documentation

Mathlib.CategoryTheory.ChosenFiniteProducts.Cat

Chosen finite products in Cat #

This file proves that the cartesian product of a pair of categories agrees with the product in Cat, and provides the associated ChosenFiniteProducts instance.

The chosen terminal object in Cat is terminal.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The chosen product of categories C × D yields a product cone in Cat.

    Equations
    Instances For

      The product cone in Cat is indeed a product.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        theorem CategoryTheory.Monoidal.associator_hom (X Y Z : CategoryTheory.Cat) :
        (CategoryTheory.MonoidalCategory.associator X Y Z).hom = ((CategoryTheory.Prod.fst (X × Y) Z).comp (CategoryTheory.Prod.fst X Y)).prod' (((CategoryTheory.Prod.fst (X × Y) Z).comp (CategoryTheory.Prod.snd X Y)).prod' (CategoryTheory.Prod.snd (X × Y) Z))
        theorem CategoryTheory.Monoidal.associator_inv (X Y Z : CategoryTheory.Cat) :
        (CategoryTheory.MonoidalCategory.associator X Y Z).inv = ((CategoryTheory.Prod.fst (↑X) (Y × Z)).prod' ((CategoryTheory.Prod.snd (↑X) (Y × Z)).comp (CategoryTheory.Prod.fst Y Z))).prod' ((CategoryTheory.Prod.snd (↑X) (Y × Z)).comp (CategoryTheory.Prod.snd Y Z))