Category instances for structures that use unbundled homs #
This file provides basic infrastructure to define concrete
categories using unbundled homs (see class UnbundledHom
), and
define forgetful functors between them (see
UnbundledHom.mkHasForget₂
).
class
CategoryTheory.UnbundledHom
{c : Type u → Type u}
(hom : ⦃α β : Type u⦄ → c α → c β → (α → β) → Prop)
:
A class for unbundled homs used to define a category. hom
must
take two types α
, β
and instances of the corresponding structures,
and return a predicate on α → β
.
- hom_id : ∀ {α : Type u} (ia : c α), hom ia ia id
Instances
instance
CategoryTheory.UnbundledHom.bundledHom
(c : Type u → Type u)
(hom : ⦃α β : Type u⦄ → c α → c β → (α → β) → Prop)
[𝒞 : CategoryTheory.UnbundledHom hom]
:
CategoryTheory.BundledHom fun (α β : Type u) (Iα : c α) (Iβ : c β) => Subtype (hom Iα Iβ)
Equations
- One or more equations did not get rendered due to their size.
def
CategoryTheory.UnbundledHom.mkHasForget₂
{c : Type u → Type u}
{hom : ⦃α β : Type u⦄ → c α → c β → (α → β) → Prop}
[𝒞 : CategoryTheory.UnbundledHom hom]
{c' : Type u → Type u}
{hom' : ⦃α β : Type u⦄ → c' α → c' β → (α → β) → Prop}
[𝒞' : CategoryTheory.UnbundledHom hom']
(obj : ⦃α : Type u⦄ → c α → c' α)
(map : ∀ ⦃α β : Type u⦄ ⦃Iα : c α⦄ ⦃Iβ : c β⦄ ⦃f : α → β⦄, hom Iα Iβ f → hom' (obj Iα) (obj Iβ) f)
:
A custom constructor for forgetful functor
between concrete categories defined using UnbundledHom
.
Equations
- CategoryTheory.UnbundledHom.mkHasForget₂ obj map = CategoryTheory.BundledHom.mkHasForget₂ obj (fun {X Y : CategoryTheory.Bundled c} (f : X ⟶ Y) => ⟨↑f, ⋯⟩) ⋯