Use the elementwise
attribute to create applied versions of lemmas. #
Usually we would use @[elementwise]
at the point of definition,
however some early parts of the category theory library are imported by Tactic.Elementwise
,
so we need to add the attribute after the fact.
We now add some elementwise
attributes to lemmas that were proved earlier.
@[simp]
theorem
CategoryTheory.Iso.hom_inv_id_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(self : X ≅ Y)
{F : C → C → Type uF}
{carrier : C → Type w}
{instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)}
[inst : ConcreteCategory C F]
(x : ToType X)
:
@[simp]
theorem
CategoryTheory.Iso.inv_hom_id_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(self : X ≅ Y)
{F : C → C → Type uF}
{carrier : C → Type w}
{instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)}
[inst : ConcreteCategory C F]
(x : ToType Y)
:
@[simp]
theorem
CategoryTheory.IsIso.inv_hom_id_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
[I : IsIso f]
{F : C → C → Type uF}
{carrier : C → Type w}
{instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)}
[inst : ConcreteCategory C F]
(x : ToType Y)
:
@[simp]
theorem
CategoryTheory.IsIso.hom_inv_id_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
[I : IsIso f]
{F : C → C → Type uF}
{carrier : C → Type w}
{instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)}
[inst : ConcreteCategory C F]
(x : ToType X)
: