Documentation

Mathlib.CategoryTheory.Groupoid

Groupoids #

We define Groupoid as a typeclass extending Category, asserting that all morphisms have inverses.

The instance IsIso.ofGroupoid (f : X ⟶ Y) : IsIso f means that you can then write inv f to access the inverse of any morphism f.

Groupoid.isoEquivHom : (X ≅ Y) ≃ (X ⟶ Y) provides the equivalence between isomorphisms and morphisms in a groupoid.

We provide a (non-instance) constructor Groupoid.ofIsIso from an existing category with IsIso f for every f.

See also #

See also CategoryTheory.Core for the groupoid of isomorphisms in a category.

class CategoryTheory.Groupoid (obj : Type u) extends CategoryTheory.Category.{v, u} obj :
Type (max u (v + 1))

A Groupoid is a category such that all morphisms are isomorphisms.

Instances
    @[reducible, inline]
    abbrev CategoryTheory.LargeGroupoid (C : Type (u + 1)) :
    Type (u + 1)

    A LargeGroupoid is a groupoid where the objects live in Type (u+1) while the morphisms live in Type u.

    Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.SmallGroupoid (C : Type u) :
      Type (u + 1)

      A SmallGroupoid is a groupoid where the objects and morphisms live in the same universe.

      Equations
      Instances For
        @[instance 100]
        instance CategoryTheory.IsIso.of_groupoid {C : Type u} [Groupoid C] {X Y : C} (f : X Y) :
        @[simp]
        theorem CategoryTheory.Groupoid.inv_eq_inv {C : Type u} [Groupoid C] {X Y : C} (f : X Y) :
        def CategoryTheory.Groupoid.invEquiv {C : Type u} [Groupoid C] {X Y : C} :
        (X Y) (Y X)

        Groupoid.inv is involutive.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Groupoid.invEquiv_apply {C : Type u} [Groupoid C] {X Y : C} (a✝ : X Y) :
          invEquiv a✝ = inv a✝
          @[simp]
          theorem CategoryTheory.Groupoid.invEquiv_symm_apply {C : Type u} [Groupoid C] {X Y : C} (a✝ : Y X) :
          invEquiv.symm a✝ = inv a✝
          @[simp]
          theorem CategoryTheory.Groupoid.reverse_eq_inv {C : Type u} [Groupoid C] {X Y : C} (f : X Y) :
          instance CategoryTheory.functorMapReverse {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (F : Functor C D) :
          F.MapReverse
          def CategoryTheory.Groupoid.isoEquivHom {C : Type u} [Groupoid C] (X Y : C) :
          (X Y) (X Y)

          In a groupoid, isomorphisms are equivalent to morphisms.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The functor from a groupoid C to its opposite sending every morphism to its inverse.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Groupoid.invFunctor_obj (C : Type u) [Groupoid C] (unop : C) :
              (invFunctor C).obj unop = Opposite.op unop
              @[simp]
              theorem CategoryTheory.Groupoid.invFunctor_map (C : Type u) [Groupoid C] {x✝ x✝¹ : C} (f : x✝ x✝¹) :
              (invFunctor C).map f = (inv f).op
              noncomputable def CategoryTheory.Groupoid.ofIsIso {C : Type u} [Category.{v, u} C] (all_is_iso : ∀ {X Y : C} (f : X Y), IsIso f) :

              A category where every morphism IsIso is a groupoid.

              Equations
              Instances For
                def CategoryTheory.Groupoid.ofHomUnique {C : Type u} [Category.{v, u} C] (all_unique : {X Y : C} → Unique (X Y)) :

                A category with a unique morphism between any two objects is a groupoid

                Equations
                Instances For
                  instance CategoryTheory.groupoidPi {I : Type u} {J : IType u₂} [(i : I) → Groupoid (J i)] :
                  Groupoid ((i : I) → J i)
                  Equations