Documentation

Mathlib.CategoryTheory.Monoidal.Category

Monoidal categories #

A monoidal category is a category equipped with a tensor product, unitors, and an associator. In the definition, we provide the tensor product as a pair of functions

The tensor product can be expressed as a functor via tensor : C × C ⥤ C. The unitors and associator are gathered together as natural isomorphisms in leftUnitor_nat_iso, rightUnitor_nat_iso and associator_nat_iso.

Some consequences of the definition are proved in other files after proving the coherence theorem, e.g. (λ_ (𝟙_ C)).hom = (ρ_ (𝟙_ C)).hom in CategoryTheory.Monoidal.CoherenceLemmas.

Implementation notes #

In the definition of monoidal categories, we also provide the whiskering operators:

If you want to provide tensorHom and define whiskerLeft and whiskerRight in terms of it, you can use the alternative constructor CategoryTheory.MonoidalCategory.ofTensorHom.

The whiskerings are useful when considering simp-normal forms of morphisms in monoidal categories.

Simp-normal form for morphisms #

Rewriting involving associators and unitors could be very complicated. We try to ease this complexity by putting carefully chosen simp lemmas that rewrite any morphisms into the simp-normal form defined below. Rewriting into simp-normal form is especially useful in preprocessing performed by the coherence tactic.

The simp-normal form of morphisms is defined to be an expression that has the minimal number of parentheses. More precisely,

  1. it is a composition of morphisms like f₁ ≫ f₂ ≫ f₃ ≫ f₄ ≫ f₅ such that each fᵢ is either a structural morphisms (morphisms made up only of identities, associators, unitors) or non-structural morphisms, and
  2. each non-structural morphism in the composition is of the form X₁ ◁ X₂ ◁ X₃ ◁ f ▷ X₄ ▷ X₅, where each Xᵢ is a object that is not the identity or a tensor and f is a non-structural morphisms that is not the identity or a composite.

Note that X₁ ◁ X₂ ◁ X₃ ◁ f ▷ X₄ ▷ X₅ is actually X₁ ◁ (X₂ ◁ (X₃ ◁ ((f ▷ X₄) ▷ X₅))).

Currently, the simp lemmas don't rewrite 𝟙 X ⊗ f and f ⊗ 𝟙 Y into X ◁ f and f ▷ Y, respectively, since it requires a huge refactoring. We hope to add these simp lemmas soon.

References #

structure CategoryTheory.MonoidalCategoryStruct (C : Type u) [𝒞 : Category C] :
Type (max u v)

Auxiliary structure to carry only the data fields of (and provide notation for) MonoidalCategory.

Instances For

    Notation for tensorObj, the tensor product of objects in a monoidal category

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Notation for the whiskerLeft operator of monoidal categories

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Notation for the whiskerRight operator of monoidal categories

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Notation for tensorHom, the tensor product of morphisms in a monoidal category

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Notation for tensorUnit, the two-sided identity of

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Used to ensure that 𝟙_ notation is used, as the ascription makes this not automatic.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Notation for the monoidal associator: (X ⊗ Y) ⊗ Z ≃ X ⊗ (Y ⊗ Z)

                Equations
                Instances For

                  Notation for the leftUnitor: 𝟙_C ⊗ X ≃ X

                  Equations
                  Instances For

                    Notation for the rightUnitor: X ⊗ 𝟙_C ≃ X

                    Equations
                    Instances For

                      The property that the pentagon relation is satisfied by four objects in a category equipped with a MonoidalCategoryStruct.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        In a monoidal category, we can take the tensor product of objects, X ⊗ Y and of morphisms f ⊗ g. Tensor product does not need to be strictly associative on objects, but there is a specified associator, α_ X Y Z : (X ⊗ Y) ⊗ Z ≅ X ⊗ (Y ⊗ Z). There is a tensor unit 𝟙_ C, with specified left and right unitor isomorphisms λ_ X : 𝟙_ C ⊗ X ≅ X and ρ_ X : X ⊗ 𝟙_ C ≅ X. These associators and unitors satisfy the pentagon and triangle equations.

                        Instances For
                          theorem CategoryTheory.MonoidalCategory.tensor_comp_assoc {C : Type u} {𝒞 : Category C} [self : MonoidalCategory C] {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : C} (f₁ : Quiver.Hom X₁ Y₁) (f₂ : Quiver.Hom X₂ Y₂) (g₁ : Quiver.Hom Y₁ Z₁) (g₂ : Quiver.Hom Y₂ Z₂) {Z : C} (h : Quiver.Hom (MonoidalCategoryStruct.tensorObj Z₁ Z₂) Z) :

                          The left whiskering of an isomorphism is an isomorphism.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem CategoryTheory.MonoidalCategory.whiskerLeftIso_trans {C : Type u} [𝒞 : Category C] [MonoidalCategory C] (W : C) {X Y Z : C} (f : Iso X Y) (g : Iso Y Z) :

                            The right whiskering of an isomorphism is an isomorphism.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem CategoryTheory.MonoidalCategory.whiskerRightIso_trans {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {X Y Z : C} (f : Iso X Y) (g : Iso Y Z) (W : C) :

                              The tensor product of two isomorphisms is an isomorphism.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                theorem CategoryTheory.MonoidalCategory.tensorIso_hom {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {X Y X' Y' : C} (f : Iso X Y) (g : Iso X' Y') :
                                theorem CategoryTheory.MonoidalCategory.tensorIso_inv {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {X Y X' Y' : C} (f : Iso X Y) (g : Iso X' Y') :

                                Notation for tensorIso, the tensor product of isomorphisms

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  theorem CategoryTheory.MonoidalCategory.tensorIso_def {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {X Y X' Y' : C} (f : Iso X Y) (g : Iso X' Y') :
                                  theorem CategoryTheory.MonoidalCategory.tensorIso_def' {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {X Y X' Y' : C} (f : Iso X Y) (g : Iso X' Y') :
                                  theorem CategoryTheory.MonoidalCategory.whiskerLeft_dite {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {P : Prop} [Decidable P] (X : C) {Y Z : C} (f : PQuiver.Hom Y Z) (f' : Not PQuiver.Hom Y Z) :
                                  Eq (MonoidalCategoryStruct.whiskerLeft X (if h : P then f h else f' h)) (if h : P then MonoidalCategoryStruct.whiskerLeft X (f h) else MonoidalCategoryStruct.whiskerLeft X (f' h))
                                  theorem CategoryTheory.MonoidalCategory.dite_whiskerRight {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {P : Prop} [Decidable P] {X Y : C} (f : PQuiver.Hom X Y) (f' : Not PQuiver.Hom X Y) (Z : C) :
                                  Eq (MonoidalCategoryStruct.whiskerRight (if h : P then f h else f' h) Z) (if h : P then MonoidalCategoryStruct.whiskerRight (f h) Z else MonoidalCategoryStruct.whiskerRight (f' h) Z)
                                  theorem CategoryTheory.MonoidalCategory.tensor_dite {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {P : Prop} [Decidable P] {W X Y Z : C} (f : Quiver.Hom W X) (g : PQuiver.Hom Y Z) (g' : Not PQuiver.Hom Y Z) :
                                  Eq (MonoidalCategoryStruct.tensorHom f (if h : P then g h else g' h)) (if h : P then MonoidalCategoryStruct.tensorHom f (g h) else MonoidalCategoryStruct.tensorHom f (g' h))
                                  theorem CategoryTheory.MonoidalCategory.dite_tensor {C : Type u} [𝒞 : Category C] [MonoidalCategory C] {P : Prop} [Decidable P] {W X Y Z : C} (f : Quiver.Hom W X) (g : PQuiver.Hom Y Z) (g' : Not PQuiver.Hom Y Z) :
                                  Eq (MonoidalCategoryStruct.tensorHom (if h : P then g h else g' h) f) (if h : P then MonoidalCategoryStruct.tensorHom (g h) f else MonoidalCategoryStruct.tensorHom (g' h) f)

                                  The lemmas in the next section are true by coherence, but we prove them directly as they are used in proving the coherence theorem.

                                  @[reducible, inline]
                                  abbrev CategoryTheory.MonoidalCategory.ofTensorHom {C : Type u} [𝒞 : Category C] [MonoidalCategoryStruct C] (tensor_id : ∀ (X₁ X₂ : C), Eq (MonoidalCategoryStruct.tensorHom (CategoryStruct.id X₁) (CategoryStruct.id X₂)) (CategoryStruct.id (MonoidalCategoryStruct.tensorObj X₁ X₂)) := by aesop_cat) (id_tensorHom : ∀ (X : C) {Y₁ Y₂ : C} (f : Quiver.Hom Y₁ Y₂), Eq (MonoidalCategoryStruct.tensorHom (CategoryStruct.id X) f) (MonoidalCategoryStruct.whiskerLeft X f) := by aesop_cat) (tensorHom_id : ∀ {X₁ X₂ : C} (f : Quiver.Hom X₁ X₂) (Y : C), Eq (MonoidalCategoryStruct.tensorHom f (CategoryStruct.id Y)) (MonoidalCategoryStruct.whiskerRight f Y) := by aesop_cat) (tensor_comp : ∀ {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : C} (f₁ : Quiver.Hom X₁ Y₁) (f₂ : Quiver.Hom X₂ Y₂) (g₁ : Quiver.Hom Y₁ Z₁) (g₂ : Quiver.Hom Y₂ Z₂), Eq (MonoidalCategoryStruct.tensorHom (CategoryStruct.comp f₁ g₁) (CategoryStruct.comp f₂ g₂)) (CategoryStruct.comp (MonoidalCategoryStruct.tensorHom f₁ f₂) (MonoidalCategoryStruct.tensorHom g₁ g₂)) := by aesop_cat) (associator_naturality : ∀ {X₁ X₂ X₃ Y₁ Y₂ Y₃ : C} (f₁ : Quiver.Hom X₁ Y₁) (f₂ : Quiver.Hom X₂ Y₂) (f₃ : Quiver.Hom X₃ Y₃), Eq (CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (MonoidalCategoryStruct.tensorHom f₁ f₂) f₃) (MonoidalCategoryStruct.associator Y₁ Y₂ Y₃).hom) (CategoryStruct.comp (MonoidalCategoryStruct.associator X₁ X₂ X₃).hom (MonoidalCategoryStruct.tensorHom f₁ (MonoidalCategoryStruct.tensorHom f₂ f₃))) := by aesop_cat) (leftUnitor_naturality : ∀ {X Y : C} (f : Quiver.Hom X Y), Eq (CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (CategoryStruct.id MonoidalCategoryStruct.tensorUnit) f) (MonoidalCategoryStruct.leftUnitor Y).hom) (CategoryStruct.comp (MonoidalCategoryStruct.leftUnitor X).hom f) := by aesop_cat) (rightUnitor_naturality : ∀ {X Y : C} (f : Quiver.Hom X Y), Eq (CategoryStruct.comp (MonoidalCategoryStruct.tensorHom f (CategoryStruct.id MonoidalCategoryStruct.tensorUnit)) (MonoidalCategoryStruct.rightUnitor Y).hom) (CategoryStruct.comp (MonoidalCategoryStruct.rightUnitor X).hom f) := by aesop_cat) (pentagon : ∀ (W X Y Z : C), Eq (CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (MonoidalCategoryStruct.associator W X Y).hom (CategoryStruct.id Z)) (CategoryStruct.comp (MonoidalCategoryStruct.associator W (MonoidalCategoryStruct.tensorObj X Y) Z).hom (MonoidalCategoryStruct.tensorHom (CategoryStruct.id W) (MonoidalCategoryStruct.associator X Y Z).hom))) (CategoryStruct.comp (MonoidalCategoryStruct.associator (MonoidalCategoryStruct.tensorObj W X) Y Z).hom (MonoidalCategoryStruct.associator W X (MonoidalCategoryStruct.tensorObj Y Z)).hom) := by aesop_cat) (triangle : ∀ (X Y : C), Eq (CategoryStruct.comp (MonoidalCategoryStruct.associator X MonoidalCategoryStruct.tensorUnit Y).hom (MonoidalCategoryStruct.tensorHom (CategoryStruct.id X) (MonoidalCategoryStruct.leftUnitor Y).hom)) (MonoidalCategoryStruct.tensorHom (MonoidalCategoryStruct.rightUnitor X).hom (CategoryStruct.id Y)) := by aesop_cat) :

                                  A constructor for monoidal categories that requires tensorHom instead of whiskerLeft and whiskerRight.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    The tensor product expressed as a functor.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      The left-associated triple tensor product as a functor.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        The right-associated triple tensor product as a functor.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          The tensor product bifunctor C ⥤ C ⥤ C of a monoidal category.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            Tensoring on the left with a fixed object, as a functor.

                                            Equations
                                            Instances For
                                              theorem CategoryTheory.MonoidalCategory.tensorLeft_map {C : Type u} [𝒞 : Category C] [MonoidalCategory C] (X : C) {X✝ Y✝ : C} (g : Quiver.Hom X✝ Y✝) :

                                              Tensoring on the right with a fixed object, as a functor.

                                              Equations
                                              Instances For

                                                The associator as a natural isomorphism.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For

                                                  The associator as a natural isomorphism between trifunctors C ⥤ C ⥤ C ⥤ C.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Tensoring on the left with X ⊗ Y is naturally isomorphic to tensoring on the left with Y, and then again with X.

                                                    Equations
                                                    Instances For
                                                      @[reducible, inline]

                                                      Tensoring on the left, as a functor from C into endofunctors of C.

                                                      TODO: show this is an op-monoidal functor.

                                                      Equations
                                                      Instances For
                                                        @[reducible, inline]

                                                        Tensoring on the right, as a functor from C into endofunctors of C.

                                                        We later show this is a monoidal functor.

                                                        Equations
                                                        Instances For

                                                          Tensoring on the right with X ⊗ Y is naturally isomorphic to tensoring on the right with X, and then again with Y.

                                                          Equations
                                                          Instances For
                                                            def CategoryTheory.MonoidalCategory.prodMonoidal (C₁ : Type u₁) [Category C₁] [MonoidalCategory C₁] (C₂ : Type u₂) [Category C₂] [MonoidalCategory C₂] :
                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              theorem CategoryTheory.MonoidalCategory.prodMonoidal_tensorHom (C₁ : Type u₁) [Category C₁] [MonoidalCategory C₁] (C₂ : Type u₂) [Category C₂] [MonoidalCategory C₂] {X₁✝ Y₁✝ X₂✝ Y₂✝ : Prod C₁ C₂} (f : Quiver.Hom X₁✝ Y₁✝) (g : Quiver.Hom X₂✝ Y₂✝) :
                                                              theorem CategoryTheory.MonoidalCategory.prodMonoidal_whiskerRight (C₁ : Type u₁) [Category C₁] [MonoidalCategory C₁] (C₂ : Type u₂) [Category C₂] [MonoidalCategory C₂] {X₁✝ X₂✝ : Prod C₁ C₂} (f : Quiver.Hom X₁✝ X₂✝) (X : Prod C₁ C₂) :