Documentation

Mathlib.CategoryTheory.Monoidal.Mod_

The category of module objects over a monoid object. #

A morphism of module objects.

Instances For
    theorem Mod_.Hom.ext {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {A : Mon_ C} {M N : Mod_ A} {x y : M.Hom N} (hom : x.hom = y.hom) :
    x = y
    theorem Mod_.Hom.ext_iff {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {A : Mon_ C} {M N : Mod_ A} {x y : M.Hom N} :
    x = y x.hom = y.hom

    The identity morphism on a module object.

    Equations
    Instances For
      def Mod_.comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {M N O : Mod_ A} (f : M.Hom N) (g : N.Hom O) :
      M.Hom O

      Composition of module object morphisms.

      Equations
      Instances For
        Equations
        theorem Mod_.hom_ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {M N : Mod_ A} (f₁ f₂ : M N) (h : f₁.hom = f₂.hom) :
        f₁ = f₂
        theorem Mod_.hom_ext_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {M N : Mod_ A} {f₁ f₂ : M N} :
        f₁ = f₂ f₁.hom = f₂.hom

        A monoid object as a module over itself.

        Equations
        Instances For

          The forgetful functor from module objects to the ambient category.

          Equations
          Instances For

            A morphism of monoid objects induces a "restriction" or "comap" functor between the categories of module objects.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem Mod_.comap_map_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} (f : A B) {X✝ Y✝ : Mod_ B} (g : X✝ Y✝) :
              ((comap f).map g).hom = g.hom
              @[simp]
              theorem Mod_.comap_obj_X {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} (f : A B) (M : Mod_ B) :
              ((comap f).obj M).X = M.X

              An action of a monoid object M on an object X is the data of a map smul : M ⊗ XX that satisfies unitality and associativity with multiplication.

              See MulAction for the non-categorical version.

              Instances

                The action map

                Equations
                Instances For

                  The action map

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[reducible, inline]

                    The action of a monoid object on itself.

                    Equations
                    Instances For
                      Equations
                      def Mod_.mk' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] (M : C) [Mon_Class M] (X : C) [Mod_Class M X] :
                      Mod_ { X := M, mon := inst✝ }

                      Construct an object of Mod_ (Mon_.mk' M) from an object X : C and a Mod_Class M X instance.

                      Equations
                      Instances For
                        @[simp]
                        theorem Mod_.mk'_X {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] (M : C) [Mon_Class M] (X : C) [Mod_Class M X] :
                        (mk' M X).X = X