Documentation

Mathlib.Computability.DFA

Deterministic Finite Automata #

This file contains the definition of a Deterministic Finite Automaton (DFA), a state machine which determines whether a string (implemented as a list over an arbitrary alphabet) is in a regular set in linear time. Note that this definition allows for Automaton with infinite states, a Fintype instance must be supplied for true DFA's.

structure DFA (α : Type u) (σ : Type v) :
Type (max u v)

A DFA is a set of states (σ), a transition function from state to state labelled by the alphabet (step), a starting state (start) and a set of acceptance states (accept).

  • step : σασ

    A transition function from state to state labelled by the alphabet.

  • start : σ

    Starting state.

  • accept : Set σ

    Set of acceptance states.

Instances For
    instance DFA.instInhabited {α : Type u} {σ : Type v} [Inhabited σ] :
    Inhabited (DFA α σ)
    Equations
    • DFA.instInhabited = { default := { step := fun (x : σ) (x : α) => default, start := default, accept := } }
    def DFA.evalFrom {α : Type u} {σ : Type v} (M : DFA α σ) (start : σ) :
    List ασ

    M.evalFrom s x evaluates M with input x starting from the state s.

    Equations
    Instances For
      @[simp]
      theorem DFA.evalFrom_nil {α : Type u} {σ : Type v} (M : DFA α σ) (s : σ) :
      M.evalFrom s [] = s
      @[simp]
      theorem DFA.evalFrom_singleton {α : Type u} {σ : Type v} (M : DFA α σ) (s : σ) (a : α) :
      M.evalFrom s [a] = M.step s a
      @[simp]
      theorem DFA.evalFrom_append_singleton {α : Type u} {σ : Type v} (M : DFA α σ) (s : σ) (x : List α) (a : α) :
      M.evalFrom s (x ++ [a]) = M.step (M.evalFrom s x) a
      def DFA.eval {α : Type u} {σ : Type v} (M : DFA α σ) :
      List ασ

      M.eval x evaluates M with input x starting from the state M.start.

      Equations
      • M.eval = M.evalFrom M.start
      Instances For
        @[simp]
        theorem DFA.eval_nil {α : Type u} {σ : Type v} (M : DFA α σ) :
        M.eval [] = M.start
        @[simp]
        theorem DFA.eval_singleton {α : Type u} {σ : Type v} (M : DFA α σ) (a : α) :
        M.eval [a] = M.step M.start a
        @[simp]
        theorem DFA.eval_append_singleton {α : Type u} {σ : Type v} (M : DFA α σ) (x : List α) (a : α) :
        M.eval (x ++ [a]) = M.step (M.eval x) a
        theorem DFA.evalFrom_of_append {α : Type u} {σ : Type v} (M : DFA α σ) (start : σ) (x : List α) (y : List α) :
        M.evalFrom start (x ++ y) = M.evalFrom (M.evalFrom start x) y
        def DFA.accepts {α : Type u} {σ : Type v} (M : DFA α σ) :

        M.accepts is the language of x such that M.eval x is an accept state.

        Equations
        • M.accepts = {x : List α | M.eval x M.accept}
        Instances For
          theorem DFA.mem_accepts {α : Type u} {σ : Type v} (M : DFA α σ) (x : List α) :
          x M.accepts M.evalFrom M.start x M.accept
          theorem DFA.evalFrom_split {α : Type u} {σ : Type v} (M : DFA α σ) [Fintype σ] {x : List α} {s : σ} {t : σ} (hlen : Fintype.card σ x.length) (hx : M.evalFrom s x = t) :
          ∃ (q : σ) (a : List α) (b : List α) (c : List α), x = a ++ b ++ c a.length + b.length Fintype.card σ b [] M.evalFrom s a = q M.evalFrom q b = q M.evalFrom q c = t
          theorem DFA.evalFrom_of_pow {α : Type u} {σ : Type v} (M : DFA α σ) {x : List α} {y : List α} {s : σ} (hx : M.evalFrom s x = s) (hy : y KStar.kstar {x}) :
          M.evalFrom s y = s
          theorem DFA.pumping_lemma {α : Type u} {σ : Type v} (M : DFA α σ) [Fintype σ] {x : List α} (hx : x M.accepts) (hlen : Fintype.card σ x.length) :
          ∃ (a : List α) (b : List α) (c : List α), x = a ++ b ++ c a.length + b.length Fintype.card σ b [] {a} * KStar.kstar {b} * {c} M.accepts