Documentation

Mathlib.Computability.TMComputable

Computable functions #

This file contains the definition of a Turing machine with some finiteness conditions (bundling the definition of TM2 in TuringMachine.lean), a definition of when a TM gives a certain output (in a certain time), and the definition of computability (in polynomial time or any time function) of a function between two types that have an encoding (as in Encoding.lean).

Main theorems #

Implementation notes #

To count the execution time of a Turing machine, we have decided to count the number of times the step function is used. Each step executes a statement (of type Stmt); this is a function, and generally contains multiple "fundamental" steps (pushing, popping, and so on). However, as functions only contain a finite number of executions and each one is executed at most once, this execution time is up to multiplication by a constant the amount of fundamental steps.

structure Turing.FinTM2 :

A bundled TM2 (an equivalent of the classical Turing machine, defined starting from the namespace Turing.TM2 in TuringMachine.lean), with an input and output stack, a main function, an initial state and some finiteness guarantees.

  • K : Type

    index type of stacks

  • kDecidableEq : DecidableEq self.K
  • kFin : Fintype self.K

    A TM2 machine has finitely many stacks.

  • k₀ : self.K

    input resp. output stack

  • k₁ : self.K

    input resp. output stack

  • Γ : self.KType

    type of stack elements

  • Λ : Type

    type of function labels

  • main : self.Λ

    a main function: the initial function that is executed, given by its label

  • ΛFin : Fintype self.Λ

    A TM2 machine has finitely many function labels.

  • σ : Type

    type of states of the machine

  • initialState : self.σ

    the initial state of the machine

  • σFin : Fintype self.σ

    a TM2 machine has finitely many internal states.

  • Γk₀Fin : Fintype (self.Γ self.k₀)

    Each internal stack is finite.

  • m : self.ΛTM2.Stmt self.Γ self.Λ self.σ

    the program itself, i.e. one function for every function label

Instances For
    Equations

    The type of statements (functions) corresponding to this TM.

    Equations
    Instances For

      The type of configurations (functions) corresponding to this TM.

      Equations
      Instances For
        def Turing.FinTM2.step (tm : FinTM2) :
        tm.CfgOption tm.Cfg

        The step function corresponding to this TM.

        Equations
        Instances For
          def Turing.initList (tm : FinTM2) (s : List (tm.Γ tm.k₀)) :
          tm.Cfg

          The initial configuration corresponding to a list in the input alphabet.

          Equations
          Instances For
            def Turing.haltList (tm : FinTM2) (s : List (tm.Γ tm.k₁)) :
            tm.Cfg

            The final configuration corresponding to a list in the output alphabet.

            Equations
            Instances For
              structure Turing.EvalsTo {σ : Type u_1} (f : σOption σ) (a : σ) (b : Option σ) :

              A "proof" of the fact that f eventually reaches b when repeatedly evaluated on a, remembering the number of steps it takes.

              Instances For
                structure Turing.EvalsToInTime {σ : Type u_1} (f : σOption σ) (a : σ) (b : Option σ) (m : ) extends Turing.EvalsTo f a b :

                A "proof" of the fact that f eventually reaches b in at most m steps when repeatedly evaluated on a, remembering the number of steps it takes.

                Instances For
                  def Turing.EvalsTo.refl {σ : Type u_1} (f : σOption σ) (a : σ) :
                  EvalsTo f a (some a)

                  Reflexivity of EvalsTo in 0 steps.

                  Equations
                  Instances For
                    def Turing.EvalsTo.trans {σ : Type u_1} (f : σOption σ) (a b : σ) (c : Option σ) (h₁ : EvalsTo f a (some b)) (h₂ : EvalsTo f b c) :
                    EvalsTo f a c

                    Transitivity of EvalsTo in the sum of the numbers of steps.

                    Equations
                    Instances For
                      def Turing.EvalsToInTime.refl {σ : Type u_1} (f : σOption σ) (a : σ) :

                      Reflexivity of EvalsToInTime in 0 steps.

                      Equations
                      Instances For
                        def Turing.EvalsToInTime.trans {σ : Type u_1} (f : σOption σ) (m₁ m₂ : ) (a b : σ) (c : Option σ) (h₁ : EvalsToInTime f a (some b) m₁) (h₂ : EvalsToInTime f b c m₂) :
                        EvalsToInTime f a c (m₂ + m₁)

                        Transitivity of EvalsToInTime in the sum of the numbers of steps.

                        Equations
                        Instances For
                          def Turing.TM2Outputs (tm : FinTM2) (l : List (tm.Γ tm.k₀)) (l' : Option (List (tm.Γ tm.k₁))) :

                          A proof of tm outputting l' when given l.

                          Equations
                          Instances For
                            def Turing.TM2OutputsInTime (tm : FinTM2) (l : List (tm.Γ tm.k₀)) (l' : Option (List (tm.Γ tm.k₁))) (m : ) :

                            A proof of tm outputting l' when given l in at most m steps.

                            Equations
                            Instances For
                              def Turing.TM2OutputsInTime.toTM2Outputs {tm : FinTM2} {l : List (tm.Γ tm.k₀)} {l' : Option (List (tm.Γ tm.k₁))} {m : } (h : TM2OutputsInTime tm l l' m) :
                              TM2Outputs tm l l'

                              The forgetful map, forgetting the upper bound on the number of steps.

                              Equations
                              Instances For
                                structure Turing.TM2ComputableAux (Γ₀ Γ₁ : Type) :

                                A (bundled TM2) Turing machine with input alphabet equivalent to Γ₀ and output alphabet equivalent to Γ₁.

                                • tm : FinTM2

                                  the underlying bundled TM2

                                • inputAlphabet : self.tm.Γ self.tm.k₀ Γ₀

                                  the input alphabet is equivalent to Γ₀

                                • outputAlphabet : self.tm.Γ self.tm.k₁ Γ₁

                                  the output alphabet is equivalent to Γ₁

                                Instances For
                                  structure Turing.TM2Computable {α β : Type} (ea : Computability.FinEncoding α) (eb : Computability.FinEncoding β) (f : αβ) extends Turing.TM2ComputableAux ea.Γ eb.Γ :

                                  A Turing machine + a proof it outputs f.

                                  Instances For
                                    structure Turing.TM2ComputableInTime {α β : Type} (ea : Computability.FinEncoding α) (eb : Computability.FinEncoding β) (f : αβ) extends Turing.TM2ComputableAux ea.Γ eb.Γ :

                                    A Turing machine + a time function + a proof it outputs f in at most time(input.length) steps.

                                    Instances For
                                      structure Turing.TM2ComputableInPolyTime {α β : Type} (ea : Computability.FinEncoding α) (eb : Computability.FinEncoding β) (f : αβ) extends Turing.TM2ComputableAux ea.Γ eb.Γ :

                                      A Turing machine + a polynomial time function + a proof it outputs f in at most time(input.length) steps.

                                      Instances For

                                        A forgetful map, forgetting the time bound on the number of steps.

                                        Equations
                                        Instances For

                                          A forgetful map, forgetting that the time function is polynomial.

                                          Equations
                                          Instances For

                                            A Turing machine computing the identity on α.

                                            Equations
                                            Instances For

                                              A proof that the identity map on α is computable in polytime.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                A proof that the identity map on α is computable in time.

                                                Equations
                                                Instances For

                                                  A proof that the identity map on α is computable.

                                                  Equations
                                                  Instances For