fintype instances for option #
Equations
- instFintypeOption = { elems := Finset.insertNone Finset.univ, complete := ⋯ }
If Option α
is a Fintype
then so is α
Equations
- fintypeOfOption = { elems := Finset.eraseNone Fintype.elems, complete := ⋯ }
Instances For
def
Fintype.truncRecEmptyOption
{P : Type u → Sort v}
(of_equiv : {α β : Type u} → α ≃ β → P α → P β)
(h_empty : P PEmpty.{u + 1})
(h_option : {α : Type u} → [inst : Fintype α] → [inst : DecidableEq α] → P α → P (Option α))
(α : Type u)
[Fintype α]
[DecidableEq α]
:
Trunc (P α)
A recursor principle for finite types, analogous to Nat.rec
. It effectively says
that every Fintype
is either Empty
or Option α
, up to an Equiv
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Fintype.truncRecEmptyOption.ind
{P : Type u → Sort v}
(of_equiv : {α β : Type u} → α ≃ β → P α → P β)
(h_empty : P PEmpty.{u + 1})
(h_option : {α : Type u} → [inst : Fintype α] → [inst : DecidableEq α] → P α → P (Option α))
(n : ℕ)
:
Trunc (P (ULift.{u, 0} (Fin n)))
Internal induction hypothesis
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Fintype.induction_empty_option
{P : (α : Type u) → [inst : Fintype α] → Prop}
(of_equiv : ∀ (α β : Type u) [inst : Fintype β] (e : α ≃ β), P α → P β)
(h_empty : P PEmpty.{u + 1})
(h_option : ∀ (α : Type u) [inst : Fintype α], P α → P (Option α))
(α : Type u)
[h_fintype : Fintype α]
:
P α
An induction principle for finite types, analogous to Nat.rec
. It effectively says
that every Fintype
is either Empty
or Option α
, up to an Equiv
.
theorem
Finite.induction_empty_option
{P : Type u → Prop}
(of_equiv : ∀ {α β : Type u}, α ≃ β → P α → P β)
(h_empty : P PEmpty.{u + 1})
(h_option : ∀ {α : Type u} [inst : Fintype α], P α → P (Option α))
(α : Type u)
[Finite α]
:
P α
An induction principle for finite types, analogous to Nat.rec
. It effectively says
that every Fintype
is either Empty
or Option α
, up to an Equiv
.