Documentation

Mathlib.Data.Fintype.Prod

fintype instance for the product of two fintypes. #

theorem Set.toFinset_prod {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) [Fintype s.Elem] [Fintype t.Elem] [Fintype (SProd.sprod s t).Elem] :
def instFintypeProd (α : Type u_4) (β : Type u_5) [Fintype α] [Fintype β] :
Fintype (Prod α β)
Equations
Instances For
    theorem Finset.univ_product_univ {α : Type u_1} {β : Type u_2} [Fintype α] [Fintype β] :
    theorem Finset.product_eq_univ {α : Type u_1} {β : Type u_2} [Fintype α] [Fintype β] {s : Finset α} {t : Finset β} [Nonempty α] [Nonempty β] :
    Iff (Eq (SProd.sprod s t) univ) (And (Eq s univ) (Eq t univ))
    theorem Fintype.card_prod (α : Type u_4) (β : Type u_5) [Fintype α] [Fintype β] :
    Eq (card (Prod α β)) (HMul.hMul (card α) (card β))
    theorem infinite_prod {α : Type u_1} {β : Type u_2} :
    Iff (Infinite (Prod α β)) (Or (And (Infinite α) (Nonempty β)) (And (Nonempty α) (Infinite β)))
    theorem Pi.infinite_of_left {ι : Sort u_4} {π : ιType u_5} [∀ (i : ι), Nontrivial (π i)] [Infinite ι] :
    Infinite ((i : ι) → π i)
    theorem Pi.infinite_of_exists_right {ι : Sort u_4} {π : ιSort u_5} (i : ι) [Infinite (π i)] [∀ (i : ι), Nonempty (π i)] :
    Infinite ((i : ι) → π i)

    If at least one π i is infinite and the rest nonempty, the pi type of all π is infinite.

    theorem Pi.infinite_of_right {ι : Sort u_4} {π : ιType u_5} [∀ (i : ι), Infinite (π i)] [Nonempty ι] :
    Infinite ((i : ι) → π i)

    See Pi.infinite_of_exists_right for the case that only one π i is infinite.

    theorem Function.infinite_of_left {ι : Sort u_4} {π : Type u_5} [Nontrivial π] [Infinite ι] :
    Infinite (ιπ)

    Non-dependent version of Pi.infinite_of_left.

    theorem Function.infinite_of_right {ι : Sort u_4} {π : Type u_5} [Infinite π] [Nonempty ι] :
    Infinite (ιπ)

    Non-dependent version of Pi.infinite_of_exists_right and Pi.infinite_of_right.