fintype instance for the product of two fintypes. #
theorem
Set.toFinset_prod
{α : Type u_1}
{β : Type u_2}
(s : Set α)
(t : Set β)
[Fintype s.Elem]
[Fintype t.Elem]
[Fintype (SProd.sprod s t).Elem]
:
Eq (SProd.sprod s t).toFinset (SProd.sprod s.toFinset t.toFinset)
Equations
- Eq (instFintypeProd α β) { elems := SProd.sprod Finset.univ Finset.univ, complete := ⋯ }
Instances For
theorem
Pi.infinite_of_left
{ι : Sort u_4}
{π : ι → Type u_5}
[∀ (i : ι), Nontrivial (π i)]
[Infinite ι]
:
Infinite ((i : ι) → π i)
theorem
Pi.infinite_of_right
{ι : Sort u_4}
{π : ι → Type u_5}
[∀ (i : ι), Infinite (π i)]
[Nonempty ι]
:
Infinite ((i : ι) → π i)
See Pi.infinite_of_exists_right
for the case that only one π i
is infinite.
theorem
Function.infinite_of_left
{ι : Sort u_4}
{π : Type u_5}
[Nontrivial π]
[Infinite ι]
:
Infinite (ι → π)
Non-dependent version of Pi.infinite_of_left
.
theorem
Function.infinite_of_right
{ι : Sort u_4}
{π : Type u_5}
[Infinite π]
[Nonempty ι]
:
Infinite (ι → π)
Non-dependent version of Pi.infinite_of_exists_right
and Pi.infinite_of_right
.