Documentation

Mathlib.Data.IsROrC.Lemmas

Further lemmas about IsROrC #

theorem Polynomial.ofReal_eval {K : Type u_1} [IsROrC K] (p : Polynomial ) (x : ) :
↑(Polynomial.eval x p) = ↑(Polynomial.aeval x) p

An IsROrC field is finite-dimensional over , since it is spanned by {1, I}.

A finite dimensional vector space over an IsROrC is a proper metric space.

This is not an instance because it would cause a search for FiniteDimensional ?x E before IsROrC ?x.

instance FiniteDimensional.IsROrC.properSpace_submodule (K : Type u_1) {E : Type u_2} [IsROrC K] [NormedAddCommGroup E] [NormedSpace K E] (S : Submodule K E) [FiniteDimensional K { x // x S }] :
ProperSpace { x // x S }
@[simp]
theorem IsROrC.reClm_norm {K : Type u_1} [IsROrC K] :
IsROrC.reClm = 1
@[simp]
theorem IsROrC.conjCle_norm {K : Type u_1} [IsROrC K] :
IsROrC.conjCle = 1
@[simp]
theorem IsROrC.ofRealClm_norm {K : Type u_1} [IsROrC K] :
IsROrC.ofRealClm = 1