Theory of univariate polynomials #
We show that A[X]
is an R-algebra when A
is an R-algebra.
We promote eval₂
to an algebra hom in aeval
.
Note that this instance also provides Algebra R R[X]
.
When we have [CommSemiring R]
, the function C
is the same as algebraMap R R[X]
.
(But note that C
is defined when R
is not necessarily commutative, in which case
algebraMap
is not available.)
Extensionality lemma for algebra maps out of A'[X]
over a smaller base ring than A'
Algebra isomorphism between R[X]
and R[ℕ]
. This is just an
implementation detail, but it can be useful to transfer results from Finsupp
to polynomials.
Instances For
Given a valuation x
of the variable in an R
-algebra A
, aeval R A x
is
the unique R
-algebra homomorphism from R[X]
to A
sending X
to x
.
This is a stronger variant of the linear map Polynomial.leval
.
Instances For
Version of aeval
for defining algebra homs out of R[X]
over a smaller base ring
than R
.
Instances For
The evaluation map is not generally multiplicative when the coefficient ring is noncommutative,
but nevertheless any polynomial of the form p * (X - monomial 0 r)
is sent to zero
when evaluated at r
.
This is the key step in our proof of the Cayley-Hamilton theorem.