Double cosets #
This file defines double cosets for two subgroups H K
of a group G
and the quotient of G
by
the double coset relation, i.e. H \ G / K
. We also prove that G
can be written as a disjoint
union of the double cosets and that if one of H
or K
is the trivial group (i.e. ⊥
) then
this is the usual left or right quotient of a group by a subgroup.
Main definitions #
rel
: The double coset relation defined by two subgroupsH K
ofG
.Doset.quotient
: The quotient ofG
by the double coset relation, i.e,H \ G / K
.
The setoid defined by the double_coset relation
Equations
- Doset.setoid H K = Setoid.ker fun (x : G) => Doset.doset x H K
Instances For
Quotient of G
by the double coset relation, i.e. H \ G / K
Equations
- Doset.Quotient H K = Quotient (Doset.setoid H K)
Instances For
Create a doset out of an element of H \ G / K
Equations
- Doset.quotToDoset H K q = Doset.doset (Quotient.out q) ↑H ↑K
Instances For
Equations
- Doset.instInhabitedQuotientCoeSubgroup H K = { default := Doset.mk H K 1 }
@[deprecated Doset.mk_out_eq_mul (since := "2024-10-19")]
Alias of Doset.mk_out_eq_mul
.
theorem
Doset.disjoint_out
{G : Type u_1}
[Group G]
{H K : Subgroup G}
{a b : Quotient ↑H ↑K}
:
a ≠ b → Disjoint (doset (Quotient.out a) ↑H ↑K) (doset (Quotient.out b) ↑H ↑K)
@[deprecated Doset.disjoint_out (since := "2024-10-19")]
theorem
Doset.disjoint_out'
{G : Type u_1}
[Group G]
{H K : Subgroup G}
{a b : Quotient ↑H ↑K}
:
a ≠ b → Disjoint (doset (Quotient.out a) ↑H ↑K) (doset (Quotient.out b) ↑H ↑K)
Alias of Doset.disjoint_out
.