Pointwise monoid structures on SubMulAction #
This file provides SubMulAction.Monoid
and weaker typeclasses, which show that SubMulAction
s
inherit the same pointwise multiplications as sets.
To match Submodule.idemSemiring
, we do not put these in the Pointwise
locale.
def
SubMulAction.instOne
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[One M]
:
One (SubMulAction R M)
Equations
- Eq SubMulAction.instOne { one := { carrier := Set.range fun (r : R) => HSMul.hSMul r 1, smul_mem' := ⋯ } }
Instances For
theorem
SubMulAction.coe_one
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[One M]
:
Eq (SetLike.coe 1) (Set.range fun (r : R) => HSMul.hSMul r 1)
theorem
SubMulAction.mem_one
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[One M]
{x : M}
:
Iff (Membership.mem 1 x) (Exists fun (r : R) => Eq (HSMul.hSMul r 1) x)
theorem
SubMulAction.subset_coe_one
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[One M]
:
HasSubset.Subset 1 (SetLike.coe 1)
def
SubMulAction.instMul
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Mul M]
[IsScalarTower R M M]
:
Mul (SubMulAction R M)
Equations
- Eq SubMulAction.instMul { mul := fun (p q : SubMulAction R M) => { carrier := Set.image2 (fun (x1 x2 : M) => HMul.hMul x1 x2) (SetLike.coe p) (SetLike.coe q), smul_mem' := ⋯ } }
Instances For
theorem
SubMulAction.coe_mul
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Mul M]
[IsScalarTower R M M]
(p q : SubMulAction R M)
:
Eq (SetLike.coe (HMul.hMul p q)) (HMul.hMul (SetLike.coe p) (SetLike.coe q))
theorem
SubMulAction.mem_mul
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Mul M]
[IsScalarTower R M M]
{p q : SubMulAction R M}
{x : M}
:
Iff (Membership.mem (HMul.hMul p q) x)
(Exists fun (y : M) =>
And (Membership.mem p y) (Exists fun (z : M) => And (Membership.mem q z) (Eq (HMul.hMul y z) x)))
def
SubMulAction.mulOneClass
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[MulOneClass M]
[IsScalarTower R M M]
[SMulCommClass R M M]
:
MulOneClass (SubMulAction R M)
Equations
- Eq SubMulAction.mulOneClass { one := 1, mul := fun (x1 x2 : SubMulAction R M) => HMul.hMul x1 x2, one_mul := ⋯, mul_one := ⋯ }
Instances For
def
SubMulAction.semiGroup
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Semigroup M]
[IsScalarTower R M M]
:
Semigroup (SubMulAction R M)
Equations
- Eq SubMulAction.semiGroup { mul := fun (x1 x2 : SubMulAction R M) => HMul.hMul x1 x2, mul_assoc := ⋯ }
Instances For
def
SubMulAction.instMonoid
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Monoid M]
[IsScalarTower R M M]
[SMulCommClass R M M]
:
Monoid (SubMulAction R M)
Equations
- Eq SubMulAction.instMonoid { toSemigroup := SubMulAction.semiGroup, toOne := MulOneClass.toOne, one_mul := ⋯, mul_one := ⋯, npow := npowRecAuto, npow_zero := ⋯, npow_succ := ⋯ }
Instances For
theorem
SubMulAction.coe_pow
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Monoid M]
[IsScalarTower R M M]
[SMulCommClass R M M]
(p : SubMulAction R M)
{n : Nat}
:
Ne n 0 → Eq (SetLike.coe (HPow.hPow p n)) (HPow.hPow (SetLike.coe p) n)
theorem
SubMulAction.subset_coe_pow
{R : Type u_1}
{M : Type u_2}
[Monoid R]
[MulAction R M]
[Monoid M]
[IsScalarTower R M M]
[SMulCommClass R M M]
(p : SubMulAction R M)
{n : Nat}
:
HasSubset.Subset (HPow.hPow (SetLike.coe p) n) (SetLike.coe (HPow.hPow p n))