@[simp]
@[simp]
theorem
Subgroup.range_zpowersHom
{G : Type u_1}
[inst : Group G]
(g : G)
:
MonoidHom.range (↑(zpowersHom G) g) = Subgroup.zpowers g
theorem
Subgroup.zpowers_subset
{G : Type u_1}
[inst : Group G]
{a : G}
{K : Subgroup G}
(h : a ∈ K)
:
Subgroup.zpowers a ≤ K
theorem
Subgroup.mem_zpowers_iff
{G : Type u_1}
[inst : Group G]
{g : G}
{h : G}
:
h ∈ Subgroup.zpowers g ↔ ∃ k, g ^ k = h
@[simp]
theorem
Subgroup.zpow_mem_zpowers
{G : Type u_1}
[inst : Group G]
(g : G)
(k : ℤ)
:
g ^ k ∈ Subgroup.zpowers g
@[simp]
theorem
Subgroup.npow_mem_zpowers
{G : Type u_1}
[inst : Group G]
(g : G)
(k : ℕ)
:
g ^ k ∈ Subgroup.zpowers g
instance
Subgroup.instCountableSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupZpowers
{G : Type u_1}
[inst : Group G]
(a : G)
:
Countable { x // x ∈ Subgroup.zpowers a }
The subgroup generated by an element.
Equations
- AddSubgroup.zmultiples a = AddSubgroup.copy (AddMonoidHom.range (↑(zmultiplesHom A) a)) (Set.range fun x => x • a) (_ : (Set.range fun x => x • a) = Set.range fun x => x • a)
@[simp]
theorem
AddSubgroup.range_zmultiplesHom
{A : Type u_1}
[inst : AddGroup A]
(a : A)
:
AddMonoidHom.range (↑(zmultiplesHom A) a) = AddSubgroup.zmultiples a
@[simp]
abbrev
AddSubgroup.zmultiples_subset.match_1
{G : Type u_1}
[inst : AddGroup G]
{a : G}
(motive : (x : G) → x ∈ AddSubgroup.zmultiples a → Prop)
:
Equations
- One or more equations did not get rendered due to their size.
theorem
AddSubgroup.zmultiples_subset
{G : Type u_1}
[inst : AddGroup G]
{a : G}
{K : AddSubgroup G}
(h : a ∈ K)
:
theorem
AddSubgroup.mem_zmultiples_iff
{G : Type u_1}
[inst : AddGroup G]
{g : G}
{h : G}
:
h ∈ AddSubgroup.zmultiples g ↔ ∃ k, k • g = h
@[simp]
theorem
AddSubgroup.zsmul_mem_zmultiples
{G : Type u_1}
[inst : AddGroup G]
(g : G)
(k : ℤ)
:
k • g ∈ AddSubgroup.zmultiples g
@[simp]
theorem
AddSubgroup.nsmul_mem_zmultiples
{G : Type u_1}
[inst : AddGroup G]
(g : G)
(k : ℕ)
:
k • g ∈ AddSubgroup.zmultiples g
instance
AddSubgroup.instCountableSubtypeMemAddSubgroupInstMembershipInstSetLikeAddSubgroupZmultiples
{A : Type u_1}
[inst : AddGroup A]
(a : A)
:
Countable { x // x ∈ AddSubgroup.zmultiples a }
@[simp]
theorem
AddSubgroup.int_cast_mul_mem_zmultiples
{R : Type u_1}
[inst : Ring R]
(r : R)
(k : ℤ)
:
↑k * r ∈ AddSubgroup.zmultiples r
@[simp]
theorem
AddSubgroup.int_cast_mem_zmultiples_one
{R : Type u_1}
[inst : Ring R]
(k : ℤ)
:
↑k ∈ AddSubgroup.zmultiples 1
@[simp]
theorem
AddMonoidHom.map_zmultiples
{G : Type u_1}
[inst : AddGroup G]
{N : Type u_2}
[inst : AddGroup N]
(f : G →+ N)
(x : G)
:
AddSubgroup.map f (AddSubgroup.zmultiples x) = AddSubgroup.zmultiples (↑f x)
@[simp]
theorem
MonoidHom.map_zpowers
{G : Type u_1}
[inst : Group G]
{N : Type u_2}
[inst : Group N]
(f : G →* N)
(x : G)
:
Subgroup.map f (Subgroup.zpowers x) = Subgroup.zpowers (↑f x)
theorem
ofMul_image_zpowers_eq_zmultiples_ofMul
{G : Type u_1}
[inst : Group G]
{x : G}
:
↑Additive.ofMul '' ↑(Subgroup.zpowers x) = ↑(AddSubgroup.zmultiples (↑Additive.ofMul x))
theorem
ofAdd_image_zmultiples_eq_zpowers_ofAdd
{A : Type u_1}
[inst : AddGroup A]
{x : A}
:
↑Multiplicative.ofAdd '' ↑(AddSubgroup.zmultiples x) = ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x))
Equations
- (_ : AddSubgroup.IsCommutative (AddSubgroup.zmultiples g)) = (_ : AddSubgroup.IsCommutative (AddSubgroup.zmultiples g))
abbrev
AddSubgroup.zmultiples_isCommutative.match_1
{G : Type u_1}
[inst : AddGroup G]
(g : G)
(motive : { x // x ∈ AddSubgroup.zmultiples g } → Prop)
:
Equations
- AddSubgroup.zmultiples_isCommutative.match_1 g motive x h_1 = Subtype.casesOn x fun val property => Exists.casesOn property fun w h => h_1 val w h
@[simp]
theorem
AddSubgroup.zmultiples_le
{G : Type u_1}
[inst : AddGroup G]
{g : G}
{H : AddSubgroup G}
:
AddSubgroup.zmultiples g ≤ H ↔ g ∈ H
@[simp]
theorem
Subgroup.zpowers_le
{G : Type u_1}
[inst : Group G]
{g : G}
{H : Subgroup G}
:
Subgroup.zpowers g ≤ H ↔ g ∈ H
@[simp]
theorem
AddSubgroup.zmultiples_eq_bot
{G : Type u_1}
[inst : AddGroup G]
{g : G}
:
AddSubgroup.zmultiples g = ⊥ ↔ g = 0
@[simp]
theorem
Subgroup.zpowers_eq_bot
{G : Type u_1}
[inst : Group G]
{g : G}
:
Subgroup.zpowers g = ⊥ ↔ g = 1
@[simp]
@[simp]
theorem
AddSubgroup.centralizer_closure
{G : Type u_1}
[inst : AddGroup G]
(S : Set G)
:
AddSubgroup.centralizer (AddSubgroup.closure S) = ⨅ g, ⨅ h, AddSubgroup.centralizer (AddSubgroup.zmultiples g)
theorem
Subgroup.centralizer_closure
{G : Type u_1}
[inst : Group G]
(S : Set G)
:
Subgroup.centralizer (Subgroup.closure S) = ⨅ g, ⨅ h, Subgroup.centralizer (Subgroup.zpowers g)
theorem
AddSubgroup.center_eq_infᵢ
{G : Type u_1}
[inst : AddGroup G]
(S : Set G)
(hS : AddSubgroup.closure S = ⊤)
:
AddSubgroup.center G = ⨅ g, ⨅ h, AddSubgroup.centralizer (AddSubgroup.zmultiples g)
theorem
Subgroup.center_eq_infᵢ
{G : Type u_1}
[inst : Group G]
(S : Set G)
(hS : Subgroup.closure S = ⊤)
:
Subgroup.center G = ⨅ g, ⨅ h, Subgroup.centralizer (Subgroup.zpowers g)
theorem
AddSubgroup.center_eq_infi'
{G : Type u_1}
[inst : AddGroup G]
(S : Set G)
(hS : AddSubgroup.closure S = ⊤)
:
theorem
Subgroup.center_eq_infi'
{G : Type u_1}
[inst : Group G]
(S : Set G)
(hS : Subgroup.closure S = ⊤)
:
Subgroup.center G = ⨅ g, Subgroup.centralizer (Subgroup.zpowers ↑g)