Documentation

Mathlib.GroupTheory.Subsemigroup.Centralizer

Centralizers in semigroups, as subsemigroups. #

Main definitions #

We provide Monoid.centralizer, AddMonoid.centralizer, Subgroup.centralizer, and AddSubgroup.centralizer in other files.

The centralizer of a subset of a semigroup M.

Equations
Instances For

    The centralizer of a subset of an additive semigroup.

    Equations
    Instances For
      theorem Subsemigroup.mem_centralizer_iff {M : Type u_1} {S : Set M} [Semigroup M] {z : M} :
      Iff (Membership.mem (centralizer S) z) (∀ (g : M), Membership.mem S gEq (HMul.hMul g z) (HMul.hMul z g))
      theorem AddSubsemigroup.mem_centralizer_iff {M : Type u_1} {S : Set M} [AddSemigroup M] {z : M} :
      Iff (Membership.mem (centralizer S) z) (∀ (g : M), Membership.mem S gEq (HAdd.hAdd g z) (HAdd.hAdd z g))
      def Subsemigroup.decidableMemCentralizer {M : Type u_1} {S : Set M} [Semigroup M] (a : M) [Decidable (∀ (b : M), Membership.mem S bEq (HMul.hMul b a) (HMul.hMul a b))] :
      Equations
      Instances For
        def AddSubsemigroup.decidableMemCentralizer {M : Type u_1} {S : Set M} [AddSemigroup M] (a : M) [Decidable (∀ (b : M), Membership.mem S bEq (HAdd.hAdd b a) (HAdd.hAdd a b))] :
        Equations
        Instances For
          @[reducible, inline]
          abbrev Subsemigroup.closureCommSemigroupOfComm (M : Type u_1) [Semigroup M] {s : Set M} (hcomm : ∀ (a : M), Membership.mem s a∀ (b : M), Membership.mem s bEq (HMul.hMul a b) (HMul.hMul b a)) :

          If all the elements of a set s commute, then closure s is a commutative semigroup.

          Equations
          Instances For
            @[reducible, inline]
            abbrev AddSubsemigroup.closureAddCommSemigroupOfComm (M : Type u_1) [AddSemigroup M] {s : Set M} (hcomm : ∀ (a : M), Membership.mem s a∀ (b : M), Membership.mem s bEq (HAdd.hAdd a b) (HAdd.hAdd b a)) :

            If all the elements of a set s commute, then closure s forms an additive commutative semigroup.

            Equations
            Instances For