Documentation
Mathlib
.
Init
.
Algebra
.
Functions
Search
Google site search
Mathlib
.
Init
.
Algebra
.
Functions
source
Imports
Init
Mathlib.Init.Algebra.Order
Imported by
min_def
min_le_left
min_le_right
le_min
max_def
le_max_left
le_max_right
max_le
eq_min
min_comm
min_assoc
min_left_comm
min_self
min_eq_left
min_eq_right
eq_max
max_comm
max_assoc
max_left_comm
max_self
max_eq_left
max_eq_right
min_eq_left_of_lt
min_eq_right_of_lt
max_eq_left_of_lt
max_eq_right_of_lt
lt_min
max_lt
source
ink
theorem
min_def
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
min
a
b
=
if
a
≤
b
then
a
else
b
source
ink
theorem
min_le_left
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
min
a
b
≤
a
source
ink
theorem
min_le_right
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
min
a
b
≤
b
source
ink
theorem
le_min
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
{c :
α
}
(h₁ :
c
≤
a
)
(h₂ :
c
≤
b
)
:
c
≤
min
a
b
source
ink
theorem
max_def
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
max
a
b
=
if
a
≤
b
then
b
else
a
source
ink
theorem
le_max_left
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
a
≤
max
a
b
source
ink
theorem
le_max_right
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
b
≤
max
a
b
source
ink
theorem
max_le
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
{c :
α
}
(h₁ :
a
≤
c
)
(h₂ :
b
≤
c
)
:
max
a
b
≤
c
source
ink
theorem
eq_min
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
{c :
α
}
(h₁ :
c
≤
a
)
(h₂ :
c
≤
b
)
(h₃ :
∀ {
d
:
α
},
d
≤
a
→
d
≤
b
→
d
≤
c
)
:
c
=
min
a
b
source
ink
theorem
min_comm
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
min
a
b
=
min
b
a
source
ink
theorem
min_assoc
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
(c :
α
)
:
min
(
min
a
b
)
c
=
min
a
(
min
b
c
)
source
ink
theorem
min_left_comm
{α :
Type
u}
[inst :
LinearOrder
α
]
:
LeftCommutative
min
source
ink
@[simp]
theorem
min_self
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
:
min
a
a
=
a
source
ink
theorem
min_eq_left
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
a
≤
b
)
:
min
a
b
=
a
source
ink
theorem
min_eq_right
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
b
≤
a
)
:
min
a
b
=
b
source
ink
theorem
eq_max
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
{c :
α
}
(h₁ :
a
≤
c
)
(h₂ :
b
≤
c
)
(h₃ :
∀ {
d
:
α
},
a
≤
d
→
b
≤
d
→
c
≤
d
)
:
c
=
max
a
b
source
ink
theorem
max_comm
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
max
a
b
=
max
b
a
source
ink
theorem
max_assoc
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
(c :
α
)
:
max
(
max
a
b
)
c
=
max
a
(
max
b
c
)
source
ink
theorem
max_left_comm
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
(b :
α
)
(c :
α
)
:
max
a
(
max
b
c
)
=
max
b
(
max
a
c
)
source
ink
@[simp]
theorem
max_self
{α :
Type
u}
[inst :
LinearOrder
α
]
(a :
α
)
:
max
a
a
=
a
source
ink
theorem
max_eq_left
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
b
≤
a
)
:
max
a
b
=
a
source
ink
theorem
max_eq_right
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
a
≤
b
)
:
max
a
b
=
b
source
ink
theorem
min_eq_left_of_lt
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
a
<
b
)
:
min
a
b
=
a
source
ink
theorem
min_eq_right_of_lt
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
b
<
a
)
:
min
a
b
=
b
source
ink
theorem
max_eq_left_of_lt
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
b
<
a
)
:
max
a
b
=
a
source
ink
theorem
max_eq_right_of_lt
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
(h :
a
<
b
)
:
max
a
b
=
b
source
ink
theorem
lt_min
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
{c :
α
}
(h₁ :
a
<
b
)
(h₂ :
a
<
c
)
:
a
<
min
b
c
source
ink
theorem
max_lt
{α :
Type
u}
[inst :
LinearOrder
α
]
{a :
α
}
{b :
α
}
{c :
α
}
(h₁ :
a
<
c
)
(h₂ :
b
<
c
)
:
max
a
b
<
c