Eigenvectors and eigenvalues over algebraically closed fields. #
- Every linear operator on a vector space over an algebraically closed field has an eigenvalue.
- The generalized eigenvectors span the entire vector space.
References #
- [Sheldon Axler, Linear Algebra Done Right][axler2015]
- https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
Tags #
eigenspace, eigenvector, eigenvalue, eigen
theorem
Module.End.exists_eigenvalue
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[IsAlgClosed K]
[FiniteDimensional K V]
[Nontrivial V]
(f : Module.End K V)
:
∃ c, Module.End.HasEigenvalue f c
Every linear operator on a vector space over an algebraically closed field has an eigenvalue.
noncomputable instance
Module.End.instInhabitedEigenvaluesToCommRingToEuclideanDomain
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[IsAlgClosed K]
[FiniteDimensional K V]
[Nontrivial V]
(f : Module.End K V)
:
theorem
Module.End.iSup_generalizedEigenspace_eq_top
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[IsAlgClosed K]
[FiniteDimensional K V]
(f : Module.End K V)
:
⨆ (μ : K) (k : ℕ), ↑(Module.End.generalizedEigenspace f μ) k = ⊤
The generalized eigenvectors span the entire vector space (Lemma 8.21 of [axler2015]).