Invertible matrices over a ring with invariant basis number are square. #
theorem
Matrix.square_of_invertible
{n : Type u_1}
{m : Type u_2}
[Fintype n]
[DecidableEq n]
[Fintype m]
[DecidableEq m]
{R : Type u_3}
[Semiring R]
[InvariantBasisNumber R]
(M : Matrix n m R)
(N : Matrix m n R)
(h : M * N = 1)
(h' : N * M = 1)
:
@[instance 100]
instance
rankCondition_of_nontrivial_of_commSemiring
{R : Type u_4}
[CommSemiring R]
[Nontrivial R]
:
Nontrivial commutative semirings R
satisfy the rank condition.
If R
is moreover a ring, then it satisfies the strong rank condition, see
commRing_strongRankCondition
. It is unclear whether this generalizes to semirings.