Documentation

Mathlib.MeasureTheory.Function.ConditionalExpectation.Real

Conditional expectation of real-valued functions #

This file proves some results regarding the conditional expectation of real-valued functions.

Main results #

theorem MeasureTheory.rnDeriv_ae_eq_condexp {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [hμm : SigmaFinite (μ.trim hm)] {f : α} (hf : Integrable f μ) :
SignedMeasure.rnDeriv ((μ.withDensityᵥ f).trim hm) (μ.trim hm) =ᶠ[ae μ] condexp m μ f
theorem MeasureTheory.eLpNorm_one_condexp_le_eLpNorm {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (f : α) :
eLpNorm (condexp m μ f) 1 μ eLpNorm f 1 μ
@[deprecated MeasureTheory.eLpNorm_one_condexp_le_eLpNorm (since := "2024-07-27")]
theorem MeasureTheory.snorm_one_condexp_le_snorm {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (f : α) :
eLpNorm (condexp m μ f) 1 μ eLpNorm f 1 μ

Alias of MeasureTheory.eLpNorm_one_condexp_le_eLpNorm.

theorem MeasureTheory.integral_abs_condexp_le {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (f : α) :
(x : α), |condexp m μ f x| μ (x : α), |f x| μ
theorem MeasureTheory.setIntegral_abs_condexp_le {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hs : MeasurableSet s) (f : α) :
(x : α) in s, |condexp m μ f x| μ (x : α) in s, |f x| μ
@[deprecated MeasureTheory.setIntegral_abs_condexp_le (since := "2024-04-17")]
theorem MeasureTheory.set_integral_abs_condexp_le {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hs : MeasurableSet s) (f : α) :
(x : α) in s, |condexp m μ f x| μ (x : α) in s, |f x| μ

Alias of MeasureTheory.setIntegral_abs_condexp_le.

theorem MeasureTheory.ae_bdd_condexp_of_ae_bdd {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {R : NNReal} {f : α} (hbdd : ∀ᵐ (x : α) μ, |f x| R) :
∀ᵐ (x : α) μ, |condexp m μ f x| R

If the real valued function f is bounded almost everywhere by R, then so is its conditional expectation.

theorem MeasureTheory.Integrable.uniformIntegrable_condexp {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ι : Type u_2} [IsFiniteMeasure μ] {g : α} (hint : Integrable g μ) {ℱ : ιMeasurableSpace α} (hℱ : ∀ (i : ι), i m0) :
UniformIntegrable (fun (i : ι) => condexp ( i) μ g) 1 μ

Given an integrable function g, the conditional expectations of g with respect to a sequence of sub-σ-algebras is uniformly integrable.

theorem MeasureTheory.condexp_stronglyMeasurable_simpleFunc_mul {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : SimpleFunc α ) {g : α} (hg : Integrable g μ) :
condexp m μ (f * g) =ᶠ[ae μ] f * condexp m μ g

Auxiliary lemma for condexp_stronglyMeasurable_mul.

theorem MeasureTheory.condexp_stronglyMeasurable_mul_of_bound {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) [IsFiniteMeasure μ] {f g : α} (hf : StronglyMeasurable f) (hg : Integrable g μ) (c : ) (hf_bound : ∀ᵐ (x : α) μ, f x c) :
condexp m μ (f * g) =ᶠ[ae μ] f * condexp m μ g
theorem MeasureTheory.condexp_stronglyMeasurable_mul_of_bound₀ {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) [IsFiniteMeasure μ] {f g : α} (hf : AEStronglyMeasurable' m f μ) (hg : Integrable g μ) (c : ) (hf_bound : ∀ᵐ (x : α) μ, f x c) :
condexp m μ (f * g) =ᶠ[ae μ] f * condexp m μ g
theorem MeasureTheory.condexp_stronglyMeasurable_mul {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α} (hf : StronglyMeasurable f) (hfg : Integrable (f * g) μ) (hg : Integrable g μ) :
condexp m μ (f * g) =ᶠ[ae μ] f * condexp m μ g

Pull-out property of the conditional expectation.

theorem MeasureTheory.condexp_stronglyMeasurable_mul₀ {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α} (hf : AEStronglyMeasurable' m f μ) (hfg : Integrable (f * g) μ) (hg : Integrable g μ) :
condexp m μ (f * g) =ᶠ[ae μ] f * condexp m μ g

Pull-out property of the conditional expectation.