Documentation

Mathlib.NumberTheory.ClassNumber.AdmissibleAbsoluteValue

Admissible absolute values #

This file defines a structure AbsoluteValue.IsAdmissible which we use to show the class number of the ring of integers of a global field is finite.

Main definitions #

Main results #

structure AbsoluteValue.IsAdmissible {R : Type u_1} [EuclideanDomain R] (abv : AbsoluteValue R ) extends abv.IsEuclidean :

An absolute value R → ℤ is admissible if it respects the Euclidean domain structure and a large enough set of elements in R^n will contain a pair of elements whose remainders are pointwise close together.

  • map_lt_map_iff' {x y : R} : abv x < abv y EuclideanDomain.r x y
  • card :
  • exists_partition' (n : ) {ε : } : 0 < ε∀ {b : R}, b 0∀ (A : Fin nR), ∃ (t : Fin nFin (self.card ε)), ∀ (i₀ i₁ : Fin n), t i₀ = t i₁(abv (A i₁ % b - A i₀ % b)) < abv b ε

    For all ε > 0 and finite families A, we can partition the remainders of A mod b into abv.card ε sets, such that all elements in each part of remainders are close together.

Instances For
    theorem AbsoluteValue.IsAdmissible.exists_partition {R : Type u_1} [EuclideanDomain R] {abv : AbsoluteValue R } {ι : Type u_2} [Finite ι] {ε : } (hε : 0 < ε) {b : R} (hb : b 0) (A : ιR) (h : abv.IsAdmissible) :
    ∃ (t : ιFin (h.card ε)), ∀ (i₀ i₁ : ι), t i₀ = t i₁(abv (A i₁ % b - A i₀ % b)) < abv b ε

    For all ε > 0 and finite families A, we can partition the remainders of A mod b into abv.card ε sets, such that all elements in each part of remainders are close together.

    theorem AbsoluteValue.IsAdmissible.exists_approx_aux {R : Type u_1} [EuclideanDomain R] {abv : AbsoluteValue R } (n : ) (h : abv.IsAdmissible) {ε : } (_hε : 0 < ε) {b : R} (_hb : b 0) (A : Fin (h.card ε ^ n).succFin nR) :
    ∃ (i₀ : Fin (h.card ε ^ n).succ) (i₁ : Fin (h.card ε ^ n).succ), i₀ i₁ ∀ (k : Fin n), (abv (A i₁ k % b - A i₀ k % b)) < abv b ε

    Any large enough family of vectors in R^n has a pair of elements whose remainders are close together, pointwise.

    theorem AbsoluteValue.IsAdmissible.exists_approx {R : Type u_1} [EuclideanDomain R] {abv : AbsoluteValue R } {ι : Type u_2} [Fintype ι] {ε : } (hε : 0 < ε) {b : R} (hb : b 0) (h : abv.IsAdmissible) (A : Fin (h.card ε ^ Fintype.card ι).succιR) :
    ∃ (i₀ : Fin (h.card ε ^ Fintype.card ι).succ) (i₁ : Fin (h.card ε ^ Fintype.card ι).succ), i₀ i₁ ∀ (k : ι), (abv (A i₁ k % b - A i₀ k % b)) < abv b ε

    Any large enough family of vectors in R^ι has a pair of elements whose remainders are close together, pointwise.