Documentation

Mathlib.NumberTheory.NumberField.Units

Units of a number field #

We prove results about the group (π“ž K)Λ£ of units of the ring of integers π“ž K of a number field K.

Main results #

Tags #

number field, units

theorem isUnit_iff_norm {K : Type u_1} [Field K] [NumberField K] {x : { x // x ∈ NumberField.ringOfIntegers K }} :
IsUnit x ↔ |↑(↑(RingOfIntegers.norm β„š) x)| = 1
theorem NumberField.Units.coe_injective (K : Type u_1) [Field K] :
Function.Injective fun x => ↑↑x
theorem NumberField.Units.coe_mul {K : Type u_1} [Field K] (x : { x // x ∈ NumberField.ringOfIntegers K }ˣ) (y : { x // x ∈ NumberField.ringOfIntegers K }ˣ) :
↑↑(x * y) = ↑↑x * ↑↑y
theorem NumberField.Units.coe_pow {K : Type u_1} [Field K] (x : { x // x ∈ NumberField.ringOfIntegers K }Λ£) (n : β„•) :
↑↑(x ^ n) = ↑↑x ^ n
theorem NumberField.Units.coe_zpow {K : Type u_1} [Field K] (x : { x // x ∈ NumberField.ringOfIntegers K }Λ£) (n : β„€) :
↑↑(x ^ n) = ↑↑x ^ n
theorem NumberField.Units.coe_one {K : Type u_1} [Field K] :
↑↑1 = 1
theorem NumberField.Units.coe_neg_one {K : Type u_1} [Field K] :
↑↑(-1) = -1
theorem NumberField.Units.coe_ne_zero {K : Type u_1} [Field K] (x : { x // x ∈ NumberField.ringOfIntegers K }ˣ) :
↑↑x β‰  0

The torsion subgroup of the group of units.

Instances For

    The order of the torsion subgroup as positive integer.

    Instances For

      If k does not divide torsionOrder then there are no nontrivial roots of unity of order dividing k.

      The group of roots of unity of order dividing torsionOrder is equal to the torsion group.