Units of a number field #
We prove results about the group (π K)Λ£
of units of the ring of integers π K
of a number
field K
.
Main results #
isUnit_iff_norm
: an algebraic integerx : π K
is a unit if and only if|norm β x| = 1
.mem_torsion
: a unitx : (π K)Λ£
is torsion iffw x = 1
for all infinite places ofK
.
Tags #
number field, units
theorem
isUnit_iff_norm
{K : Type u_1}
[Field K]
[NumberField K]
{x : { x // x β NumberField.ringOfIntegers K }}
:
IsUnit x β |β(β(RingOfIntegers.norm β) x)| = 1
theorem
NumberField.Units.coe_injective
(K : Type u_1)
[Field K]
:
Function.Injective fun x => ββx
theorem
NumberField.Units.coe_mul
{K : Type u_1}
[Field K]
(x : { x // x β NumberField.ringOfIntegers K }Λ£)
(y : { x // x β NumberField.ringOfIntegers K }Λ£)
:
theorem
NumberField.Units.coe_ne_zero
{K : Type u_1}
[Field K]
(x : { x // x β NumberField.ringOfIntegers K }Λ£)
:
ββx β 0
def
NumberField.Units.torsion
(K : Type u_1)
[Field K]
:
Subgroup { x // x β NumberField.ringOfIntegers K }Λ£
The torsion subgroup of the group of units.
Instances For
theorem
NumberField.Units.mem_torsion
(K : Type u_1)
[Field K]
{x : { x // x β NumberField.ringOfIntegers K }Λ£}
[NumberField K]
:
x β NumberField.Units.torsion K β β (w : NumberField.InfinitePlace K), βw ββx = 1
instance
NumberField.Units.instNonemptySubtypeUnitsMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToMonoidToMonoidToMonoidWithZeroToSemiringToDivisionSemiringToSemifieldToSubmonoidToNonAssocSemiringToSubsemiringSubgroupInstGroupUnitsInstSetLikeSubgroupTorsion
(K : Type u_1)
[Field K]
:
Nonempty { x // x β NumberField.Units.torsion K }
Shortcut instance because Lean tends to time out before finding the general instance.
instance
NumberField.Units.instFintypeSubtypeUnitsMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToMonoidToMonoidToMonoidWithZeroToSemiringToDivisionSemiringToSemifieldToSubmonoidToNonAssocSemiringToSubsemiringSubgroupInstGroupUnitsInstSetLikeSubgroupTorsion
(K : Type u_1)
[Field K]
[NumberField K]
:
Fintype { x // x β NumberField.Units.torsion K }
The torsion subgroup is finite.
instance
NumberField.Units.instFiniteSubtypeUnitsMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToMonoidToMonoidToMonoidWithZeroToSemiringToDivisionSemiringToSemifieldToSubmonoidToNonAssocSemiringToSubsemiringSubgroupInstGroupUnitsInstSetLikeSubgroupTorsion
(K : Type u_1)
[Field K]
[NumberField K]
:
Finite { x // x β NumberField.Units.torsion K }
instance
NumberField.Units.instIsCyclicSubtypeUnitsMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToMonoidToMonoidToMonoidWithZeroToSemiringToDivisionSemiringToSemifieldToSubmonoidToNonAssocSemiringToSubsemiringSubgroupInstGroupUnitsInstSetLikeSubgroupTorsionToGroup
(K : Type u_1)
[Field K]
[NumberField K]
:
IsCyclic { x // x β NumberField.Units.torsion K }
The torsion subgroup is cylic.
The order of the torsion subgroup as positive integer.
Instances For
theorem
NumberField.Units.rootsOfUnity_eq_one
(K : Type u_1)
[Field K]
{ΞΆ : { x // x β NumberField.ringOfIntegers K }Λ£}
[NumberField K]
{k : β+}
(hc : Nat.Coprime βk β(NumberField.Units.torsionOrder K))
:
ΞΆ β rootsOfUnity k { x // x β NumberField.ringOfIntegers K } β ΞΆ = 1
If k
does not divide torsionOrder
then there are no nontrivial roots of unity of
order dividing k
.
The group of roots of unity of order dividing torsionOrder
is equal to the torsion
group.