Documentation

Mathlib.Probability.ConditionalExpectation

Probabilistic properties of the conditional expectation #

This file contains some properties about the conditional expectation which does not belong in the main conditional expectation file.

Main result #

theorem MeasureTheory.condExp_indep_eq {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Real E] [CompleteSpace E] {m₁ m₂ m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} (hle₁ : LE.le m₁ m) (hle₂ : LE.le m₂ m) [SigmaFinite (μ.trim hle₂)] (hf : StronglyMeasurable f) (hindp : ProbabilityTheory.Indep m₁ m₂ μ) :
(ae μ).EventuallyEq (condExp m₂ μ f) fun (x : Ω) => integral μ fun (x : Ω) => f x

If m₁, m₂ are independent σ-algebras and f is m₁-measurable, then 𝔼[f | m₂] = 𝔼[f] almost everywhere.

@[deprecated MeasureTheory.condExp_indep_eq (since := "2025-01-21")]
theorem MeasureTheory.condexp_indep_eq {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Real E] [CompleteSpace E] {m₁ m₂ m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} (hle₁ : LE.le m₁ m) (hle₂ : LE.le m₂ m) [SigmaFinite (μ.trim hle₂)] (hf : StronglyMeasurable f) (hindp : ProbabilityTheory.Indep m₁ m₂ μ) :
(ae μ).EventuallyEq (condExp m₂ μ f) fun (x : Ω) => integral μ fun (x : Ω) => f x

Alias of MeasureTheory.condExp_indep_eq.


If m₁, m₂ are independent σ-algebras and f is m₁-measurable, then 𝔼[f | m₂] = 𝔼[f] almost everywhere.