Documentation

Mathlib.Probability.Kernel.Condexp

Kernel associated with a conditional expectation #

We define condExpKernel μ m, a kernel from Ω to Ω such that for all integrable functions f, μ[f | m] =ᵐ[μ] fun ω => ∫ y, f y ∂(condExpKernel μ m ω).

This kernel is defined if Ω is a standard Borel space. In general, μ⟦s | m⟧ maps a measurable set s to a function Ω → ℝ≥0∞, and for all s that map is unique up to a μ-null set. For all a, the map from sets to ℝ≥0∞ that we obtain that way verifies some of the properties of a measure, but the fact that the μ-null set depends on s can prevent us from finding versions of the conditional expectation that combine into a true measure. The standard Borel space assumption on Ω allows us to do so.

Main definitions #

Main statements #

theorem MeasureTheory.AEStronglyMeasurable.comp_snd_map_prod_id {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩF} [TopologicalSpace F] (hm : LE.le m ) (hf : AEStronglyMeasurable f μ) :
AEStronglyMeasurable (fun (x : Prod Ω Ω) => f x.snd) (Measure.map (fun (ω : Ω) => { fst := id ω, snd := id ω }) μ)
theorem MeasureTheory.Integrable.comp_snd_map_prod_id {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩF} [NormedAddCommGroup F] (hm : LE.le m ) (hf : Integrable f μ) :
Integrable (fun (x : Prod Ω Ω) => f x.snd) (Measure.map (fun (ω : Ω) => { fst := id ω, snd := id ω }) μ)
@[irreducible]

Kernel associated with the conditional expectation with respect to a σ-algebra. It satisfies μ[f | m] =ᵐ[μ] fun ω => ∫ y, f y ∂(condExpKernel μ m ω). It is defined as the conditional distribution of the identity given the identity, where the second identity is understood as a map from Ω with the σ-algebra to Ω with σ-algebra m ⊓ mΩ. We use m ⊓ mΩ instead of m to ensure that it is a sub-σ-algebra of . We then use Kernel.comap to get a kernel from m to instead of from m ⊓ mΩ to .

Equations
Instances For
    @[deprecated ProbabilityTheory.condExpKernel (since := "2025-01-21")]

    Alias of ProbabilityTheory.condExpKernel.


    Kernel associated with the conditional expectation with respect to a σ-algebra. It satisfies μ[f | m] =ᵐ[μ] fun ω => ∫ y, f y ∂(condExpKernel μ m ω). It is defined as the conditional distribution of the identity given the identity, where the second identity is understood as a map from Ω with the σ-algebra to Ω with σ-algebra m ⊓ mΩ. We use m ⊓ mΩ instead of m to ensure that it is a sub-σ-algebra of . We then use Kernel.comap to get a kernel from m to instead of from m ⊓ mΩ to .

    Equations
    Instances For
      @[deprecated ProbabilityTheory.condExpKernel_eq (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExpKernel_eq.

      @[deprecated ProbabilityTheory.condExpKernel_apply_eq_condDistrib (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExpKernel_apply_eq_condDistrib.

      theorem ProbabilityTheory.compProd_trim_condExpKernel {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hm : LE.le m ) :
      Eq ((μ.trim hm).compProd (condExpKernel μ m)) (MeasureTheory.Measure.map (fun (ω : Ω) => { fst := id ω, snd := id ω }) μ)
      @[deprecated ProbabilityTheory.measurable_condExpKernel (since := "2025-01-21")]

      Alias of ProbabilityTheory.measurable_condExpKernel.

      @[deprecated ProbabilityTheory.stronglyMeasurable_condExpKernel (since := "2025-01-21")]

      Alias of ProbabilityTheory.stronglyMeasurable_condExpKernel.

      @[deprecated MeasureTheory.AEStronglyMeasurable.integral_condExpKernel (since := "2025-01-21")]
      theorem MeasureTheory.AEStronglyMeasurable.integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace Real F] (hf : AEStronglyMeasurable f μ) :
      AEStronglyMeasurable (fun (ω : Ω) => integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => f y) μ

      Alias of MeasureTheory.AEStronglyMeasurable.integral_condExpKernel.

      @[deprecated ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel (since := "2025-01-24")]

      Alias of ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel.

      @[deprecated ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel (since := "2025-01-21")]

      Alias of ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel.

      theorem MeasureTheory.Integrable.condExpKernel_ae {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :
      @[deprecated MeasureTheory.Integrable.condExpKernel_ae (since := "2025-01-21")]
      theorem MeasureTheory.Integrable.condexpKernel_ae {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :

      Alias of MeasureTheory.Integrable.condExpKernel_ae.

      theorem MeasureTheory.Integrable.integral_norm_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :
      Integrable (fun (ω : Ω) => integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => Norm.norm (f y)) μ
      @[deprecated MeasureTheory.Integrable.integral_norm_condExpKernel (since := "2025-01-21")]
      theorem MeasureTheory.Integrable.integral_norm_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :
      Integrable (fun (ω : Ω) => integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => Norm.norm (f y)) μ

      Alias of MeasureTheory.Integrable.integral_norm_condExpKernel.

      theorem MeasureTheory.Integrable.norm_integral_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace Real F] (hf_int : Integrable f μ) :
      Integrable (fun (ω : Ω) => Norm.norm (integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => f y)) μ
      @[deprecated MeasureTheory.Integrable.norm_integral_condExpKernel (since := "2025-01-21")]
      theorem MeasureTheory.Integrable.norm_integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace Real F] (hf_int : Integrable f μ) :
      Integrable (fun (ω : Ω) => Norm.norm (integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => f y)) μ

      Alias of MeasureTheory.Integrable.norm_integral_condExpKernel.

      theorem MeasureTheory.Integrable.integral_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace Real F] (hf_int : Integrable f μ) :
      Integrable (fun (ω : Ω) => integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => f y) μ
      @[deprecated MeasureTheory.Integrable.integral_condExpKernel (since := "2025-01-21")]
      theorem MeasureTheory.Integrable.integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace Real F] (hf_int : Integrable f μ) :
      Integrable (fun (ω : Ω) => integral (DFunLike.coe (ProbabilityTheory.condExpKernel μ m) ω) fun (y : Ω) => f y) μ

      Alias of MeasureTheory.Integrable.integral_condExpKernel.

      @[deprecated ProbabilityTheory.integrable_toReal_condExpKernel (since := "2025-01-21")]

      Alias of ProbabilityTheory.integrable_toReal_condExpKernel.

      @[deprecated ProbabilityTheory.condExpKernel_ae_eq_condExp' (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExpKernel_ae_eq_condExp'.

      @[deprecated ProbabilityTheory.condExpKernel_ae_eq_condExp (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExpKernel_ae_eq_condExp.

      @[deprecated ProbabilityTheory.condExpKernel_ae_eq_trim_condExp (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExpKernel_ae_eq_trim_condExp.

      @[deprecated ProbabilityTheory.condExp_ae_eq_integral_condExpKernel' (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExp_ae_eq_integral_condExpKernel'.

      The conditional expectation of f with respect to a σ-algebra m is almost everywhere equal to the integral ∫ y, f y ∂(condExpKernel μ m ω).

      @[deprecated ProbabilityTheory.condExp_ae_eq_integral_condExpKernel (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExp_ae_eq_integral_condExpKernel.


      The conditional expectation of f with respect to a σ-algebra m is almost everywhere equal to the integral ∫ y, f y ∂(condExpKernel μ m ω).

      The conditional expectation of f with respect to a σ-algebra m is (μ.trim hm)-almost everywhere equal to the integral ∫ y, f y ∂(condExpKernel μ m ω).

      Relation between conditional expectation, conditional kernel and the conditional measure. #

      @[deprecated ProbabilityTheory.condExp_generateFrom_singleton (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExp_generateFrom_singleton.

      @[deprecated ProbabilityTheory.condExp_set_generateFrom_singleton (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExp_set_generateFrom_singleton.

      @[deprecated ProbabilityTheory.condExpKernel_singleton_ae_eq_cond (since := "2025-01-21")]

      Alias of ProbabilityTheory.condExpKernel_singleton_ae_eq_cond.