Documentation

Mathlib.Probability.Kernel.MeasurableIntegral

Measurability of the integral against a kernel #

The Bochner integral of a strongly measurable function against a kernel is strongly measurable.

Main statements #

theorem ProbabilityTheory.measurableSet_integrable {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : Kernel α β} {E : Type u_4} [NormedAddCommGroup E] f : βE (hf : MeasureTheory.StronglyMeasurable f) :
theorem ProbabilityTheory.measurableSet_kernel_integrable {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [IsSFiniteKernel κ] f : αβE (hf : MeasureTheory.StronglyMeasurable (Function.uncurry f)) :
theorem MeasureTheory.StronglyMeasurable.integral_kernel {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Real E] f : βE (hf : StronglyMeasurable f) :
StronglyMeasurable fun (x : α) => integral (DFunLike.coe κ x) fun (y : β) => f y
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_right {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel κ] [NormedSpace Real E] f : αβE (hf : StronglyMeasurable (Function.uncurry f)) :
StronglyMeasurable fun (x : α) => integral (DFunLike.coe κ x) fun (y : β) => f x y
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_right' {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel κ] [NormedSpace Real E] f : Prod α βE (hf : StronglyMeasurable f) :
StronglyMeasurable fun (x : α) => integral (DFunLike.coe κ x) fun (y : β) => f { fst := x, snd := y }
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_right'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {a : α} {E : Type u_4} [NormedAddCommGroup E] {η : ProbabilityTheory.Kernel (Prod α β) γ} [ProbabilityTheory.IsSFiniteKernel η] [NormedSpace Real E] {f : Prod β γE} (hf : StronglyMeasurable f) :
StronglyMeasurable fun (x : β) => integral (DFunLike.coe η { fst := a, snd := x }) fun (y : γ) => f { fst := x, snd := y }
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_left {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel κ] [NormedSpace Real E] f : βαE (hf : StronglyMeasurable (Function.uncurry f)) :
StronglyMeasurable fun (y : α) => integral (DFunLike.coe κ y) fun (x : β) => f x y
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_left' {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel κ] [NormedSpace Real E] f : Prod β αE (hf : StronglyMeasurable f) :
StronglyMeasurable fun (y : α) => integral (DFunLike.coe κ y) fun (x : β) => f { fst := x, snd := y }
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_left'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {a : α} {E : Type u_4} [NormedAddCommGroup E] {η : ProbabilityTheory.Kernel (Prod α β) γ} [ProbabilityTheory.IsSFiniteKernel η] [NormedSpace Real E] {f : Prod γ βE} (hf : StronglyMeasurable f) :
StronglyMeasurable fun (y : β) => integral (DFunLike.coe η { fst := a, snd := y }) fun (x : γ) => f { fst := x, snd := y }