Associated primes of a module #
We provide the definition and related lemmas about associated primes of modules.
Main definition #
IsAssociatedPrime
:IsAssociatedPrime I M
if the prime idealI
is the annihilator of somex : M
.associatedPrimes
: The set of associated primes of a module.
Main results #
exists_le_isAssociatedPrime_of_isNoetherianRing
: In a noetherian ring, anyann(x)
is contained in an associated prime forx ≠ 0
.associatedPrimes.eq_singleton_of_isPrimary
: In a noetherian ring,I.radical
is the only associated prime ofR ⧸ I
whenI
is primary.
TODO #
Generalize this to a non-commutative setting once there are annihilator for non-commutative rings.
def
IsAssociatedPrime
{R : Type u_1}
[CommRing R]
(I : Ideal R)
(M : Type u_2)
[AddCommGroup M]
[Module R M]
:
IsAssociatedPrime I M
if the prime ideal I
is the annihilator of some x : M
.
Equations
- IsAssociatedPrime I M = (I.IsPrime ∧ ∃ (x : M), I = (Submodule.span R {x}).annihilator)
Instances For
The set of associated primes of a module.
Equations
- associatedPrimes R M = {I : Ideal R | IsAssociatedPrime I M}
Instances For
theorem
AssociatePrimes.mem_iff
{R : Type u_1}
[CommRing R]
{I : Ideal R}
{M : Type u_2}
[AddCommGroup M]
[Module R M]
:
I ∈ associatedPrimes R M ↔ IsAssociatedPrime I M
theorem
IsAssociatedPrime.isPrime
{R : Type u_1}
[CommRing R]
{I : Ideal R}
{M : Type u_2}
[AddCommGroup M]
[Module R M]
(h : IsAssociatedPrime I M)
:
I.IsPrime
theorem
IsAssociatedPrime.map_of_injective
{R : Type u_1}
[CommRing R]
{I : Ideal R}
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{M' : Type u_3}
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
(h : IsAssociatedPrime I M)
(hf : Function.Injective ⇑f)
:
IsAssociatedPrime I M'
theorem
LinearEquiv.isAssociatedPrime_iff
{R : Type u_1}
[CommRing R]
{I : Ideal R}
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{M' : Type u_3}
[AddCommGroup M']
[Module R M']
(l : M ≃ₗ[R] M')
:
IsAssociatedPrime I M ↔ IsAssociatedPrime I M'
theorem
not_isAssociatedPrime_of_subsingleton
{R : Type u_1}
[CommRing R]
{I : Ideal R}
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Subsingleton M]
:
theorem
exists_le_isAssociatedPrime_of_isNoetherianRing
(R : Type u_1)
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[H : IsNoetherianRing R]
(x : M)
(hx : x ≠ 0)
:
∃ (P : Ideal R), IsAssociatedPrime P M ∧ (Submodule.span R {x}).annihilator ≤ P
theorem
associatedPrimes.subset_of_injective
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{M' : Type u_3}
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
(hf : Function.Injective ⇑f)
:
associatedPrimes R M ⊆ associatedPrimes R M'
theorem
LinearEquiv.AssociatedPrimes.eq
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{M' : Type u_3}
[AddCommGroup M']
[Module R M']
(l : M ≃ₗ[R] M')
:
associatedPrimes R M = associatedPrimes R M'
theorem
associatedPrimes.eq_empty_of_subsingleton
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Subsingleton M]
:
associatedPrimes R M = ∅
theorem
associatedPrimes.nonempty
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
[Nontrivial M]
:
(associatedPrimes R M).Nonempty
theorem
biUnion_associatedPrimes_eq_zero_divisors
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
:
theorem
IsAssociatedPrime.annihilator_le
{R : Type u_1}
[CommRing R]
{I : Ideal R}
{M : Type u_2}
[AddCommGroup M]
[Module R M]
(h : IsAssociatedPrime I M)
:
theorem
IsAssociatedPrime.eq_radical
{R : Type u_1}
[CommRing R]
{I J : Ideal R}
(hI : I.IsPrimary)
(h : IsAssociatedPrime J (R ⧸ I))
:
J = I.radical
theorem
associatedPrimes.eq_singleton_of_isPrimary
{R : Type u_1}
[CommRing R]
{I : Ideal R}
[IsNoetherianRing R]
(hI : I.IsPrimary)
:
associatedPrimes R (R ⧸ I) = {I.radical}