Documentation

Mathlib.RingTheory.Invariant

Invariant Extensions of Rings and Frobenius Elements #

In algebraic number theory, if L/K is a finite Galois extension of number fields, with rings of integers 𝓞L/𝓞K, and if q is prime ideal of 𝓞L lying over a prime ideal p of 𝓞K, then there exists a Frobenius element Frob p in Gal(L/K) with the property that Frob p x ≡ x ^ #(𝓞K/p) (mod q) for all x ∈ 𝓞L.

This file proves the existence of Frobenius elements in a more general setting.

Given an extension of rings B/A and an action of G on B, we introduce a predicate Algebra.IsInvariant A B G which states that every fixed point of B lies in the image of A.

Main statements #

Let G be a finite group acting on a commutative ring B satisfying Algebra.IsInvariant A B G.

class Algebra.IsInvariant (A : Type u_1) (B : Type u_2) (G : Type u_3) [CommSemiring A] [Semiring B] [Algebra A B] [Group G] [MulSemiringAction G B] :

An action of a group G on an extension of rings B/A is invariant if every fixed point of B lies in the image of A. The converse statement that every point in the image of A is fixed by G is smul_algebraMap (assuming SMulCommClass A B G).

  • isInvariant (b : B) : (∀ (g : G), g b = b)∃ (a : A), (algebraMap A B) a = b
Instances
    theorem Algebra.isInvariant_iff (A : Type u_1) (B : Type u_2) (G : Type u_3) [CommSemiring A] [Semiring B] [Algebra A B] [Group G] [MulSemiringAction G B] :
    IsInvariant A B G ∀ (b : B), (∀ (g : G), g b = b)∃ (a : A), (algebraMap A B) a = b
    noncomputable def IsIntegralClosure.MulSemiringAction (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_4) [CommRing A] [CommRing B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] :

    In the AKLB setup, the Galois group of L/K acts on B.

    Equations
    Instances For
      theorem Algebra.isInvariant_of_isGalois (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_4) [CommRing A] [CommRing B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsIntegrallyClosed A] [IsIntegralClosure B A L] [FiniteDimensional K L] [h : IsGalois K L] :

      In the AKLB setup, every fixed point of B lies in the image of A.

      noncomputable def MulSemiringAction.charpoly {B : Type u_2} (G : Type u_3) [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) :

      Characteristic polynomial of a finite group action on a ring.

      Equations
      Instances For
        theorem MulSemiringAction.charpoly_eq {B : Type u_2} (G : Type u_3) [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) :
        charpoly G b = g : G, (Polynomial.X - Polynomial.C (g b))
        theorem MulSemiringAction.charpoly_eq_prod_smul {B : Type u_2} (G : Type u_3) [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) :
        charpoly G b = g : G, g (Polynomial.X - Polynomial.C b)
        theorem MulSemiringAction.monic_charpoly {B : Type u_2} (G : Type u_3) [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) :
        (charpoly G b).Monic
        theorem MulSemiringAction.eval_charpoly {B : Type u_2} (G : Type u_3) [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) :
        theorem MulSemiringAction.smul_charpoly {B : Type u_2} {G : Type u_3} [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) (g : G) :
        theorem MulSemiringAction.smul_coeff_charpoly {B : Type u_2} {G : Type u_3} [CommRing B] [Group G] [MulSemiringAction G B] [Fintype G] (b : B) (n : ) (g : G) :
        g (charpoly G b).coeff n = (charpoly G b).coeff n
        theorem Algebra.IsInvariant.isIntegral (A : Type u_1) (B : Type u_2) (G : Type u_3) [CommRing A] [CommRing B] [Algebra A B] [Group G] [MulSemiringAction G B] [IsInvariant A B G] [Finite G] :
        theorem Algebra.IsInvariant.exists_smul_of_under_eq (A : Type u_1) (B : Type u_2) (G : Type u_3) [CommRing A] [CommRing B] [Algebra A B] [Group G] [MulSemiringAction G B] [IsInvariant A B G] [Finite G] [SMulCommClass G A B] (P Q : Ideal B) [hP : P.IsPrime] [hQ : Q.IsPrime] (hPQ : Ideal.under A P = Ideal.under A Q) :
        ∃ (g : G), Q = g P

        G acts transitively on the prime ideals of B above a given prime ideal of A.

        noncomputable def IsFractionRing.stabilizerHom {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] (G : Type u_3) [Group G] [MulSemiringAction G B] [SMulCommClass G A B] (P : Ideal A) (Q : Ideal B) [Q.LiesOver P] (K : Type u_4) (L : Type u_5) [Field K] [Field L] [Algebra (A P) K] [Algebra (B Q) L] [Algebra (A P) L] [IsScalarTower (A P) (B Q) L] [Algebra K L] [IsScalarTower (A P) K L] [IsFractionRing (A P) K] [IsFractionRing (B Q) L] :

        If Q lies over P, then the stabilizer of Q acts on Frac(B/Q)/Frac(A/P).

        Equations
        Instances For
          theorem IsFractionRing.stabilizerHom_surjective {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] (G : Type u_3) [Group G] [Finite G] [MulSemiringAction G B] [SMulCommClass G A B] (P : Ideal A) (Q : Ideal B) [Q.IsPrime] [Q.LiesOver P] (K : Type u_4) (L : Type u_5) [Field K] [Field L] [Algebra (A P) K] [Algebra (B Q) L] [Algebra (A P) L] [IsScalarTower (A P) (B Q) L] [Algebra K L] [IsScalarTower (A P) K L] [Algebra.IsInvariant A B G] [IsFractionRing (A P) K] [IsFractionRing (B Q) L] :

          The stabilizer subgroup of Q surjects onto Aut(Frac(B/Q)/Frac(A/P)).

          theorem Ideal.Quotient.stabilizerHom_surjective {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] (G : Type u_3) [Group G] [Finite G] [MulSemiringAction G B] [SMulCommClass G A B] (P : Ideal A) (Q : Ideal B) [Q.IsPrime] [Q.LiesOver P] [Algebra.IsInvariant A B G] :

          The stabilizer subgroup of Q surjects onto Aut((B/Q)/(A/P)).