Documentation

Mathlib.RingTheory.Polynomial.Cyclotomic.Eval

Evaluating cyclotomic polynomials #

This file states some results about evaluating cyclotomic polynomials in various different ways.

Main definitions #

theorem Polynomial.eval_one_cyclotomic_prime {R : Type u_1} [CommRing R] {p : Nat} [hn : Fact (Nat.Prime p)] :
Eq (eval 1 (cyclotomic p R)) p.cast
theorem Polynomial.eval₂_one_cyclotomic_prime {R : Type u_1} {S : Type u_2} [CommRing R] [Semiring S] (f : RingHom R S) {p : Nat} [Fact (Nat.Prime p)] :
Eq (eval₂ f 1 (cyclotomic p R)) p.cast
theorem Polynomial.eval_one_cyclotomic_prime_pow {R : Type u_1} [CommRing R] {p : Nat} (k : Nat) [hn : Fact (Nat.Prime p)] :
theorem Polynomial.eval₂_one_cyclotomic_prime_pow {R : Type u_1} {S : Type u_2} [CommRing R] [Semiring S] (f : RingHom R S) {p : Nat} (k : Nat) [Fact (Nat.Prime p)] :
theorem Polynomial.cyclotomic_pos {n : Nat} (hn : LT.lt 2 n) {R : Type u_1} [LinearOrderedCommRing R] (x : R) :
LT.lt 0 (eval x (cyclotomic n R))
theorem Polynomial.cyclotomic_pos_and_nonneg (n : Nat) {R : Type u_1} [LinearOrderedCommRing R] (x : R) :
And (LT.lt 1 xLT.lt 0 (eval x (cyclotomic n R))) (LE.le 1 xLE.le 0 (eval x (cyclotomic n R)))
theorem Polynomial.cyclotomic_pos' (n : Nat) {R : Type u_1} [LinearOrderedCommRing R] {x : R} (hx : LT.lt 1 x) :
LT.lt 0 (eval x (cyclotomic n R))

Cyclotomic polynomials are always positive on inputs larger than one. Similar to cyclotomic_pos but with the condition on the input rather than index of the cyclotomic polynomial.

theorem Polynomial.cyclotomic_nonneg (n : Nat) {R : Type u_1} [LinearOrderedCommRing R] {x : R} (hx : LE.le 1 x) :
LE.le 0 (eval x (cyclotomic n R))

Cyclotomic polynomials are always nonnegative on inputs one or more.

theorem Polynomial.eval_one_cyclotomic_not_prime_pow {R : Type u_1} [Ring R] {n : Nat} (h : ∀ {p : Nat}, Nat.Prime p∀ (k : Nat), Ne (HPow.hPow p k) n) :
Eq (eval 1 (cyclotomic n R)) 1