Documentation

Mathlib.Topology.StoneCech

Stone-Čech compactification #

Construction of the Stone-Čech compactification using ultrafilters.

Parts of the formalization are based on "Ultrafilters and Topology" by Marius Stekelenburg, particularly section 5.

def ultrafilterBasis (α : Type u) :

Basis for the topology on Ultrafilter α.

Equations
Instances For
    theorem ultrafilter_isOpen_basic {α : Type u} (s : Set α) :
    IsOpen {u : Ultrafilter α | s u}

    The basic open sets for the topology on ultrafilters are open.

    theorem ultrafilter_isClosed_basic {α : Type u} (s : Set α) :
    IsClosed {u : Ultrafilter α | s u}

    The basic open sets for the topology on ultrafilters are also closed.

    theorem ultrafilter_converges_iff {α : Type u} {u : Ultrafilter (Ultrafilter α)} {x : Ultrafilter α} :
    u nhds x x = joinM u

    Every ultrafilter u on Ultrafilter α converges to a unique point of Ultrafilter α, namely joinM u.

    Equations
    • =
    Equations
    • =
    @[simp]
    theorem Ultrafilter.tendsto_pure_self {α : Type u} (b : Ultrafilter α) :
    Filter.Tendsto pure (b) (nhds b)
    theorem ultrafilter_comap_pure_nhds {α : Type u} (b : Ultrafilter α) :
    Filter.comap pure (nhds b) b
    theorem denseRange_pure {α : Type u} :

    The range of pure : α → Ultrafilter α is dense in Ultrafilter α.

    theorem induced_topology_pure {α : Type u} :
    TopologicalSpace.induced pure Ultrafilter.topologicalSpace =

    The map pure : α → Ultrafilter α induces on α the discrete topology.

    theorem denseInducing_pure {α : Type u} :

    pure : α → Ultrafilter α defines a dense inducing of α in Ultrafilter α.

    theorem denseEmbedding_pure {α : Type u} :

    pure : α → Ultrafilter α defines a dense embedding of α in Ultrafilter α.

    def Ultrafilter.extend {α : Type u} {γ : Type u_1} [TopologicalSpace γ] (f : αγ) :
    Ultrafilter αγ

    The extension of a function α → γ to a function Ultrafilter α → γ. When γ is a compact Hausdorff space it will be continuous.

    Equations
    Instances For
      theorem ultrafilter_extend_extends {α : Type u} {γ : Type u_1} [TopologicalSpace γ] [T2Space γ] (f : αγ) :
      theorem continuous_ultrafilter_extend {α : Type u} {γ : Type u_1} [TopologicalSpace γ] [T2Space γ] [CompactSpace γ] (f : αγ) :
      theorem ultrafilter_extend_eq_iff {α : Type u} {γ : Type u_1} [TopologicalSpace γ] [T2Space γ] [CompactSpace γ] {f : αγ} {b : Ultrafilter α} {c : γ} :

      The value of Ultrafilter.extend f on an ultrafilter b is the unique limit of the ultrafilter b.map f in γ.

      Equations
      • One or more equations did not get rendered due to their size.
      def StoneCech (α : Type u) [TopologicalSpace α] :

      The Stone-Čech compactification of a topological space.

      Equations
      Instances For
        Equations
        • instTopologicalSpaceStoneCech = id inferInstance
        Equations
        • instInhabitedStoneCech = id inferInstance
        def stoneCechUnit {α : Type u} [TopologicalSpace α] (x : α) :

        The natural map from α to its Stone-Čech compactification.

        Equations
        Instances For
          theorem denseRange_stoneCechUnit {α : Type u} [TopologicalSpace α] :
          DenseRange stoneCechUnit

          The image of stone_cech_unit is dense. (But stone_cech_unit need not be an embedding, for example if α is not Hausdorff.)

          def stoneCechExtend {α : Type u} [TopologicalSpace α] {γ : Type u} [TopologicalSpace γ] [T2Space γ] [CompactSpace γ] {f : αγ} (hf : Continuous f) :
          StoneCech αγ

          The extension of a continuous function from α to a compact Hausdorff space γ to the Stone-Čech compactification of α.

          Equations
          Instances For
            theorem stoneCechExtend_extends {α : Type u} [TopologicalSpace α] {γ : Type u} [TopologicalSpace γ] [T2Space γ] [CompactSpace γ] {f : αγ} (hf : Continuous f) :
            stoneCechExtend hf stoneCechUnit = f
            theorem continuous_stoneCechExtend {α : Type u} [TopologicalSpace α] {γ : Type u} [TopologicalSpace γ] [T2Space γ] [CompactSpace γ] {f : αγ} (hf : Continuous f) :
            theorem stoneCech_hom_ext {α : Type u} [TopologicalSpace α] {γ' : Type u} [TopologicalSpace γ'] [T2Space γ'] {g₁ : StoneCech αγ'} {g₂ : StoneCech αγ'} (h₁ : Continuous g₁) (h₂ : Continuous g₂) (h : g₁ stoneCechUnit = g₂ stoneCechUnit) :
            g₁ = g₂
            theorem convergent_eqv_pure {α : Type u} [TopologicalSpace α] {u : Ultrafilter α} {x : α} (ux : u nhds x) :
            u pure x
            theorem continuous_stoneCechUnit {α : Type u} [TopologicalSpace α] :
            Continuous stoneCechUnit
            Equations
            • =
            Equations
            • =