Built with
doc-gen4, running Lean4.
Bubbles (
) indicate interactive fragments: hover for details, tap to reveal contents.
Use
Ctrl+↑Ctrl+↓to navigate,
Ctrl+🖱️to focus.
On Mac, use
Cmdinstead of
Ctrl.
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Callum Sutton, Yury Kudryashov
! This file was ported from Lean 3 source module algebra.hom.equiv.units.group_with_zero
! leanprover-community/mathlib commit 655994e298904d7e5bbd1e18c95defd7b543eb94
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Algebra.Hom.Equiv.Units.Basic
import Mathlib.Algebra.GroupWithZero.Units.Basic
/-!
# Multiplication by a nonzero element in a `GroupWithZero` is a permutation.
-/
variable {G : Type _}
namespace Equiv
section GroupWithZero
variable [GroupWithZero: Type ?u.1049 → Type ?u.1049
GroupWithZero G]
/-- Left multiplication by a nonzero element in a `GroupWithZero` is a permutation of the
underlying type. -/
@[simps! (config := { fullyApplied := false })]
protected def mulLeft₀ (a : G) (ha : a ≠ 0) : Perm G :=
(Units.mk0 a ha).mulLeft
#align equiv.mul_left₀ Equiv.mulLeft₀
#align equiv.mul_left₀_symm_apply Equiv.mulLeft₀_symm_apply
#align equiv.mul_left₀_apply Equiv.mulLeft₀_apply
theorem _root_.mulLeft_bijective₀ (a : G) (ha : a ≠ 0) : Function.Bijective: {α : Sort ?u.909} → {β : Sort ?u.908} → (α → β) → Prop
Function.Bijective ((· * ·) a : G → G) :=
(Equiv.mulLeft₀ a ha).bijective
#align mul_left_bijective₀ mulLeft_bijective₀
/-- Right multiplication by a nonzero element in a `GroupWithZero` is a permutation of the
underlying type. -/
@[simps! (config := { fullyApplied := false })]
protected def mulRight₀ (a : G) (ha : a ≠ 0) : Perm G :=
(Units.mk0 a ha).mulRight
#align equiv.mul_right₀ Equiv.mulRight₀
#align equiv.mul_right₀_symm_apply Equiv.mulRight₀_symm_apply
#align equiv.mul_right₀_apply Equiv.mulRight₀_apply
theorem _root_.mulRight_bijective₀ (a : G) (ha : a ≠ 0) : Function.Bijective: {α : Sort ?u.2231} → {β : Sort ?u.2230} → (α → β) → Prop
Function.Bijective ((· * a) : G → G) :=
(Equiv.mulRight₀ a ha).bijective
#align mul_right_bijective₀ mulRight_bijective₀
end GroupWithZero
end Equiv