Built with doc-gen4, running Lean4. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓to navigate, Ctrl+🖱️to focus. On Mac, use Cmdinstead of Ctrl.
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies

! This file was ported from Lean 3 source module order.monotone.monovary
! leanprover-community/mathlib commit 6cb77a8eaff0ddd100e87b1591c6d3ad319514ff
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Data.Set.Image

/-!
# Monovariance of functions

Two functions *vary together* if a strict change in the first implies a change in the second.

This is in some sense a way to say that two functions `f : ι → α`, `g : ι → β` are "monotone
together", without actually having an order on `ι`.

This condition comes up in the rearrangement inequality. See `Algebra.Order.Rearrangement`.

## Main declarations

* `Monovary f g`: `f` monovaries with `g`. If `g i < g j`, then `f i ≤ f j`.
* `Antivary f g`: `f` antivaries with `g`. If `g i < g j`, then `f j ≤ f i`.
* `MonovaryOn f g s`: `f` monovaries with `g` on `s`.
* `MonovaryOn f g s`: `f` antivaries with `g` on `s`.
-/


open Function Set

variable {
ι: Type ?u.2
ι
ι': Type ?u.5
ι'
α: Type ?u.8835
α
β: Type ?u.11
β
γ: Type ?u.14
γ
:
Type _: Type (?u.12668+1)
Type _
} section Preorder variable [
Preorder: Type ?u.5032 → Type ?u.5032
Preorder
α: Type ?u.6429
α
] [
Preorder: Type ?u.6930 → Type ?u.6930
Preorder
β: Type ?u.6921
β
] [
Preorder: Type ?u.3082 → Type ?u.3082
Preorder
γ: Type ?u.5485
γ
] {
f: ια
f
:
ι: Type ?u.10069
ι
α: Type ?u.69
α
} {
f': αγ
f'
:
α: Type ?u.23
α
γ: Type ?u.29
γ
} {
g: ιβ
g
:
ι: Type ?u.63
ι
β: Type ?u.6921
β
} {
g': βγ
g'
:
β: Type ?u.6921
β
γ: Type ?u.29
γ
} {
s: Set ι
s
t: Set ι
t
:
Set: Type ?u.6232 → Type ?u.6232
Set
ι: Type ?u.17
ι
} /-- `f` monovaries with `g` if `g i < g j` implies `f i ≤ f j`. -/ def
Monovary: (ια) → (ιβ) → Prop
Monovary
(
f: ια
f
:
ι: Type ?u.63
ι
α: Type ?u.69
α
) (
g: ιβ
g
:
ι: Type ?u.63
ι
β: Type ?u.72
β
) :
Prop: Type
Prop
:= ∀ ⦃
i: ?m.121
i
j: ?m.124
j
⦄,
g: ιβ
g
i: ?m.121
i
<
g: ιβ
g
j: ?m.124
j
f: ια
f
i: ?m.121
i
f: ια
f
j: ?m.124
j
#align monovary
Monovary: {ι : Type u_1} → {α : Type u_2} → {β : Type u_3} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
/-- `f` antivaries with `g` if `g i < g j` implies `f j ≤ f i`. -/ def
Antivary: (ια) → (ιβ) → Prop
Antivary
(
f: ια
f
:
ι: Type ?u.183
ι
α: Type ?u.189
α
) (
g: ιβ
g
:
ι: Type ?u.183
ι
β: Type ?u.192
β
) :
Prop: Type
Prop
:= ∀ ⦃
i: ?m.241
i
j: ?m.244
j
⦄,
g: ιβ
g
i: ?m.241
i
<
g: ιβ
g
j: ?m.244
j
f: ια
f
j: ?m.244
j
f: ια
f
i: ?m.241
i
#align antivary
Antivary: {ι : Type u_1} → {α : Type u_2} → {β : Type u_3} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
/-- `f` monovaries with `g` on `s` if `g i < g j` implies `f i ≤ f j` for all `i, j ∈ s`. -/ def
MonovaryOn: (ια) → (ιβ) → Set ιProp
MonovaryOn
(
f: ια
f
:
ι: Type ?u.303
ι
α: Type ?u.309
α
) (
g: ιβ
g
:
ι: Type ?u.303
ι
β: Type ?u.312
β
) (
s: Set ι
s
:
Set: Type ?u.357 → Type ?u.357
Set
ι: Type ?u.303
ι
) :
Prop: Type
Prop
:= ∀ ⦃
i: ?m.365
i
⦄ (
_: i s
_
:
i: ?m.365
i
s: Set ι
s
) ⦃
j: ?m.397
j
⦄ (
_: j s
_
:
j: ?m.397
j
s: Set ι
s
),
g: ιβ
g
i: ?m.365
i
<
g: ιβ
g
j: ?m.397
j
f: ια
f
i: ?m.365
i
f: ια
f
j: ?m.397
j
#align monovary_on
MonovaryOn: {ι : Type u_1} → {α : Type u_2} → {β : Type u_3} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
/-- `f` antivaries with `g` on `s` if `g i < g j` implies `f j ≤ f i` for all `i, j ∈ s`. -/ def
AntivaryOn: (ια) → (ιβ) → Set ιProp
AntivaryOn
(
f: ια
f
:
ι: Type ?u.490
ι
α: Type ?u.496
α
) (
g: ιβ
g
:
ι: Type ?u.490
ι
β: Type ?u.499
β
) (
s: Set ι
s
:
Set: Type ?u.544 → Type ?u.544
Set
ι: Type ?u.490
ι
) :
Prop: Type
Prop
:= ∀ ⦃
i: ?m.552
i
⦄ (
_: i s
_
:
i: ?m.552
i
s: Set ι
s
) ⦃
j: ?m.584
j
⦄ (
_: j s
_
:
j: ?m.584
j
s: Set ι
s
),
g: ιβ
g
i: ?m.552
i
<
g: ιβ
g
j: ?m.584
j
f: ια
f
j: ?m.584
j
f: ια
f
i: ?m.552
i
#align antivary_on
AntivaryOn: {ι : Type u_1} → {α : Type u_2} → {β : Type u_3} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
protected theorem
Monovary.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f g∀ (s : Set ι), MonovaryOn f g s
Monovary.monovaryOn
(
h: Monovary f g
h
:
Monovary: {ι : Type ?u.725} → {α : Type ?u.724} → {β : Type ?u.723} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
) (
s: Set ι
s
:
Set: Type ?u.769 → Type ?u.769
Set
ι: Type ?u.677
ι
) :
MonovaryOn: {ι : Type ?u.774} → {α : Type ?u.773} → {β : Type ?u.772} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.816
_
_: ?m.819
_
_: ?m.822
_
_: ?m.825
_
hij: ?m.828
hij
=>
h: Monovary f g
h
hij: ?m.828
hij
#align monovary.monovary_on
Monovary.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f g∀ (s : Set ι), MonovaryOn f g s
Monovary.monovaryOn
protected theorem
Antivary.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f g∀ (s : Set ι), AntivaryOn f g s
Antivary.antivaryOn
(
h: Antivary f g
h
:
Antivary: {ι : Type ?u.907} → {α : Type ?u.906} → {β : Type ?u.905} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
) (
s: Set ι
s
:
Set: Type ?u.951 → Type ?u.951
Set
ι: Type ?u.859
ι
) :
AntivaryOn: {ι : Type ?u.956} → {α : Type ?u.955} → {β : Type ?u.954} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.998
_
_: ?m.1001
_
_: ?m.1004
_
_: ?m.1007
_
hij: ?m.1010
hij
=>
h: Antivary f g
h
hij: ?m.1010
hij
#align antivary.antivary_on
Antivary.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f g∀ (s : Set ι), AntivaryOn f g s
Antivary.antivaryOn
@[simp] theorem
MonovaryOn.empty: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, MonovaryOn f g
MonovaryOn.empty
:
MonovaryOn: {ι : Type ?u.1089} → {α : Type ?u.1088} → {β : Type ?u.1087} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
: ?m.1124
:= fun
_: ?m.1177
_
=>
False.elim: ∀ {C : Sort ?u.1179}, FalseC
False.elim
#align monovary_on.empty
MonovaryOn.empty: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, MonovaryOn f g
MonovaryOn.empty
@[simp] theorem
AntivaryOn.empty: AntivaryOn f g
AntivaryOn.empty
:
AntivaryOn: {ι : Type ?u.1291} → {α : Type ?u.1290} → {β : Type ?u.1289} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
: ?m.1326
:= fun
_: ?m.1379
_
=>
False.elim: ∀ {C : Sort ?u.1381}, FalseC
False.elim
#align antivary_on.empty
AntivaryOn.empty: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, AntivaryOn f g
AntivaryOn.empty
@[simp] theorem
monovaryOn_univ: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, MonovaryOn f g univ Monovary f g
monovaryOn_univ
:
MonovaryOn: {ι : Type ?u.1493} → {α : Type ?u.1492} → {β : Type ?u.1491} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
univ: {α : Type ?u.1505} → Set α
univ
Monovary: {ι : Type ?u.1519} → {α : Type ?u.1518} → {β : Type ?u.1517} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
:= ⟨fun
h: ?m.1541
h
_: ?m.1544
_
_: ?m.1547
_
=>
h: ?m.1541
h
trivial: True
trivial
trivial: True
trivial
, fun
h: ?m.1566
h
_: ?m.1569
_
_: ?m.1572
_
_: ?m.1575
_
_: ?m.1578
_
hij: ?m.1581
hij
=>
h: ?m.1566
h
hij: ?m.1581
hij
#align monovary_on_univ
monovaryOn_univ: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, MonovaryOn f g univ Monovary f g
monovaryOn_univ
@[simp] theorem
antivaryOn_univ: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, AntivaryOn f g univ Antivary f g
antivaryOn_univ
:
AntivaryOn: {ι : Type ?u.1701} → {α : Type ?u.1700} → {β : Type ?u.1699} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
univ: {α : Type ?u.1713} → Set α
univ
Antivary: {ι : Type ?u.1727} → {α : Type ?u.1726} → {β : Type ?u.1725} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
:= ⟨fun
h: ?m.1749
h
_: ?m.1752
_
_: ?m.1755
_
=>
h: ?m.1749
h
trivial: True
trivial
trivial: True
trivial
, fun
h: ?m.1774
h
_: ?m.1777
_
_: ?m.1780
_
_: ?m.1783
_
_: ?m.1786
_
hij: ?m.1789
hij
=>
h: ?m.1774
h
hij: ?m.1789
hij
#align antivary_on_univ
antivaryOn_univ: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, AntivaryOn f g univ Antivary f g
antivaryOn_univ
protected theorem
MonovaryOn.subset: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s t : Set ι}, s tMonovaryOn f g tMonovaryOn f g s
MonovaryOn.subset
(
hst: s t
hst
:
s: Set ι
s
t: Set ι
t
) (
h: MonovaryOn f g t
h
:
MonovaryOn: {ι : Type ?u.1928} → {α : Type ?u.1927} → {β : Type ?u.1926} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
t: Set ι
t
) :
MonovaryOn: {ι : Type ?u.1975} → {α : Type ?u.1974} → {β : Type ?u.1973} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.2016
_
hi: ?m.2019
hi
_: ?m.2022
_
hj: ?m.2025
hj
=>
h: MonovaryOn f g t
h
(
hst: s t
hst
hi: ?m.2019
hi
) (
hst: s t
hst
hj: ?m.2025
hj
) #align monovary_on.subset
MonovaryOn.subset: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s t : Set ι}, s tMonovaryOn f g tMonovaryOn f g s
MonovaryOn.subset
protected theorem
AntivaryOn.subset: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s t : Set ι}, s tAntivaryOn f g tAntivaryOn f g s
AntivaryOn.subset
(
hst: s t
hst
:
s: Set ι
s
t: Set ι
t
) (
h: AntivaryOn f g t
h
:
AntivaryOn: {ι : Type ?u.2135} → {α : Type ?u.2134} → {β : Type ?u.2133} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
t: Set ι
t
) :
AntivaryOn: {ι : Type ?u.2182} → {α : Type ?u.2181} → {β : Type ?u.2180} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.2223
_
hi: ?m.2226
hi
_: ?m.2229
_
hj: ?m.2232
hj
=>
h: AntivaryOn f g t
h
(
hst: s t
hst
hi: ?m.2226
hi
) (
hst: s t
hst
hj: ?m.2232
hj
) #align antivary_on.subset
AntivaryOn.subset: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s t : Set ι}, s tAntivaryOn f g tAntivaryOn f g s
AntivaryOn.subset
theorem
monovary_const_left: ∀ (g : ιβ) (a : α), Monovary (const ι a) g
monovary_const_left
(
g: ιβ
g
:
ι: Type ?u.2275
ι
β: Type ?u.2284
β
) (
a: α
a
:
α: Type ?u.2281
α
) :
Monovary: {ι : Type ?u.2329} → {α : Type ?u.2328} → {β : Type ?u.2327} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
const: {α : Sort ?u.2358} → (β : Sort ?u.2357) → αβα
const
ι: Type ?u.2275
ι
a: α
a
)
g: ιβ
g
:= fun
_: ?m.2382
_
_: ?m.2385
_
_: ?m.2388
_
=>
le_rfl: ∀ {α : Type ?u.2390} [inst : Preorder α] {a : α}, a a
le_rfl
#align monovary_const_left
monovary_const_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (g : ιβ) (a : α), Monovary (const ι a) g
monovary_const_left
theorem
antivary_const_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (g : ιβ) (a : α), Antivary (const ι a) g
antivary_const_left
(
g: ιβ
g
:
ι: Type ?u.2437
ι
β: Type ?u.2446
β
) (
a: α
a
:
α: Type ?u.2443
α
) :
Antivary: {ι : Type ?u.2491} → {α : Type ?u.2490} → {β : Type ?u.2489} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
const: {α : Sort ?u.2520} → (β : Sort ?u.2519) → αβα
const
ι: Type ?u.2437
ι
a: α
a
)
g: ιβ
g
:= fun
_: ?m.2544
_
_: ?m.2547
_
_: ?m.2550
_
=>
le_rfl: ∀ {α : Type ?u.2552} [inst : Preorder α] {a : α}, a a
le_rfl
#align antivary_const_left
antivary_const_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (g : ιβ) (a : α), Antivary (const ι a) g
antivary_const_left
theorem
monovary_const_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (f : ια) (b : β), Monovary f (const ι b)
monovary_const_right
(
f: ια
f
:
ι: Type ?u.2599
ι
α: Type ?u.2605
α
) (
b: β
b
:
β: Type ?u.2608
β
) :
Monovary: {ι : Type ?u.2653} → {α : Type ?u.2652} → {β : Type ?u.2651} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
(
const: {α : Sort ?u.2685} → (β : Sort ?u.2684) → αβα
const
ι: Type ?u.2599
ι
b: β
b
) := fun
_: ?m.2706
_
_: ?m.2709
_
h: ?m.2712
h
=> (
h: ?m.2712
h
.
ne: ∀ {α : Type ?u.2714} [inst : Preorder α] {a b : α}, a < ba b
ne
rfl: ∀ {α : Sort ?u.2733} {a : α}, a = a
rfl
).
elim: ∀ {C : Sort ?u.2743}, FalseC
elim
#align monovary_const_right
monovary_const_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (f : ια) (b : β), Monovary f (const ι b)
monovary_const_right
theorem
antivary_const_right: ∀ (f : ια) (b : β), Antivary f (const ι b)
antivary_const_right
(
f: ια
f
:
ι: Type ?u.2762
ι
α: Type ?u.2768
α
) (
b: β
b
:
β: Type ?u.2771
β
) :
Antivary: {ι : Type ?u.2816} → {α : Type ?u.2815} → {β : Type ?u.2814} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
(
const: {α : Sort ?u.2848} → (β : Sort ?u.2847) → αβα
const
ι: Type ?u.2762
ι
b: β
b
) := fun
_: ?m.2869
_
_: ?m.2872
_
h: ?m.2875
h
=> (
h: ?m.2875
h
.
ne: ∀ {α : Type ?u.2877} [inst : Preorder α] {a b : α}, a < ba b
ne
rfl: ∀ {α : Sort ?u.2896} {a : α}, a = a
rfl
).
elim: ∀ {C : Sort ?u.2906}, FalseC
elim
#align antivary_const_right
antivary_const_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (f : ια) (b : β), Antivary f (const ι b)
antivary_const_right
theorem
monovary_self: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] (f : ια), Monovary f f
monovary_self
(
f: ια
f
:
ι: Type ?u.2925
ι
α: Type ?u.2931
α
) :
Monovary: {ι : Type ?u.2977} → {α : Type ?u.2976} → {β : Type ?u.2975} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
f: ια
f
:= fun
_: ?m.3019
_
_: ?m.3022
_
=>
le_of_lt: ∀ {α : Type ?u.3024} [inst : Preorder α] {a b : α}, a < ba b
le_of_lt
#align monovary_self
monovary_self: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] (f : ια), Monovary f f
monovary_self
theorem
monovaryOn_self: ∀ (f : ια) (s : Set ι), MonovaryOn f f s
monovaryOn_self
(
f: ια
f
:
ι: Type ?u.3061
ι
α: Type ?u.3067
α
) (
s: Set ι
s
:
Set: Type ?u.3111 → Type ?u.3111
Set
ι: Type ?u.3061
ι
) :
MonovaryOn: {ι : Type ?u.3116} → {α : Type ?u.3115} → {β : Type ?u.3114} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
f: ια
f
s: Set ι
s
:= fun
_: ?m.3162
_
_: ?m.3165
_
_: ?m.3168
_
_: ?m.3171
_
=>
le_of_lt: ∀ {α : Type ?u.3173} [inst : Preorder α] {a b : α}, a < ba b
le_of_lt
#align monovary_on_self
monovaryOn_self: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] (f : ια) (s : Set ι), MonovaryOn f f s
monovaryOn_self
protected theorem
Subsingleton.monovary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ), Monovary f g
Subsingleton.monovary
[
Subsingleton: Sort ?u.3261 → Prop
Subsingleton
ι: Type ?u.3215
ι
] (
f: ια
f
:
ι: Type ?u.3215
ι
α: Type ?u.3221
α
) (
g: ιβ
g
:
ι: Type ?u.3215
ι
β: Type ?u.3224
β
) :
Monovary: {ι : Type ?u.3274} → {α : Type ?u.3273} → {β : Type ?u.3272} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
:= fun
_: ?m.3324
_
_: ?m.3327
_
h: ?m.3330
h
=> (
ne_of_apply_ne: ∀ {α : Sort ?u.3332} {β : Sort ?u.3333} (f : αβ) {x y : α}, f x f yx y
ne_of_apply_ne
_: ?m.3334?m.3335
_
h: ?m.3330
h
.
ne: ∀ {α : Type ?u.3339} [inst : Preorder α] {a b : α}, a < ba b
ne
<|
Subsingleton.elim: ∀ {α : Sort ?u.3367} [h : Subsingleton α] (a b : α), a = b
Subsingleton.elim
_: ?m.3368
_
_: ?m.3368
_
).
elim: ∀ {C : Sort ?u.3402}, FalseC
elim
#align subsingleton.monovary
Subsingleton.monovary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ), Monovary f g
Subsingleton.monovary
protected theorem
Subsingleton.antivary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ), Antivary f g
Subsingleton.antivary
[
Subsingleton: Sort ?u.3469 → Prop
Subsingleton
ι: Type ?u.3423
ι
] (
f: ια
f
:
ι: Type ?u.3423
ι
α: Type ?u.3429
α
) (
g: ιβ
g
:
ι: Type ?u.3423
ι
β: Type ?u.3432
β
) :
Antivary: {ι : Type ?u.3482} → {α : Type ?u.3481} → {β : Type ?u.3480} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
:= fun
_: ?m.3532
_
_: ?m.3535
_
h: ?m.3538
h
=> (
ne_of_apply_ne: ∀ {α : Sort ?u.3540} {β : Sort ?u.3541} (f : αβ) {x y : α}, f x f yx y
ne_of_apply_ne
_: ?m.3542?m.3543
_
h: ?m.3538
h
.
ne: ∀ {α : Type ?u.3547} [inst : Preorder α] {a b : α}, a < ba b
ne
<|
Subsingleton.elim: ∀ {α : Sort ?u.3575} [h : Subsingleton α] (a b : α), a = b
Subsingleton.elim
_: ?m.3576
_
_: ?m.3576
_
).
elim: ∀ {C : Sort ?u.3610}, FalseC
elim
#align subsingleton.antivary
Subsingleton.antivary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ), Antivary f g
Subsingleton.antivary
protected theorem
Subsingleton.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ) (s : Set ι), MonovaryOn f g s
Subsingleton.monovaryOn
[
Subsingleton: Sort ?u.3677 → Prop
Subsingleton
ι: Type ?u.3631
ι
] (
f: ια
f
:
ι: Type ?u.3631
ι
α: Type ?u.3637
α
) (
g: ιβ
g
:
ι: Type ?u.3631
ι
β: Type ?u.3640
β
) (
s: Set ι
s
:
Set: Type ?u.3688 → Type ?u.3688
Set
ι: Type ?u.3631
ι
) :
MonovaryOn: {ι : Type ?u.3693} → {α : Type ?u.3692} → {β : Type ?u.3691} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.3747
_
_: ?m.3750
_
_: ?m.3753
_
_: ?m.3756
_
h: ?m.3759
h
=> (
ne_of_apply_ne: ∀ {α : Sort ?u.3761} {β : Sort ?u.3762} (f : αβ) {x y : α}, f x f yx y
ne_of_apply_ne
_: ?m.3763?m.3764
_
h: ?m.3759
h
.
ne: ∀ {α : Type ?u.3768} [inst : Preorder α] {a b : α}, a < ba b
ne
<|
Subsingleton.elim: ∀ {α : Sort ?u.3796} [h : Subsingleton α] (a b : α), a = b
Subsingleton.elim
_: ?m.3797
_
_: ?m.3797
_
).
elim: ∀ {C : Sort ?u.3831}, FalseC
elim
#align subsingleton.monovary_on
Subsingleton.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ) (s : Set ι), MonovaryOn f g s
Subsingleton.monovaryOn
protected theorem
Subsingleton.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ) (s : Set ι), AntivaryOn f g s
Subsingleton.antivaryOn
[
Subsingleton: Sort ?u.3903 → Prop
Subsingleton
ι: Type ?u.3857
ι
] (
f: ια
f
:
ι: Type ?u.3857
ι
α: Type ?u.3863
α
) (
g: ιβ
g
:
ι: Type ?u.3857
ι
β: Type ?u.3866
β
) (
s: Set ι
s
:
Set: Type ?u.3914 → Type ?u.3914
Set
ι: Type ?u.3857
ι
) :
AntivaryOn: {ι : Type ?u.3919} → {α : Type ?u.3918} → {β : Type ?u.3917} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.3973
_
_: ?m.3976
_
_: ?m.3979
_
_: ?m.3982
_
h: ?m.3985
h
=> (
ne_of_apply_ne: ∀ {α : Sort ?u.3987} {β : Sort ?u.3988} (f : αβ) {x y : α}, f x f yx y
ne_of_apply_ne
_: ?m.3989?m.3990
_
h: ?m.3985
h
.
ne: ∀ {α : Type ?u.3994} [inst : Preorder α] {a b : α}, a < ba b
ne
<|
Subsingleton.elim: ∀ {α : Sort ?u.4022} [h : Subsingleton α] (a b : α), a = b
Subsingleton.elim
_: ?m.4023
_
_: ?m.4023
_
).
elim: ∀ {C : Sort ?u.4057}, FalseC
elim
#align subsingleton.antivary_on
Subsingleton.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Subsingleton ι] (f : ια) (g : ιβ) (s : Set ι), AntivaryOn f g s
Subsingleton.antivaryOn
theorem
monovaryOn_const_left: ∀ (g : ιβ) (a : α) (s : Set ι), MonovaryOn (const ι a) g s
monovaryOn_const_left
(
g: ιβ
g
:
ι: Type ?u.4083
ι
β: Type ?u.4092
β
) (
a: α
a
:
α: Type ?u.4089
α
) (
s: Set ι
s
:
Set: Type ?u.4135 → Type ?u.4135
Set
ι: Type ?u.4083
ι
) :
MonovaryOn: {ι : Type ?u.4140} → {α : Type ?u.4139} → {β : Type ?u.4138} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
const: {α : Sort ?u.4169} → (β : Sort ?u.4168) → αβα
const
ι: Type ?u.4083
ι
a: α
a
)
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.4197
_
_: ?m.4200
_
_: ?m.4203
_
_: ?m.4206
_
_: ?m.4209
_
=>
le_rfl: ∀ {α : Type ?u.4211} [inst : Preorder α] {a : α}, a a
le_rfl
#align monovary_on_const_left
monovaryOn_const_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (g : ιβ) (a : α) (s : Set ι), MonovaryOn (const ι a) g s
monovaryOn_const_left
theorem
antivaryOn_const_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (g : ιβ) (a : α) (s : Set ι), AntivaryOn (const ι a) g s
antivaryOn_const_left
(
g: ιβ
g
:
ι: Type ?u.4265
ι
β: Type ?u.4274
β
) (
a: α
a
:
α: Type ?u.4271
α
) (
s: Set ι
s
:
Set: Type ?u.4317 → Type ?u.4317
Set
ι: Type ?u.4265
ι
) :
AntivaryOn: {ι : Type ?u.4322} → {α : Type ?u.4321} → {β : Type ?u.4320} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
const: {α : Sort ?u.4351} → (β : Sort ?u.4350) → αβα
const
ι: Type ?u.4265
ι
a: α
a
)
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.4379
_
_: ?m.4382
_
_: ?m.4385
_
_: ?m.4388
_
_: ?m.4391
_
=>
le_rfl: ∀ {α : Type ?u.4393} [inst : Preorder α] {a : α}, a a
le_rfl
#align antivary_on_const_left
antivaryOn_const_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (g : ιβ) (a : α) (s : Set ι), AntivaryOn (const ι a) g s
antivaryOn_const_left
theorem
monovaryOn_const_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (f : ια) (b : β) (s : Set ι), MonovaryOn f (const ι b) s
monovaryOn_const_right
(
f: ια
f
:
ι: Type ?u.4447
ι
α: Type ?u.4453
α
) (
b: β
b
:
β: Type ?u.4456
β
) (
s: Set ι
s
:
Set: Type ?u.4499 → Type ?u.4499
Set
ι: Type ?u.4447
ι
) :
MonovaryOn: {ι : Type ?u.4504} → {α : Type ?u.4503} → {β : Type ?u.4502} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
(
const: {α : Sort ?u.4536} → (β : Sort ?u.4535) → αβα
const
ι: Type ?u.4447
ι
b: β
b
)
s: Set ι
s
:= fun
_: ?m.4561
_
_: ?m.4564
_
_: ?m.4567
_
_: ?m.4570
_
h: ?m.4573
h
=> (
h: ?m.4573
h
.
ne: ∀ {α : Type ?u.4575} [inst : Preorder α] {a b : α}, a < ba b
ne
rfl: ∀ {α : Sort ?u.4594} {a : α}, a = a
rfl
).
elim: ∀ {C : Sort ?u.4604}, FalseC
elim
#align monovary_on_const_right
monovaryOn_const_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (f : ια) (b : β) (s : Set ι), MonovaryOn f (const ι b) s
monovaryOn_const_right
theorem
antivaryOn_const_right: ∀ (f : ια) (b : β) (s : Set ι), AntivaryOn f (const ι b) s
antivaryOn_const_right
(
f: ια
f
:
ι: Type ?u.4628
ι
α: Type ?u.4634
α
) (
b: β
b
:
β: Type ?u.4637
β
) (
s: Set ι
s
:
Set: Type ?u.4680 → Type ?u.4680
Set
ι: Type ?u.4628
ι
) :
AntivaryOn: {ι : Type ?u.4685} → {α : Type ?u.4684} → {β : Type ?u.4683} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
(
const: {α : Sort ?u.4717} → (β : Sort ?u.4716) → αβα
const
ι: Type ?u.4628
ι
b: β
b
)
s: Set ι
s
:= fun
_: ?m.4742
_
_: ?m.4745
_
_: ?m.4748
_
_: ?m.4751
_
h: ?m.4754
h
=> (
h: ?m.4754
h
.
ne: ∀ {α : Type ?u.4756} [inst : Preorder α] {a b : α}, a < ba b
ne
rfl: ∀ {α : Sort ?u.4775} {a : α}, a = a
rfl
).
elim: ∀ {C : Sort ?u.4785}, FalseC
elim
#align antivary_on_const_right
antivaryOn_const_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] (f : ια) (b : β) (s : Set ι), AntivaryOn f (const ι b) s
antivaryOn_const_right
theorem
Monovary.comp_right: Monovary f g∀ (k : ι'ι), Monovary (f k) (g k)
Monovary.comp_right
(
h: Monovary f g
h
:
Monovary: {ι : Type ?u.4857} → {α : Type ?u.4856} → {β : Type ?u.4855} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
) (
k: ι'ι
k
:
ι': Type ?u.4812
ι'
ι: Type ?u.4809
ι
) :
Monovary: {ι : Type ?u.4907} → {α : Type ?u.4906} → {β : Type ?u.4905} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
f: ια
f
k: ι'ι
k
) (
g: ιβ
g
k: ι'ι
k
) := fun
_: ?m.4975
_
_: ?m.4978
_
hij: ?m.4981
hij
=>
h: Monovary f g
h
hij: ?m.4981
hij
#align monovary.comp_right
Monovary.comp_right: ∀ {ι : Type u_1} {ι' : Type u_4} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f g∀ (k : ι'ι), Monovary (f k) (g k)
Monovary.comp_right
theorem
Antivary.comp_right: ∀ {ι : Type u_1} {ι' : Type u_4} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f g∀ (k : ι'ι), Antivary (f k) (g k)
Antivary.comp_right
(
h: Antivary f g
h
:
Antivary: {ι : Type ?u.5065} → {α : Type ?u.5064} → {β : Type ?u.5063} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
) (
k: ι'ι
k
:
ι': Type ?u.5020
ι'
ι: Type ?u.5017
ι
) :
Antivary: {ι : Type ?u.5115} → {α : Type ?u.5114} → {β : Type ?u.5113} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
f: ια
f
k: ι'ι
k
) (
g: ιβ
g
k: ι'ι
k
) := fun
_: ?m.5183
_
_: ?m.5186
_
hij: ?m.5189
hij
=>
h: Antivary f g
h
hij: ?m.5189
hij
#align antivary.comp_right
Antivary.comp_right: ∀ {ι : Type u_1} {ι' : Type u_4} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f g∀ (k : ι'ι), Antivary (f k) (g k)
Antivary.comp_right
theorem
MonovaryOn.comp_right: MonovaryOn f g s∀ (k : ι'ι), MonovaryOn (f k) (g k) (k ⁻¹' s)
MonovaryOn.comp_right
(
h: MonovaryOn f g s
h
:
MonovaryOn: {ι : Type ?u.5273} → {α : Type ?u.5272} → {β : Type ?u.5271} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
k: ι'ι
k
:
ι': Type ?u.5228
ι'
ι: Type ?u.5225
ι
) :
MonovaryOn: {ι : Type ?u.5325} → {α : Type ?u.5324} → {β : Type ?u.5323} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
f: ια
f
k: ι'ι
k
) (
g: ιβ
g
k: ι'ι
k
) (
k: ι'ι
k
⁻¹'
s: Set ι
s
) := fun
_: ?m.5404
_
hi: ?m.5407
hi
_: ?m.5410
_
hj: ?m.5413
hj
=>
h: MonovaryOn f g s
h
hi: ?m.5407
hi
hj: ?m.5413
hj
#align monovary_on.comp_right
MonovaryOn.comp_right: ∀ {ι : Type u_1} {ι' : Type u_4} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f g s∀ (k : ι'ι), MonovaryOn (f k) (g k) (k ⁻¹' s)
MonovaryOn.comp_right
theorem
AntivaryOn.comp_right: AntivaryOn f g s∀ (k : ι'ι), AntivaryOn (f k) (g k) (k ⁻¹' s)
AntivaryOn.comp_right
(
h: AntivaryOn f g s
h
:
AntivaryOn: {ι : Type ?u.5521} → {α : Type ?u.5520} → {β : Type ?u.5519} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
k: ι'ι
k
:
ι': Type ?u.5476
ι'
ι: Type ?u.5473
ι
) :
AntivaryOn: {ι : Type ?u.5573} → {α : Type ?u.5572} → {β : Type ?u.5571} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
f: ια
f
k: ι'ι
k
) (
g: ιβ
g
k: ι'ι
k
) (
k: ι'ι
k
⁻¹'
s: Set ι
s
) := fun
_: ?m.5652
_
hi: ?m.5655
hi
_: ?m.5658
_
hj: ?m.5661
hj
=>
h: AntivaryOn f g s
h
hi: ?m.5655
hi
hj: ?m.5661
hj
#align antivary_on.comp_right
AntivaryOn.comp_right: ∀ {ι : Type u_1} {ι' : Type u_4} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g s∀ (k : ι'ι), AntivaryOn (f k) (g k) (k ⁻¹' s)
AntivaryOn.comp_right
theorem
Monovary.comp_monotone_left: Monovary f gMonotone f'Monovary (f' f) g
Monovary.comp_monotone_left
(
h: Monovary f g
h
:
Monovary: {ι : Type ?u.5769} → {α : Type ?u.5768} → {β : Type ?u.5767} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
) (
hf: Monotone f'
hf
:
Monotone: {α : Type ?u.5814} → {β : Type ?u.5813} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f': αγ
f'
) :
Monovary: {ι : Type ?u.5852} → {α : Type ?u.5851} → {β : Type ?u.5850} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
:= fun
_: ?m.5906
_
_: ?m.5909
_
hij: ?m.5912
hij
=>
hf: Monotone f'
hf
<|
h: Monovary f g
h
hij: ?m.5912
hij
#align monovary.comp_monotone_left
Monovary.comp_monotone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Monovary f gMonotone f'Monovary (f' f) g
Monovary.comp_monotone_left
theorem
Monovary.comp_antitone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Monovary f gAntitone f'Antivary (f' f) g
Monovary.comp_antitone_left
(
h: Monovary f g
h
:
Monovary: {ι : Type ?u.6003} → {α : Type ?u.6002} → {β : Type ?u.6001} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
) (
hf: Antitone f'
hf
:
Antitone: {α : Type ?u.6048} → {β : Type ?u.6047} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f': αγ
f'
) :
Antivary: {ι : Type ?u.6086} → {α : Type ?u.6085} → {β : Type ?u.6084} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
:= fun
_: ?m.6140
_
_: ?m.6143
_
hij: ?m.6146
hij
=>
hf: Antitone f'
hf
<|
h: Monovary f g
h
hij: ?m.6146
hij
#align monovary.comp_antitone_left
Monovary.comp_antitone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Monovary f gAntitone f'Antivary (f' f) g
Monovary.comp_antitone_left
theorem
Antivary.comp_monotone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Antivary f gMonotone f'Antivary (f' f) g
Antivary.comp_monotone_left
(
h: Antivary f g
h
:
Antivary: {ι : Type ?u.6237} → {α : Type ?u.6236} → {β : Type ?u.6235} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
) (
hf: Monotone f'
hf
:
Monotone: {α : Type ?u.6282} → {β : Type ?u.6281} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f': αγ
f'
) :
Antivary: {ι : Type ?u.6320} → {α : Type ?u.6319} → {β : Type ?u.6318} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
:= fun
_: ?m.6374
_
_: ?m.6377
_
hij: ?m.6380
hij
=>
hf: Monotone f'
hf
<|
h: Antivary f g
h
hij: ?m.6380
hij
#align antivary.comp_monotone_left
Antivary.comp_monotone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Antivary f gMonotone f'Antivary (f' f) g
Antivary.comp_monotone_left
theorem
Antivary.comp_antitone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Antivary f gAntitone f'Monovary (f' f) g
Antivary.comp_antitone_left
(
h: Antivary f g
h
:
Antivary: {ι : Type ?u.6471} → {α : Type ?u.6470} → {β : Type ?u.6469} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
) (
hf: Antitone f'
hf
:
Antitone: {α : Type ?u.6516} → {β : Type ?u.6515} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f': αγ
f'
) :
Monovary: {ι : Type ?u.6554} → {α : Type ?u.6553} → {β : Type ?u.6552} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
:= fun
_: ?m.6608
_
_: ?m.6611
_
hij: ?m.6614
hij
=>
hf: Antitone f'
hf
<|
h: Antivary f g
h
hij: ?m.6614
hij
#align antivary.comp_antitone_left
Antivary.comp_antitone_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ}, Antivary f gAntitone f'Monovary (f' f) g
Antivary.comp_antitone_left
theorem
MonovaryOn.comp_monotone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, MonovaryOn f g sMonotone f'MonovaryOn (f' f) g s
MonovaryOn.comp_monotone_on_left
(
h: MonovaryOn f g s
h
:
MonovaryOn: {ι : Type ?u.6705} → {α : Type ?u.6704} → {β : Type ?u.6703} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hf: Monotone f'
hf
:
Monotone: {α : Type ?u.6752} → {β : Type ?u.6751} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f': αγ
f'
) :
MonovaryOn: {ι : Type ?u.6790} → {α : Type ?u.6789} → {β : Type ?u.6788} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.6845
_
hi: ?m.6848
hi
_: ?m.6851
_
hj: ?m.6854
hj
hij: ?m.6857
hij
=>
hf: Monotone f'
hf
<|
h: MonovaryOn f g s
h
hi: ?m.6848
hi
hj: ?m.6854
hj
hij: ?m.6857
hij
#align monovary_on.comp_monotone_on_left
MonovaryOn.comp_monotone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, MonovaryOn f g sMonotone f'MonovaryOn (f' f) g s
MonovaryOn.comp_monotone_on_left
theorem
MonovaryOn.comp_antitone_on_left: MonovaryOn f g sAntitone f'AntivaryOn (f' f) g s
MonovaryOn.comp_antitone_on_left
(
h: MonovaryOn f g s
h
:
MonovaryOn: {ι : Type ?u.6960} → {α : Type ?u.6959} → {β : Type ?u.6958} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hf: Antitone f'
hf
:
Antitone: {α : Type ?u.7007} → {β : Type ?u.7006} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f': αγ
f'
) :
AntivaryOn: {ι : Type ?u.7045} → {α : Type ?u.7044} → {β : Type ?u.7043} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.7100
_
hi: ?m.7103
hi
_: ?m.7106
_
hj: ?m.7109
hj
hij: ?m.7112
hij
=>
hf: Antitone f'
hf
<|
h: MonovaryOn f g s
h
hi: ?m.7103
hi
hj: ?m.7109
hj
hij: ?m.7112
hij
#align monovary_on.comp_antitone_on_left
MonovaryOn.comp_antitone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, MonovaryOn f g sAntitone f'AntivaryOn (f' f) g s
MonovaryOn.comp_antitone_on_left
theorem
AntivaryOn.comp_monotone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonotone f'AntivaryOn (f' f) g s
AntivaryOn.comp_monotone_on_left
(
h: AntivaryOn f g s
h
:
AntivaryOn: {ι : Type ?u.7215} → {α : Type ?u.7214} → {β : Type ?u.7213} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hf: Monotone f'
hf
:
Monotone: {α : Type ?u.7262} → {β : Type ?u.7261} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f': αγ
f'
) :
AntivaryOn: {ι : Type ?u.7300} → {α : Type ?u.7299} → {β : Type ?u.7298} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.7355
_
hi: ?m.7358
hi
_: ?m.7361
_
hj: ?m.7364
hj
hij: ?m.7367
hij
=>
hf: Monotone f'
hf
<|
h: AntivaryOn f g s
h
hi: ?m.7358
hi
hj: ?m.7364
hj
hij: ?m.7367
hij
#align antivary_on.comp_monotone_on_left
AntivaryOn.comp_monotone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonotone f'AntivaryOn (f' f) g s
AntivaryOn.comp_monotone_on_left
theorem
AntivaryOn.comp_antitone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, AntivaryOn f g sAntitone f'MonovaryOn (f' f) g s
AntivaryOn.comp_antitone_on_left
(
h: AntivaryOn f g s
h
:
AntivaryOn: {ι : Type ?u.7470} → {α : Type ?u.7469} → {β : Type ?u.7468} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hf: Antitone f'
hf
:
Antitone: {α : Type ?u.7517} → {β : Type ?u.7516} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f': αγ
f'
) :
MonovaryOn: {ι : Type ?u.7555} → {α : Type ?u.7554} → {β : Type ?u.7553} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
f': αγ
f'
f: ια
f
)
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.7610
_
hi: ?m.7613
hi
_: ?m.7616
_
hj: ?m.7619
hj
hij: ?m.7622
hij
=>
hf: Antitone f'
hf
<|
h: AntivaryOn f g s
h
hi: ?m.7613
hi
hj: ?m.7619
hj
hij: ?m.7622
hij
#align antivary_on.comp_antitone_on_left
AntivaryOn.comp_antitone_on_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : Preorder γ] {f : ια} {f' : αγ} {g : ιβ} {s : Set ι}, AntivaryOn f g sAntitone f'MonovaryOn (f' f) g s
AntivaryOn.comp_antitone_on_left
section OrderDual open OrderDual theorem
Monovary.dual: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f gMonovary (toDual f) (toDual g)
Monovary.dual
:
Monovary: {ι : Type ?u.7726} → {α : Type ?u.7725} → {β : Type ?u.7724} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
Monovary: {ι : Type ?u.7771} → {α : Type ?u.7770} → {β : Type ?u.7769} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
toDual: {α : Type ?u.7807} → α αᵒᵈ
toDual
f: ια
f
) (
toDual: {α : Type ?u.7886} → α αᵒᵈ
toDual
g: ιβ
g
) :=
swap: ∀ {α : Sort ?u.7977} {β : Sort ?u.7976} {φ : αβSort ?u.7975}, (∀ (x : α) (y : β), φ x y) → ∀ (y : β) (x : α), φ x y
swap
#align monovary.dual
Monovary.dual: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f gMonovary (toDual f) (toDual g)
Monovary.dual
theorem
Antivary.dual: Antivary f gAntivary (toDual f) (toDual g)
Antivary.dual
:
Antivary: {ι : Type ?u.8065} → {α : Type ?u.8064} → {β : Type ?u.8063} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
Antivary: {ι : Type ?u.8110} → {α : Type ?u.8109} → {β : Type ?u.8108} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
toDual: {α : Type ?u.8146} → α αᵒᵈ
toDual
f: ια
f
) (
toDual: {α : Type ?u.8225} → α αᵒᵈ
toDual
g: ιβ
g
) :=
swap: ∀ {α : Sort ?u.8316} {β : Sort ?u.8315} {φ : αβSort ?u.8314}, (∀ (x : α) (y : β), φ x y) → ∀ (y : β) (x : α), φ x y
swap
#align antivary.dual
Antivary.dual: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f gAntivary (toDual f) (toDual g)
Antivary.dual
theorem
Monovary.dual_left: Monovary f gAntivary (toDual f) g
Monovary.dual_left
:
Monovary: {ι : Type ?u.8404} → {α : Type ?u.8403} → {β : Type ?u.8402} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
Antivary: {ι : Type ?u.8449} → {α : Type ?u.8448} → {β : Type ?u.8447} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
toDual: {α : Type ?u.8485} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
:=
id: ∀ {α : Sort ?u.8569}, αα
id
#align monovary.dual_left
Monovary.dual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f gAntivary (toDual f) g
Monovary.dual_left
theorem
Antivary.dual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f gMonovary (toDual f) g
Antivary.dual_left
:
Antivary: {ι : Type ?u.8641} → {α : Type ?u.8640} → {β : Type ?u.8639} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
Monovary: {ι : Type ?u.8686} → {α : Type ?u.8685} → {β : Type ?u.8684} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
toDual: {α : Type ?u.8722} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
:=
id: ∀ {α : Sort ?u.8806}, αα
id
#align antivary.dual_left
Antivary.dual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f gMonovary (toDual f) g
Antivary.dual_left
theorem
Monovary.dual_right: Monovary f gAntivary f (toDual g)
Monovary.dual_right
:
Monovary: {ι : Type ?u.8878} → {α : Type ?u.8877} → {β : Type ?u.8876} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
Antivary: {ι : Type ?u.8923} → {α : Type ?u.8922} → {β : Type ?u.8921} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
(
toDual: {α : Type ?u.8962} → α αᵒᵈ
toDual
g: ιβ
g
) :=
swap: ∀ {α : Sort ?u.9045} {β : Sort ?u.9044} {φ : αβSort ?u.9043}, (∀ (x : α) (y : β), φ x y) → ∀ (y : β) (x : α), φ x y
swap
#align monovary.dual_right
Monovary.dual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f gAntivary f (toDual g)
Monovary.dual_right
theorem
Antivary.dual_right: Antivary f gMonovary f (toDual g)
Antivary.dual_right
:
Antivary: {ι : Type ?u.9131} → {α : Type ?u.9130} → {β : Type ?u.9129} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
Monovary: {ι : Type ?u.9176} → {α : Type ?u.9175} → {β : Type ?u.9174} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
(
toDual: {α : Type ?u.9215} → α αᵒᵈ
toDual
g: ιβ
g
) :=
swap: ∀ {α : Sort ?u.9298} {β : Sort ?u.9297} {φ : αβSort ?u.9296}, (∀ (x : α) (y : β), φ x y) → ∀ (y : β) (x : α), φ x y
swap
#align antivary.dual_right
Antivary.dual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f gMonovary f (toDual g)
Antivary.dual_right
theorem
MonovaryOn.dual: MonovaryOn f g sMonovaryOn (toDual f) (toDual g) s
MonovaryOn.dual
:
MonovaryOn: {ι : Type ?u.9384} → {α : Type ?u.9383} → {β : Type ?u.9382} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
MonovaryOn: {ι : Type ?u.9431} → {α : Type ?u.9430} → {β : Type ?u.9429} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
toDual: {α : Type ?u.9467} → α αᵒᵈ
toDual
f: ια
f
) (
toDual: {α : Type ?u.9546} → α αᵒᵈ
toDual
g: ιβ
g
)
s: Set ι
s
:=
swap₂: ∀ {ι₁ : Sort ?u.9640} {ι₂ : Sort ?u.9639} {κ₁ : ι₁Sort ?u.9638} {κ₂ : ι₂Sort ?u.9637} {φ : (i₁ : ι₁) → κ₁ i₁(i₂ : ι₂) → κ₂ i₂Sort ?u.9636}, (∀ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), φ i₁ j₁ i₂ j₂) → ∀ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), φ i₁ j₁ i₂ j₂
swap₂
#align monovary_on.dual
MonovaryOn.dual: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f g sMonovaryOn (toDual f) (toDual g) s
MonovaryOn.dual
theorem
AntivaryOn.dual: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sAntivaryOn (toDual f) (toDual g) s
AntivaryOn.dual
:
AntivaryOn: {ι : Type ?u.9751} → {α : Type ?u.9750} → {β : Type ?u.9749} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
AntivaryOn: {ι : Type ?u.9798} → {α : Type ?u.9797} → {β : Type ?u.9796} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
toDual: {α : Type ?u.9834} → α αᵒᵈ
toDual
f: ια
f
) (
toDual: {α : Type ?u.9913} → α αᵒᵈ
toDual
g: ιβ
g
)
s: Set ι
s
:=
swap₂: ∀ {ι₁ : Sort ?u.10007} {ι₂ : Sort ?u.10006} {κ₁ : ι₁Sort ?u.10005} {κ₂ : ι₂Sort ?u.10004} {φ : (i₁ : ι₁) → κ₁ i₁(i₂ : ι₂) → κ₂ i₂Sort ?u.10003}, (∀ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), φ i₁ j₁ i₂ j₂) → ∀ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), φ i₁ j₁ i₂ j₂
swap₂
#align antivary_on.dual
AntivaryOn.dual: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sAntivaryOn (toDual f) (toDual g) s
AntivaryOn.dual
theorem
MonovaryOn.dual_left: MonovaryOn f g sAntivaryOn (toDual f) g s
MonovaryOn.dual_left
:
MonovaryOn: {ι : Type ?u.10118} → {α : Type ?u.10117} → {β : Type ?u.10116} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
AntivaryOn: {ι : Type ?u.10165} → {α : Type ?u.10164} → {β : Type ?u.10163} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
toDual: {α : Type ?u.10201} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
s: Set ι
s
:=
id: ∀ {α : Sort ?u.10286}, αα
id
#align monovary_on.dual_left
MonovaryOn.dual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f g sAntivaryOn (toDual f) g s
MonovaryOn.dual_left
theorem
AntivaryOn.dual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonovaryOn (toDual f) g s
AntivaryOn.dual_left
:
AntivaryOn: {ι : Type ?u.10363} → {α : Type ?u.10362} → {β : Type ?u.10361} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
MonovaryOn: {ι : Type ?u.10410} → {α : Type ?u.10409} → {β : Type ?u.10408} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
toDual: {α : Type ?u.10446} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
s: Set ι
s
:=
id: ∀ {α : Sort ?u.10531}, αα
id
#align antivary_on.dual_left
AntivaryOn.dual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonovaryOn (toDual f) g s
AntivaryOn.dual_left
theorem
MonovaryOn.dual_right: MonovaryOn f g sAntivaryOn f (toDual g) s
MonovaryOn.dual_right
:
MonovaryOn: {ι : Type ?u.10608} → {α : Type ?u.10607} → {β : Type ?u.10606} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
AntivaryOn: {ι : Type ?u.10655} → {α : Type ?u.10654} → {β : Type ?u.10653} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
(
toDual: {α : Type ?u.10694} → α αᵒᵈ
toDual
g: ιβ
g
)
s: Set ι
s
:=
swap₂: ∀ {ι₁ : Sort ?u.10780} {ι₂ : Sort ?u.10779} {κ₁ : ι₁Sort ?u.10778} {κ₂ : ι₂Sort ?u.10777} {φ : (i₁ : ι₁) → κ₁ i₁(i₂ : ι₂) → κ₂ i₂Sort ?u.10776}, (∀ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), φ i₁ j₁ i₂ j₂) → ∀ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), φ i₁ j₁ i₂ j₂
swap₂
#align monovary_on.dual_right
MonovaryOn.dual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f g sAntivaryOn f (toDual g) s
MonovaryOn.dual_right
theorem
AntivaryOn.dual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonovaryOn f (toDual g) s
AntivaryOn.dual_right
:
AntivaryOn: {ι : Type ?u.10889} → {α : Type ?u.10888} → {β : Type ?u.10887} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
MonovaryOn: {ι : Type ?u.10936} → {α : Type ?u.10935} → {β : Type ?u.10934} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
(
toDual: {α : Type ?u.10975} → α αᵒᵈ
toDual
g: ιβ
g
)
s: Set ι
s
:=
swap₂: ∀ {ι₁ : Sort ?u.11061} {ι₂ : Sort ?u.11060} {κ₁ : ι₁Sort ?u.11059} {κ₂ : ι₂Sort ?u.11058} {φ : (i₁ : ι₁) → κ₁ i₁(i₂ : ι₂) → κ₂ i₂Sort ?u.11057}, (∀ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), φ i₁ j₁ i₂ j₂) → ∀ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), φ i₁ j₁ i₂ j₂
swap₂
#align antivary_on.dual_right
AntivaryOn.dual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonovaryOn f (toDual g) s
AntivaryOn.dual_right
@[simp] theorem
monovary_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary (toDual f) g Antivary f g
monovary_toDual_left
:
Monovary: {ι : Type ?u.11169} → {α : Type ?u.11168} → {β : Type ?u.11167} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
(
toDual: {α : Type ?u.11183} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
Antivary: {ι : Type ?u.11273} → {α : Type ?u.11272} → {β : Type ?u.11271} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
:=
Iff.rfl: ∀ {a : Prop}, a a
Iff.rfl
#align monovary_to_dual_left
monovary_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary (toDual f) g Antivary f g
monovary_toDual_left
@[simp] theorem
monovary_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f (toDual g) Antivary f g
monovary_toDual_right
:
Monovary: {ι : Type ?u.11411} → {α : Type ?u.11410} → {β : Type ?u.11409} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
(
toDual: {α : Type ?u.11428} → α αᵒᵈ
toDual
g: ιβ
g
) ↔
Antivary: {ι : Type ?u.11515} → {α : Type ?u.11514} → {β : Type ?u.11513} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
:=
forall_swap: ∀ {α : Sort ?u.11530} {β : Sort ?u.11531} {p : αβProp}, (∀ (x : α) (y : β), p x y) ∀ (y : β) (x : α), p x y
forall_swap
#align monovary_to_dual_right
monovary_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f (toDual g) Antivary f g
monovary_toDual_right
@[simp] theorem
antivary_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary (toDual f) g Monovary f g
antivary_toDual_left
:
Antivary: {ι : Type ?u.11667} → {α : Type ?u.11666} → {β : Type ?u.11665} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
(
toDual: {α : Type ?u.11681} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
Monovary: {ι : Type ?u.11771} → {α : Type ?u.11770} → {β : Type ?u.11769} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
:=
Iff.rfl: ∀ {a : Prop}, a a
Iff.rfl
#align antivary_to_dual_left
antivary_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary (toDual f) g Monovary f g
antivary_toDual_left
@[simp] theorem
antivary_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f (toDual g) Monovary f g
antivary_toDual_right
:
Antivary: {ι : Type ?u.11909} → {α : Type ?u.11908} → {β : Type ?u.11907} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
(
toDual: {α : Type ?u.11926} → α αᵒᵈ
toDual
g: ιβ
g
) ↔
Monovary: {ι : Type ?u.12013} → {α : Type ?u.12012} → {β : Type ?u.12011} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
:=
forall_swap: ∀ {α : Sort ?u.12028} {β : Sort ?u.12029} {p : αβProp}, (∀ (x : α) (y : β), p x y) ∀ (y : β) (x : α), p x y
forall_swap
#align antivary_to_dual_right
antivary_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f (toDual g) Monovary f g
antivary_toDual_right
@[simp] theorem
monovaryOn_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn (toDual f) g s AntivaryOn f g s
monovaryOn_toDual_left
:
MonovaryOn: {ι : Type ?u.12165} → {α : Type ?u.12164} → {β : Type ?u.12163} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
(
toDual: {α : Type ?u.12179} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
s: Set ι
s
AntivaryOn: {ι : Type ?u.12271} → {α : Type ?u.12270} → {β : Type ?u.12269} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:=
Iff.rfl: ∀ {a : Prop}, a a
Iff.rfl
#align monovary_on_to_dual_left
monovaryOn_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn (toDual f) g s AntivaryOn f g s
monovaryOn_toDual_left
@[simp] theorem
monovaryOn_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f (toDual g) s AntivaryOn f g s
monovaryOn_toDual_right
:
MonovaryOn: {ι : Type ?u.12420} → {α : Type ?u.12419} → {β : Type ?u.12418} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
(
toDual: {α : Type ?u.12437} → α αᵒᵈ
toDual
g: ιβ
g
)
s: Set ι
s
AntivaryOn: {ι : Type ?u.12526} → {α : Type ?u.12525} → {β : Type ?u.12524} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:=
forall₂_swap: ∀ {ι₁ : Sort ?u.12542} {ι₂ : Sort ?u.12543} {κ₁ : ι₁Sort ?u.12544} {κ₂ : ι₂Sort ?u.12545} {p : (i₁ : ι₁) → κ₁ i₁(i₂ : ι₂) → κ₂ i₂Prop}, (∀ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), p i₁ j₁ i₂ j₂) ∀ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), p i₁ j₁ i₂ j₂
forall₂_swap
#align monovary_on_to_dual_right
monovaryOn_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f (toDual g) s AntivaryOn f g s
monovaryOn_toDual_right
@[simp] theorem
antivaryOn_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn (toDual f) g s MonovaryOn f g s
antivaryOn_toDual_left
:
AntivaryOn: {ι : Type ?u.12707} → {α : Type ?u.12706} → {β : Type ?u.12705} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
(
toDual: {α : Type ?u.12721} → α αᵒᵈ
toDual
f: ια
f
)
g: ιβ
g
s: Set ι
s
MonovaryOn: {ι : Type ?u.12813} → {α : Type ?u.12812} → {β : Type ?u.12811} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:=
Iff.rfl: ∀ {a : Prop}, a a
Iff.rfl
#align antivary_on_to_dual_left
antivaryOn_toDual_left: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn (toDual f) g s MonovaryOn f g s
antivaryOn_toDual_left
@[simp] theorem
antivaryOn_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f (toDual g) s MonovaryOn f g s
antivaryOn_toDual_right
:
AntivaryOn: {ι : Type ?u.12962} → {α : Type ?u.12961} → {β : Type ?u.12960} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
(
toDual: {α : Type ?u.12979} → α αᵒᵈ
toDual
g: ιβ
g
)
s: Set ι
s
MonovaryOn: {ι : Type ?u.13068} → {α : Type ?u.13067} → {β : Type ?u.13066} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:=
forall₂_swap: ∀ {ι₁ : Sort ?u.13084} {ι₂ : Sort ?u.13085} {κ₁ : ι₁Sort ?u.13086} {κ₂ : ι₂Sort ?u.13087} {p : (i₁ : ι₁) → κ₁ i₁(i₂ : ι₂) → κ₂ i₂Prop}, (∀ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), p i₁ j₁ i₂ j₂) ∀ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), p i₁ j₁ i₂ j₂
forall₂_swap
#align antivary_on_to_dual_right
antivaryOn_toDual_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f (toDual g) s MonovaryOn f g s
antivaryOn_toDual_right
end OrderDual section PartialOrder variable [
PartialOrder: Type ?u.13502 → Type ?u.13502
PartialOrder
ι: Type ?u.13201
ι
] @[simp] theorem
monovary_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} [inst_1 : PartialOrder ι], Monovary f id Monotone f
monovary_id_iff
:
Monovary: {ι : Type ?u.13301} → {α : Type ?u.13300} → {β : Type ?u.13299} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
id: {α : Sort ?u.13310} → αα
id
Monotone: {α : Type ?u.13332} → {β : Type ?u.13331} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f: ια
f
:=
monotone_iff_forall_lt: ∀ {α : Type ?u.13342} {β : Type ?u.13341} [inst : PartialOrder α] [inst_1 : Preorder β] {f : αβ}, Monotone f ∀ ⦃a b : α⦄, a < bf a f b
monotone_iff_forall_lt
.
symm: ∀ {a b : Prop}, (a b) → (b a)
symm
#align monovary_id_iff
monovary_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} [inst_1 : PartialOrder ι], Monovary f id Monotone f
monovary_id_iff
@[simp] theorem
antivary_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} [inst_1 : PartialOrder ι], Antivary f id Antitone f
antivary_id_iff
:
Antivary: {ι : Type ?u.13507} → {α : Type ?u.13506} → {β : Type ?u.13505} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
id: {α : Sort ?u.13516} → αα
id
Antitone: {α : Type ?u.13538} → {β : Type ?u.13537} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f: ια
f
:=
antitone_iff_forall_lt: ∀ {α : Type ?u.13548} {β : Type ?u.13547} [inst : PartialOrder α] [inst_1 : Preorder β] {f : αβ}, Antitone f ∀ ⦃a b : α⦄, a < bf b f a
antitone_iff_forall_lt
.
symm: ∀ {a b : Prop}, (a b) → (b a)
symm
#align antivary_id_iff
antivary_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} [inst_1 : PartialOrder ι], Antivary f id Antitone f
antivary_id_iff
@[simp] theorem
monovaryOn_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} {s : Set ι} [inst_1 : PartialOrder ι], MonovaryOn f id s MonotoneOn f s
monovaryOn_id_iff
:
MonovaryOn: {ι : Type ?u.13713} → {α : Type ?u.13712} → {β : Type ?u.13711} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
id: {α : Sort ?u.13722} → αα
id
s: Set ι
s
MonotoneOn: {α : Type ?u.13746} → {β : Type ?u.13745} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
f: ια
f
s: Set ι
s
:=
monotoneOn_iff_forall_lt: ∀ {α : Type ?u.13757} {β : Type ?u.13756} [inst : PartialOrder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, MonotoneOn f s ∀ ⦃a : α⦄, a s∀ ⦃b : α⦄, b sa < bf a f b
monotoneOn_iff_forall_lt
.
symm: ∀ {a b : Prop}, (a b) → (b a)
symm
#align monovary_on_id_iff
monovaryOn_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} {s : Set ι} [inst_1 : PartialOrder ι], MonovaryOn f id s MonotoneOn f s
monovaryOn_id_iff
@[simp] theorem
antivaryOn_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} {s : Set ι} [inst_1 : PartialOrder ι], AntivaryOn f id s AntitoneOn f s
antivaryOn_id_iff
:
AntivaryOn: {ι : Type ?u.13945} → {α : Type ?u.13944} → {β : Type ?u.13943} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
id: {α : Sort ?u.13954} → αα
id
s: Set ι
s
AntitoneOn: {α : Type ?u.13978} → {β : Type ?u.13977} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
AntitoneOn
f: ια
f
s: Set ι
s
:=
antitoneOn_iff_forall_lt: ∀ {α : Type ?u.13989} {β : Type ?u.13988} [inst : PartialOrder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, AntitoneOn f s ∀ ⦃a : α⦄, a s∀ ⦃b : α⦄, b sa < bf b f a
antitoneOn_iff_forall_lt
.
symm: ∀ {a b : Prop}, (a b) → (b a)
symm
#align antivary_on_id_iff
antivaryOn_id_iff: ∀ {ι : Type u_1} {α : Type u_2} [inst : Preorder α] {f : ια} {s : Set ι} [inst_1 : PartialOrder ι], AntivaryOn f id s AntitoneOn f s
antivaryOn_id_iff
end PartialOrder variable [
LinearOrder: Type ?u.16213 → Type ?u.16213
LinearOrder
ι: Type ?u.14126
ι
] /-Porting note: Due to a bug in `alias`, many of the below lemmas have dot notation removed in the proof-/ protected theorem
Monotone.monovary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Monotone fMonotone gMonovary f g
Monotone.monovary
(
hf: Monotone f
hf
:
Monotone: {α : Type ?u.14225} → {β : Type ?u.14224} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f: ια
f
) (
hg: Monotone g
hg
:
Monotone: {α : Type ?u.14348} → {β : Type ?u.14347} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
g: ιβ
g
) :
Monovary: {ι : Type ?u.14386} → {α : Type ?u.14385} → {β : Type ?u.14384} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
:= fun
_: ?m.14426
_
_: ?m.14429
_
hij: ?m.14432
hij
=>
hf: Monotone f
hf
(
hg: Monotone g
hg
.
reflect_lt: ∀ {α : Type ?u.14442} {β : Type ?u.14441} [inst : LinearOrder α] [inst_1 : Preorder β] {f : αβ}, Monotone f∀ {a b : α}, f a < f ba < b
reflect_lt
hij: ?m.14432
hij
).
le: ∀ {α : Type ?u.14478} [inst : Preorder α] {a b : α}, a < ba b
le
#align monotone.monovary
Monotone.monovary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Monotone fMonotone gMonovary f g
Monotone.monovary
protected theorem
Monotone.antivary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Monotone fAntitone gAntivary f g
Monotone.antivary
(
hf: Monotone f
hf
:
Monotone: {α : Type ?u.14644} → {β : Type ?u.14643} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
f: ια
f
) (
hg: Antitone g
hg
:
Antitone: {α : Type ?u.14767} → {β : Type ?u.14766} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
g: ιβ
g
) :
Antivary: {ι : Type ?u.14805} → {α : Type ?u.14804} → {β : Type ?u.14803} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
:= (
hf: Monotone f
hf
.
monovary: ∀ {ι : Type ?u.14844} {α : Type ?u.14845} {β : Type ?u.14846} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Monotone fMonotone gMonovary f g
monovary
(
Antitone.dual_right: ∀ {α : Type ?u.14896} {β : Type ?u.14895} [inst : Preorder α] [inst_1 : Preorder β] {f : αβ}, Antitone fMonotone (OrderDual.toDual f)
Antitone.dual_right
hg: Antitone g
hg
)).
dual_right: ∀ {ι : Type ?u.15055} {α : Type ?u.15056} {β : Type ?u.15057} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f gAntivary f (OrderDual.toDual g)
dual_right
#align monotone.antivary
Monotone.antivary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Monotone fAntitone gAntivary f g
Monotone.antivary
protected theorem
Antitone.monovary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Antitone fAntitone gMonovary f g
Antitone.monovary
(
hf: Antitone f
hf
:
Antitone: {α : Type ?u.15179} → {β : Type ?u.15178} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f: ια
f
) (
hg: Antitone g
hg
:
Antitone: {α : Type ?u.15302} → {β : Type ?u.15301} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
g: ιβ
g
) :
Monovary: {ι : Type ?u.15340} → {α : Type ?u.15339} → {β : Type ?u.15338} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Monovary
f: ια
f
g: ιβ
g
:= (
hf: Antitone f
hf
.
dual_right: ∀ {α : Type ?u.15380} {β : Type ?u.15379} [inst : Preorder α] [inst_1 : Preorder β] {f : αβ}, Antitone fMonotone (OrderDual.toDual f)
dual_right
.
antivary: ∀ {ι : Type ?u.15483} {α : Type ?u.15484} {β : Type ?u.15485} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Monotone fAntitone gAntivary f g
antivary
hg: Antitone g
hg
).
dual_left: ∀ {ι : Type ?u.15558} {α : Type ?u.15559} {β : Type ?u.15560} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Antivary f gMonovary (OrderDual.toDual f) g
dual_left
#align antitone.monovary
Antitone.monovary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Antitone fAntitone gMonovary f g
Antitone.monovary
protected theorem
Antitone.antivary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Antitone fMonotone gAntivary f g
Antitone.antivary
(
hf: Antitone f
hf
:
Antitone: {α : Type ?u.15682} → {β : Type ?u.15681} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Antitone
f: ια
f
) (
hg: Monotone g
hg
:
Monotone: {α : Type ?u.15805} → {β : Type ?u.15804} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Prop
Monotone
g: ιβ
g
) :
Antivary: {ι : Type ?u.15843} → {α : Type ?u.15842} → {β : Type ?u.15841} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Prop
Antivary
f: ια
f
g: ιβ
g
:= (
hf: Antitone f
hf
.
monovary: ∀ {ι : Type ?u.15882} {α : Type ?u.15883} {β : Type ?u.15884} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Antitone fAntitone gMonovary f g
monovary
(
Monotone.dual_right: ∀ {α : Type ?u.15934} {β : Type ?u.15933} [inst : Preorder α] [inst_1 : Preorder β] {f : αβ}, Monotone fAntitone (OrderDual.toDual f)
Monotone.dual_right
hg: Monotone g
hg
)).
dual_right: ∀ {ι : Type ?u.16093} {α : Type ?u.16094} {β : Type ?u.16095} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ}, Monovary f gAntivary f (OrderDual.toDual g)
dual_right
#align antitone.antivary
Antitone.antivary: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} [inst_2 : LinearOrder ι], Antitone fMonotone gAntivary f g
Antitone.antivary
protected theorem
MonotoneOn.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], MonotoneOn f sMonotoneOn g sMonovaryOn f g s
MonotoneOn.monovaryOn
(
hf: MonotoneOn f s
hf
:
MonotoneOn: {α : Type ?u.16217} → {β : Type ?u.16216} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
f: ια
f
s: Set ι
s
) (
hg: MonotoneOn g s
hg
:
MonotoneOn: {α : Type ?u.16342} → {β : Type ?u.16341} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
g: ιβ
g
s: Set ι
s
) :
MonovaryOn: {ι : Type ?u.16381} → {α : Type ?u.16380} → {β : Type ?u.16379} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= fun
_: ?m.16422
_
hi: ?m.16425
hi
_: ?m.16428
_
hj: ?m.16431
hj
hij: ?m.16434
hij
=>
hf: MonotoneOn f s
hf
hi: ?m.16425
hi
hj: ?m.16431
hj
(
hg: MonotoneOn g s
hg
.
reflect_lt: ∀ {α : Type ?u.16449} {β : Type ?u.16448} [inst : LinearOrder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, MonotoneOn f s∀ {a b : α}, a sb sf a < f ba < b
reflect_lt
hi: ?m.16425
hi
hj: ?m.16431
hj
hij: ?m.16434
hij
).
le: ∀ {α : Type ?u.16487} [inst : Preorder α] {a b : α}, a < ba b
le
#align monotone_on.monovary_on
MonotoneOn.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], MonotoneOn f sMonotoneOn g sMonovaryOn f g s
MonotoneOn.monovaryOn
protected theorem
MonotoneOn.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], MonotoneOn f sAntitoneOn g sAntivaryOn f g s
MonotoneOn.antivaryOn
(
hf: MonotoneOn f s
hf
:
MonotoneOn: {α : Type ?u.16658} → {β : Type ?u.16657} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
f: ια
f
s: Set ι
s
) (
hg: AntitoneOn g s
hg
:
AntitoneOn: {α : Type ?u.16783} → {β : Type ?u.16782} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
AntitoneOn
g: ιβ
g
s: Set ι
s
) :
AntivaryOn: {ι : Type ?u.16822} → {α : Type ?u.16821} → {β : Type ?u.16820} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= (
hf: MonotoneOn f s
hf
.
monovaryOn: ∀ {ι : Type ?u.16862} {α : Type ?u.16863} {β : Type ?u.16864} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], MonotoneOn f sMonotoneOn g sMonovaryOn f g s
monovaryOn
(
AntitoneOn.dual_right: ∀ {α : Type ?u.16921} {β : Type ?u.16920} [inst : Preorder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, AntitoneOn f sMonotoneOn (OrderDual.toDual f) s
AntitoneOn.dual_right
hg: AntitoneOn g s
hg
)).
dual_right: ∀ {ι : Type ?u.17091} {α : Type ?u.17092} {β : Type ?u.17093} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f g sAntivaryOn f (OrderDual.toDual g) s
dual_right
#align monotone_on.antivary_on
MonotoneOn.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], MonotoneOn f sAntitoneOn g sAntivaryOn f g s
MonotoneOn.antivaryOn
protected theorem
AntitoneOn.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], AntitoneOn f sAntitoneOn g sMonovaryOn f g s
AntitoneOn.monovaryOn
(
hf: AntitoneOn f s
hf
:
AntitoneOn: {α : Type ?u.17224} → {β : Type ?u.17223} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
AntitoneOn
f: ια
f
s: Set ι
s
) (
hg: AntitoneOn g s
hg
:
AntitoneOn: {α : Type ?u.17349} → {β : Type ?u.17348} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
AntitoneOn
g: ιβ
g
s: Set ι
s
) :
MonovaryOn: {ι : Type ?u.17388} → {α : Type ?u.17387} → {β : Type ?u.17386} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= (
hf: AntitoneOn f s
hf
.
dual_right: ∀ {α : Type ?u.17429} {β : Type ?u.17428} [inst : Preorder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, AntitoneOn f sMonotoneOn (OrderDual.toDual f) s
dual_right
.
antivaryOn: ∀ {ι : Type ?u.17536} {α : Type ?u.17537} {β : Type ?u.17538} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], MonotoneOn f sAntitoneOn g sAntivaryOn f g s
antivaryOn
hg: AntitoneOn g s
hg
).
dual_left: ∀ {ι : Type ?u.17621} {α : Type ?u.17622} {β : Type ?u.17623} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, AntivaryOn f g sMonovaryOn (OrderDual.toDual f) g s
dual_left
#align antitone_on.monovary_on
AntitoneOn.monovaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], AntitoneOn f sAntitoneOn g sMonovaryOn f g s
AntitoneOn.monovaryOn
protected theorem
AntitoneOn.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], AntitoneOn f sMonotoneOn g sAntivaryOn f g s
AntitoneOn.antivaryOn
(
hf: AntitoneOn f s
hf
:
AntitoneOn: {α : Type ?u.17754} → {β : Type ?u.17753} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
AntitoneOn
f: ια
f
s: Set ι
s
) (
hg: MonotoneOn g s
hg
:
MonotoneOn: {α : Type ?u.17879} → {β : Type ?u.17878} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
g: ιβ
g
s: Set ι
s
) :
AntivaryOn: {ι : Type ?u.17918} → {α : Type ?u.17917} → {β : Type ?u.17916} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
:= (
hf: AntitoneOn f s
hf
.
monovaryOn: ∀ {ι : Type ?u.17958} {α : Type ?u.17959} {β : Type ?u.17960} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], AntitoneOn f sAntitoneOn g sMonovaryOn f g s
monovaryOn
(
MonotoneOn.dual_right: ∀ {α : Type ?u.18017} {β : Type ?u.18016} [inst : Preorder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, MonotoneOn f sAntitoneOn (OrderDual.toDual f) s
MonotoneOn.dual_right
hg: MonotoneOn g s
hg
)).
dual_right: ∀ {ι : Type ?u.18187} {α : Type ?u.18188} {β : Type ?u.18189} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι}, MonovaryOn f g sAntivaryOn f (OrderDual.toDual g) s
dual_right
#align antitone_on.antivary_on
AntitoneOn.antivaryOn: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] {f : ια} {g : ιβ} {s : Set ι} [inst_2 : LinearOrder ι], AntitoneOn f sMonotoneOn g sAntivaryOn f g s
AntitoneOn.antivaryOn
end Preorder section LinearOrder variable [
Preorder: Type ?u.18737 → Type ?u.18737
Preorder
α: Type ?u.18276
α
] [
LinearOrder: Type ?u.18288 → Type ?u.18288
LinearOrder
β: Type ?u.18279
β
] [
Preorder: Type ?u.19970 → Type ?u.19970
Preorder
γ: Type ?u.18282
γ
] {
f: ια
f
:
ι: Type ?u.18722
ι
α: Type ?u.18319
α
} {
f': αγ
f'
:
α: Type ?u.18276
α
γ: Type ?u.20876
γ
} {
g: ιβ
g
:
ι: Type ?u.18313
ι
β: Type ?u.19140
β
} {
g': βγ
g'
:
β: Type ?u.18279
β
γ: Type ?u.18282
γ
} {
s: Set ι
s
:
Set: Type ?u.18310 → Type ?u.18310
Set
ι: Type ?u.18270
ι
} theorem
MonovaryOn.comp_monotoneOn_right: MonovaryOn f g sMonotoneOn g' (g '' s)MonovaryOn f (g' g) s
MonovaryOn.comp_monotoneOn_right
(
h: MonovaryOn f g s
h
:
MonovaryOn: {ι : Type ?u.18358} → {α : Type ?u.18357} → {β : Type ?u.18356} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hg: MonotoneOn g' (g '' s)
hg
:
MonotoneOn: {α : Type ?u.18487} → {β : Type ?u.18486} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
g': βγ
g'
(
g: ιβ
g
''
s: Set ι
s
)) :
MonovaryOn: {ι : Type ?u.18536} → {α : Type ?u.18535} → {β : Type ?u.18534} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
(
g': βγ
g'
g: ιβ
g
)
s: Set ι
s
:= fun
_: ?m.18591
_
hi: ?m.18594
hi
_: ?m.18597
_
hj: ?m.18600
hj
hij: ?m.18603
hij
=>
h: MonovaryOn f g s
h
hi: ?m.18594
hi
hj: ?m.18600
hj
<|
hg: MonotoneOn g' (g '' s)
hg
.
reflect_lt: ∀ {α : Type ?u.18618} {β : Type ?u.18617} [inst : LinearOrder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, MonotoneOn f s∀ {a b : α}, a sb sf a < f ba < b
reflect_lt
(
mem_image_of_mem: ∀ {α : Type ?u.18660} {β : Type ?u.18661} (f : αβ) {x : α} {a : Set α}, x af x f '' a
mem_image_of_mem
_: ?m.18662?m.18663
_
hi: ?m.18594
hi
) (
mem_image_of_mem: ∀ {α : Type ?u.18681} {β : Type ?u.18682} (f : αβ) {x : α} {a : Set α}, x af x f '' a
mem_image_of_mem
_: ?m.18683?m.18684
_
hj: ?m.18600
hj
)
hij: ?m.18603
hij
#align monovary_on.comp_monotone_on_right
MonovaryOn.comp_monotoneOn_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : LinearOrder β] [inst_2 : Preorder γ] {f : ια} {g : ιβ} {g' : βγ} {s : Set ι}, MonovaryOn f g sMonotoneOn g' (g '' s)MonovaryOn f (g' g) s
MonovaryOn.comp_monotoneOn_right
theorem
MonovaryOn.comp_antitoneOn_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : LinearOrder β] [inst_2 : Preorder γ] {f : ια} {g : ιβ} {g' : βγ} {s : Set ι}, MonovaryOn f g sAntitoneOn g' (g '' s)AntivaryOn f (g' g) s
MonovaryOn.comp_antitoneOn_right
(
h: MonovaryOn f g s
h
:
MonovaryOn: {ι : Type ?u.18767} → {α : Type ?u.18766} → {β : Type ?u.18765} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
MonovaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hg: AntitoneOn g' (g '' s)
hg
:
AntitoneOn: {α : Type ?u.18896} → {β : Type ?u.18895} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
AntitoneOn
g': βγ
g'
(
g: ιβ
g
''
s: Set ι
s
)) :
AntivaryOn: {ι : Type ?u.18945} → {α : Type ?u.18944} → {β : Type ?u.18943} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
(
g': βγ
g'
g: ιβ
g
)
s: Set ι
s
:= fun
_: ?m.19000
_
hi: ?m.19003
hi
_: ?m.19006
_
hj: ?m.19009
hj
hij: ?m.19012
hij
=>
h: MonovaryOn f g s
h
hj: ?m.19009
hj
hi: ?m.19003
hi
<|
hg: AntitoneOn g' (g '' s)
hg
.
reflect_lt: ∀ {α : Type ?u.19027} {β : Type ?u.19026} [inst : LinearOrder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, AntitoneOn f s∀ {a b : α}, a sb sf a < f bb < a
reflect_lt
(
mem_image_of_mem: ∀ {α : Type ?u.19069} {β : Type ?u.19070} (f : αβ) {x : α} {a : Set α}, x af x f '' a
mem_image_of_mem
_: ?m.19071?m.19072
_
hi: ?m.19003
hi
) (
mem_image_of_mem: ∀ {α : Type ?u.19090} {β : Type ?u.19091} (f : αβ) {x : α} {a : Set α}, x af x f '' a
mem_image_of_mem
_: ?m.19092?m.19093
_
hj: ?m.19009
hj
)
hij: ?m.19012
hij
#align monovary_on.comp_antitone_on_right
MonovaryOn.comp_antitoneOn_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : LinearOrder β] [inst_2 : Preorder γ] {f : ια} {g : ιβ} {g' : βγ} {s : Set ι}, MonovaryOn f g sAntitoneOn g' (g '' s)AntivaryOn f (g' g) s
MonovaryOn.comp_antitoneOn_right
theorem
AntivaryOn.comp_monotoneOn_right: ∀ {ι : Type u_1} {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Preorder α] [inst_1 : LinearOrder β] [inst_2 : Preorder γ] {f : ια} {g : ιβ} {g' : βγ} {s : Set ι}, AntivaryOn f g sMonotoneOn g' (g '' s)AntivaryOn f (g' g) s
AntivaryOn.comp_monotoneOn_right
(
h: AntivaryOn f g s
h
:
AntivaryOn: {ι : Type ?u.19176} → {α : Type ?u.19175} → {β : Type ?u.19174} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
g: ιβ
g
s: Set ι
s
) (
hg: MonotoneOn g' (g '' s)
hg
:
MonotoneOn: {α : Type ?u.19305} → {β : Type ?u.19304} → [inst : Preorder α] → [inst : Preorder β] → (αβ) → Set αProp
MonotoneOn
g': βγ
g'
(
g: ιβ
g
''
s: Set ι
s
)) :
AntivaryOn: {ι : Type ?u.19354} → {α : Type ?u.19353} → {β : Type ?u.19352} → [inst : Preorder α] → [inst : Preorder β] → (ια) → (ιβ) → Set ιProp
AntivaryOn
f: ια
f
(
g': βγ
g'
g: ιβ
g
)
s: Set ι
s
:= fun
_: ?m.19409
_
hi: ?m.19412
hi
_: ?m.19415
_
hj: ?m.19418
hj
hij: ?m.19421
hij
=>
h: AntivaryOn f g s
h
hi: ?m.19412
hi
hj: ?m.19418
hj
<|
hg: MonotoneOn g' (g '' s)
hg
.
reflect_lt: ∀ {α : Type ?u.19436} {β : Type ?u.19435} [inst : LinearOrder α] [inst_1 : Preorder β] {f : αβ} {s : Set α}, MonotoneOn f s∀ {a b : α}, a sb sf a < f ba < b
reflect_lt
(
mem_image_of_mem: ∀ {α : Type ?u.19478} {β : Type ?u.19479} (f : αβ) {x : α} {a : Set α}, x af x f '' a
mem_image_of_mem
_: ?m.19480?m.19481
_
hi: ?m.19412
hi
) (
mem_image_of_mem: ∀ {α : Type ?u.19499} {β : Type ?u.19500} (f : αβ) {x : α} {a : Set α}, x af x f '' a
mem_image_of_mem
_: ?m.19501?m.19502
_
hj: ?m.19418
hj
)
hij: ?m.19421
hij
#align antivary_